He et al. BMC Cancer (2018) 18:550
https://doi.org/10.1186/512885-018-4459-6

BMC Cancer

DATABASE Open Access

PDXliver: a database of liver cancer patient ®

CrossMark

derived xenograft mouse models

Sheng He'**" Bo Hu?", Chao Li?, Ping Lin**, Wei-Guo Tang? Yun-Fan Sun? Fang-You-Min Feng'?*, Wei Guo?,
Jia Li"**, Yang Xu®, Qian-Lan Yao®, Xin Zhang®, Shuang-Jian Qiu? Jian Zhou? Jia Fan?, Yi-Xue Li'?,

Hong Li*" and Xin-Rong Yang®"

Abstract

Background: Liver cancer is the second leading cause of cancer-related deaths and characterized by heterogeneity
and drug resistance. Patient-derived xenograft (PDX) models have been widely used in cancer research because
they reproduce the characteristics of original tumors. However, the current studies of liver cancer PDX mice are
scattered and the number of available PDX models are too small to represent the heterogeneity of liver cancer
patients. To improve this situation and to complement available PDX models related resources, here we constructed a
comprehensive database, PDXliver, to integrate and analyze liver cancer PDX models.

Description: Currently, PDXliver contains 116 PDX models from Chinese liver cancer patients, 51 of them were
established by the in-house PDX platform and others were curated from the public literatures. These models are
annotated with complete information, including clinical characteristics of patients, genome-wide expression
profiles, germline variations, somatic mutations and copy number alterations. Analysis of expression subtypes and
mutated genes show that PDXliver represents the diversity of human patients. Another feature of PDXliver is
storing drug response data of PDX mice, which makes it possible to explore the association between molecular
profiles and drug sensitivity. All data can be accessed via the Browse and Search pages. Additionally, two tools
are provided to interactively visualize the omics data of selected PDXs or to compare two groups of PDXGs.

Conclusion: As far as we known, PDXliver is the first public database of liver cancer PDX models. We hope that
this comprehensive resource will accelerate the utility of PDX models and facilitate liver cancer research. The PDXliver
database is freely available online at: http://www.picb.ac.cn/PDXliver/
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Background

Patient-derived xenograft (PDX) models are generated by
directly transplanting cancer patients’ tumor samples to
immune-compromised mice. It has been widely applied to
multiple cancer types, such as breast cancer, lung cancer
and colon cancer [1-4]. PDX models recapitulated the
histologic, genomic, expression and biological characteris-
tics of the corresponding primary tumors [5-8].
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Additionally, the response of PDX models to drug treat-
ment are remarkable correlated with clinical outcome,
which made it possible to establish personalized xenograft
model to help make therapeutic decision and guide the
cancer treatment [9-12]. For example, Manuel Hidalgo et
al. generated 14 PDX models for 14 patients and treated
tumorgrafts with 63 different drugs; an effective drug in
the PDX model was identified for 12 patients [13]. Hui
Gao et al. have established ~ 1000 PDX models involving
six cancer types, used these models to in vivo screen drug
and compounds, and successfully reveal some resistance
mechanisms [14]. Therefore, PDX models are thought to
be the best pre-clinical models for translational drug
development in cancer research.
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Liver cancer is the second most common causes of
cancer-related deaths with an estimated nearly, 29,200
new cases and 40,710 fatalities occurred United States in
2017 [15], with the highest incidence rates reported in
China. For patients with unresectable liver cancers,
sorafenib is the only FDA approved standard first-line
drug. However, sorafenib only improved the overall sur-
vival by nearly 3 months [16, 17]. The current genome
sequencing revealed that 28% of liver cancer patients
harbored at least one targetable mutation by FDA-
approved drugs [18]. In future, these patients may bene-
fit from targeted treatment if the effectiveness of drug is
further validated by PDX models.

The first liver cancer PDX model was reported in
1996, but this field progressed slowly due to the very
low engraftment rate [19-23]. In the last five years, the
engraftment rate was increased to nearly 40% by im-
proved experimental methods and many liver cancer
PDX models had been generated. A cohort of 65 stable
liver cancer PDX models were established and revealed
that lenvatinib, a FGFR1 inhibitor, presentated better
therapeutic effect than sorafenib in the models express-
ing high levels of FGFR1 gene [24]. Although PDX
models have achieved useful results in liver cancer treat-
ment, there still exist some problems, such as engraft-
ment failure for 59% patients, long-time (2~ 4 months)
for the tumor to engraft. With more cumulated PDX
models, it will be feasible to predict the drug response of
new patients. Such algorithms have been used in large-
scale cancer cell line studies. Machine learning or
regression models were built to predict drug sensitivity
based on molecular profiles, including gene expression,
somatic mutations and copy-number alterations [25, 26].
Nevertheless the current studies of liver cancer PDXs
are scattered in different literatures. An integrated data-
base with unified format will facilitate the application of
liver cancer PDXs.

Here we built a database PDXliver, which collected
liver cancer PDX models and provided comprehensive
genome, transcriptome and drug response data. Cur-
rently PDXliver contains 116 PDX mouse models from
116 Chinese liver cancer patients, 26 of which have drug
response data. Sixty-five models were curated from pub-
lic papers and others came from in-house PDX platform.
We also developed tools to help users to explore the
omics data of PDX models. This new resource will facili-
tate the drug sensitivity prediction and precision medi-
cine of liver cancer.

Construction and content

Implementation

We integrated PDX models from the in-house PDX ex-
perimental platform and public literatures [24]. Models
that came from the same batch or literature were called
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a dataset. To facilitate the management of massive PDX
mouse models, we also set naming rules for patients and
xenografts. Each patient was randomly assigned an iden-
tifier (e.g.: PD0001). Mice from this patient were named
using the combination of patient’s identifier and the pas-
sage number. F1 is the 1st-passage xenograft, F2 is the
2nd-passage, and so on. Clinical, molecular and drug
sensitivity data were stored into database if they were
available. Three main function blocks (search, browse,
tools) were developed to display the characteristics of
PDX models (Fig. 1a).

The PDXliver database was built in RedHat Linux ser-
ver (4.4.7-11) and the web interface was implemented
using a combination of JavaScript and PHP scripts. All
the data were stored in a MySQL (version 5.7.9) data-
base. Data processing and visualization were performed
by R language or JavaScript plugin. PDXliver can be
accessed via the major browsers such as Chrome, Safari,
Edge, and Firefox.

Establishment of PDX models

4-5 weeks old male non-obese diabetic severe combined
immunodeficiency (NOD/SCID) mice as transplant re-
cipient models were raised in the aseptic environment.
Liver cancer tumor samples were cut into pieces within
1 h after removal from patients. Tissue fragments were
incubated in DMEM medium supplemented with 50%
Matrigel™ (BD; 356,234), 10 ng/mL epidermal growth
factor (Gibco; PHGO0314), 10 ng/ml basic fibroblast
growth factor (Gibco; PHG0264), 100 U/mL penicillin,
and 100 U/mL streptomycin for 30 min. Tumor tissues
with the incubation mix (Matrigel plus growth factors)
were transplanted into the right flanks of mice (n = 3; 4—
5 weeks old, Shanghai Institute of Material Medicine,
Chinese Academy of Science) subcutaneously with a No.
20 trocar. Animal care and experimental protocols were
approved by the Shanghai Medical Experimental Animal
Care Commission. The tumor growth was recorded
three times a week from the measurement of length
(L)and width (W) with caliper and calculated as
tumor volume (TV, mm3)=0.5xLx W2 (mm). To
explore the intrinsic sensitivity of the first-line drug
of treatment for liver cancer, some PDX models were
randomly selected for drug experiments. To estimate
the performance of drugs, a criterion named Tumor
Growth Inhibition (TGI) was used. Tumor Growth
Inhibition is equal to the ratio of the experimental
group tumor volume and the control group tumor
volume. When the tumor in the control group mice
grew to the definite dimension, both the control and
experimental group mice were killed and fresh tumor
samples were obtained to do microarray or next gen-
eration sequencing. All clinical data was anonymized
to protect patient privacy.
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Fig. 1 Overview of PDXliver database. a Workflow of collecting PDX models and designing PDXliver database. PDXliver contains multi-omics data
from both the in-house experimental platform and published literatures. b Statistics of clinical indicators. ¢ Number of PDX models which have
gene expression, somatic mutation, copy number alteration (CNA) and drug treatment data. HCC were classified into three expression subtypes
based on a previous published nearest template prediction method. Genes with frequent somatic mutations (> 10%) were shown in a barplot

Collection of public PDX models

To expand the capacity of our database, we collected
clinical and molecular information of PDX models from
literatures. PubMed database was searched using key-
words “liver cancer” or “hepatocellular carcinoma”, and
“PDX” or “patient-derived xenograft”. It returned 148
records by Feb 10, 2018. After the manual check, 52 lit-
eratures established liver cancer PDX mice from pa-
tients, but only one of them provided both clinical
information and high-throughput molecular data [24]. If
the original authors had uploaded their experimental
data to GEO or other databases, we downloaded the raw
data and processed it into a unified format (detailed
methods were described in the next paragraph). If raw
data was not available but there was processed data in
supplementary material, we directly stored the processed
data into database.

Data processing
The raw data was processed into unified format before
storing into database.

1) Affymetrix genome-wide human SNP 6.0 array

Raw data were stored in CEL files. Genotypes were
called by the CRLMM algorithm in R package “oligo”.
SNP identifiers were mapped to dbSNP ID and gene
symbols by R package “pd.genomewidesnp.6”.

2) Exome sequencing

Raw data were stored in FASTQ files. Low-quality
reads were filtered, and then the remained reads were
mapped to human genome (hgl9) by BWA algorithm.
Duplicated reads were removed by the picard tool. SN'Vs
and indels were called by GATK based on the GATK
best practices. Somatic mutations were identified by
VarScan? if the paired tumor and control samples were
available. The potential functional effects of mutations
were annotated by ANNOVAR. We collected 72 signifi-
cantly mutated genes from 6 published genomes studies
of liver cancer patients. Functional mutations (non-syn-
onymous, splicing, stop-gain and stop-loss SN'Vs; exonic
indels) in these significantly mutated genes were stored
into database.

3) Affymetrix gene expression array

Raw data were stored in CEL files. Expressions of
probes were estimated by the Robust Multichip Average
algorithm in R package “affy”, and normalized by quan-
tile normalization. For genes with multiple probes, the
mean of all probes was used as gene expression. The
gene expression genes were log2 transformed and then
stored into database.

4) RNA sequencing
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Raw data were stored in FASTQ files. Low-quality
reads were filtered using NGSQC Toolkit. Then high-
quality reads were mapped to human genome (hgl9).
Gene expression levels were estimated by the RSEM
algorithm, and normalized by the trimmed mean of M-
values (TMM) normalization method.

For most of the in-house DPX models, raw data have
been submitted to public repositories (GEO). PDXliver
webpages provide links to the public repositories.

Data statistics

The PDXliver database was designed to provide a data
storage, search, and analysis system for liver cancer
mouse xenografts (Fig. 1a). Currently, it contained three
datasets. One dataset were obtained from a public litera-
ture [24]. Another two datasets came from our in-house
PDX experimental platform (the Liver Cancer Institute
of ZhongShan Hospital, Fudan University, Shanghai,
China); some PDX models are firstly publicly available in
PDXliver. Table 1 gives the source of each dataset, the
number of PDX models with molecular profiles or drug
treatment. A total of 116 patients have stable PDX
models, some patients have multiple serially passaged
xenografts. All patients have been comprehensively
annotated with clinical information, such as age, gender,
virus infection and tumor stage (Table 2, Fig. 1b). Since
all patients are Chinese, most of them are HBV positive
(n =88). Hepatocellular carcinoma (HCC) is the major
histopathologic subtype (n =100), followed by cholan-
giocarcinoma (n =11). A part of models have genome-
wide expression profiles (n =88), germline variations
(n =40), somatic mutations (n =69) and copy number
alterations (1 =42). Expression profiles of 72 HCC were
available and they were classified into three subgroups
using a previous public method [27]: S1 (23.6%), S2 (23.
6%) and S3 (41.7%) (Fig. 1c). TP53 (69.5%) is the most
frequently mutated gene in liver cancer PDX models; its
frequency is higher than the reported frequency (25%~
35%) in liver cancer patients [28, 29]. Mutation fre-
quency of another four genes (APOB, CTNNB1, AXINI,
TSC2) are higher than 10%. We also provide histological
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staining (n =40), tumor growth curve (n =40), and drug
response data (1 = 26) for the in-house PDX models.

Utility and discussion

Data browse and search

To help users quickly understand and query PDXliver,
we designed the “Browse” and “Search” pages (Fig. 2).

The “Browse” page allows users to query PDX models
by histopathologic subtype, tumor grade, virus infection
and data source (Fig. 2a). Users can select the combin-
ation of multiple conditions. Results will be returned in
a table in which each row represents a model including
some summary information. Meanwhile, users can go to
the detailed page of PDX model by clicking the
hyperlink.

The “Search” page contains six query frames (Fig. 2b).
Firstly, users can exactly find the PDX mouse model if
they know its identifier (e.g. PD0001). It will link to the
detailed page of PDX model, including clinical character-
istics of the associated patient, engraftment conditions,
drug treatment, histopathology image and tumor growth
curve (Fig. 3a). Some entries may be empty if the data is
unavailable. A part of transplantable xenograft lines have
been stably maintained over multiple passages, e.g. F1-
to F4- generations of PD0003. Our previous work have
proved that the histological, genomic and transcriptomic
characteristics of PDX mice were remarkable stable
across sequential passages. The result page also showed
the similarity of histopathology images among serially
transplanted xenografts (Fig. 3b). Secondly, users can re-
trieve PDX mice that have been treated by the given
drug. After querying a drug name, a result table will be
returned to display the model identifier, drug dose, fre-
quency and duration of drug treatment, and drug
response rate (TGI). Thirdly, user can obtain the expres-
sion profile of one gene by querying its gene symbol.
Expression values in all PDX models are visualized by a
barplot (Fig. 3c). Fourthly, users can query a single nu-
cleotide polymorphism (SNP) site by its dbSNP ID. The
result page contains the basic information of SNP, such
as location and associated gene; it also shows its

Table 1 Data source and statistics of PDXliver database. Multiple PDX models from the same patient were counted only once

Data Set  Patient Transcriptome Genome Drug Source Reference
patient  platform patient platform treatment
DataSet1 46 40 Affymetrix Human Genome U133 40 Affymetrix Genome-Wide Human 21 ZhongShan  unpublished
Plus 2.0 Array (GPL570) SNP 6.0 Array Hospital
13 Exome sequencing
DataSet2 65 43 Affymetrix Human Gene Expression 42 Affymetrix Genome-Wide Human 0 WuXi [24]
Array (GPL15207) SNP 6.0 Array AppTech
56 Exome sequencing
DataSet3 5 5 RNA sequencing / 5 ZhongShan  unpublished

Hospital
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Table 2 Clinical information of 116 liver cancer patients

Clinical indexes No. of Patients

Age (y) <50 43
250 73
Gender Female 20
Male 96
Tumor differentiation Early stage (I-l) 16
Late stage (IlI-IV) 96
HBV Positive 88
Negative 16
HCV Positive 1
Negative 47
Tumor encapsulate Complete 30
None 20
Tumor subtype Hepatocellular carcinoma 100

Cholangiocarcinoma 11
Other 5

genotypes in different PDX models. Fifthly, users can
browse somatic mutations of a given gene in liver cancer
PDXs. The result page shows chromosome position, ref-
erence and alternative alleles, mutation type, amino acid
change, and potential function effect (Fig. 3d). The last
query item allows users to search the copy number alter-
ations with gene symbol. It will return the detail copy
number variations in PDX models if the associated data
are available (Fig. 3e).

Analysis tools

Visualization of molecular profiles

The “HeatMap” tool allows users to intuitively
visualize the molecular profiles of PDX models. To
draw a customizable heatmap, users need to select a
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dataset and a molecular type, and provide a list of
genes (Fig. 4a). There are three alternative molecular
types: gene expression, somatic mutation and somatic
copy number alteration (SCNA). The available mo-
lecular type may be different based on the source of
datasets. For example, datasetl has gene expression
and somatic mutation data but does not have SCNA;
therefore SCNA is not an optional molecular type
after selecting datasetl. For somatic mutation, the
heatmap only plots the significantly mutated genes in
liver cancer patients [30]. For gene expression and
SCNA, users need to provide a list of genes by enter-
ing gene symbols in the text area or uploading a file
that contains gene symbols. The gene symbols should
be separated by comma or space.

Once users input these necessary parameters, a cus-
tomized heatmap will be plotted. Figure 4b shows an ex-
ample of expression heatmap. Each row is a gene and
each column is a PDX mouse model. Gene expression
values are converted to Z-score. Color represents the Z-
score of gene expression values. Red indicates high ex-
pression and green means low expression. In a heatmap
of copy-number alterations, the variation-type (amplifica-
tion or deletion) and the number of copy number varia-
tions are respectively painted with different colors (Fig.
4c). The heatmap of somatic mutation is similar, with
color reflected different types of somatic mutation, such
as frame-shift indels and non-synonymous SNVs (Fig. 4d).

Differential expression analysis

The purpose of this tool is to identify genes whose ex-
pressions are significantly different between two groups
of PDX models. Expression profiles from different data-
sets may have batch effect; pathological subtypes of liver
cancer may display different expression patterns. There-
fore, we provided two parameters (dataset and
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histological type) to make the selected PDX models
more comparable. Then users can classify PDX models
into two groups by their clinical indicators, such as “re-
sponse to sorafenib” and “status of HBV infection”. All
genes were tested by the given statistical method. Signifi-
cant genes were selected out by the user defined P-value
and fold change.

To illustrate the use of this tool, we tried to find
genes associated sorafenib response by comparing sen-
sitive PDXs and resistant PDXs. We selected “datasetl”,
“Hepatocellular carcinoma” and “Drug response to so-
rafenib” in the first three steps. Then the webpage
showed 16 PDX mice whose responses to sorafenib
were evaluated by tumor growth inhibition (Fig. 4e).

According to the criteria of the Division of Cancer
Treatment (NCI), PDXs whose TGI < 20% were defined
as having response and PDXs whose TGI>50% were
defined as tumor progression. Therefore, we selected 3
sensitive PDXs and 5 resistant PDXs in the step 4. We
compared the sensitive group and resistant group by
the two-tailed T-test. There were 77 significantly differ-
ential genes between two groups (Fig. 4f) (P <0.01,
FoldChange> 2), indicating potential association with
sorafenib response. We also realized that the statistical
power might be low due to the small number of PDX
models, more PDXs are needed to make the results
more reliable. Our tool will make it easier to get the
analysis results of new data.
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Conclusion

As a preclinical model, PDX models represent the ori-
ginal features of patient tumors in many ways and have
been shown to be predictable for the drug response of
patients. Nevertheless, the progress of PDX models is

relatively slower in liver cancer than it in other cancer
types, such as breast cancer and lung cancer. It is im-
portant to establish a comprehensive PDX cohort that
represents the diversity of the human liver cancer pa-
tients. The PDXliver is designed to provide a
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bioinformatic platform to collect and analysis liver can-
cer PDXs data. In recent years, genomic and transcrip-
tomic studies of human liver cancer patients have made
great contributions. The genomic studies revealed muta-
tion landscape of liver cancer, promoting the under-
standing of cancerogenesis. The transcriptomic studies
classified liver cancer into different expression subtypes,
promoting the understanding of cancer heterogeneity.
However, these studies lack of the information of treat-
ment response. It is difficult to directly associate gene
with drug through patients. PDXliver stores hundreds of
liver cancer PDX models, which covers the significantly
mutated genes and expression subtypes of liver cancer
patients. Therefore, PDXliver retains the heterogeneity
of human liver cancers. It will be valuable for precision
medicine.

To facilitate the utility of liver cancer PDX mice
models, PDXliver has several features. Firstly, PDXliver
has the largest number of liver cancer PDX models so
far and the number will continue to increase in future.
Secondly, PDXliver categorizes all clinical data, genomic
data, transcriptome data and drug responses data for
easy search and access, which makes users quickly gain
insights into the models. Thirdly, the analysis tool allows
users to compare the molecular profiles among multiple
PDX models. We expect that PDXliver will become a
very useful resource for liver cancer PDXs research.

As far as we known, PDXliver is the first public data-
base for liver cancer PDX mice models. We searched
PubMed and did not find other databases specifically de-
signed for PDX mouse models. One similar database,
Mouse Tumor Biology Database (MTB http://tumor.in-
formatics.jax.org/mtbwi/index.do), provides information
on diverse mouse models for human cancers. MTB con-
tains 440 PDX models from the Jackson laboratory, but
only 2 models originated from liver (hepatoid adenocar-
cinoma). Another software cBioPortal provides a public
framework for storing and visulizing cancer genomic
data, which generated from tissue biopsy samples of can-
cer patients. However, PDXliver focuses on the liver can-
cer patient-derived xenograft models; the combination
of drug sensitivity and omics data will be more useful
for pharmacogenomics research.

Although PDXliver is the most comprehensively re-
sources for liver cancer PDX models, there are still limi-
tations. Expression profiles in different datasets were
generated from different experiment platforms or differ-
ent analysis methods, which may be not comparable.
Furthermore, the public dataset didn’t have drug re-
sponse data. Even for the in-house PDX models, the
major drug is sorafenib and only a few models have drug
sensitivity values for multiple drugs. We plan to treat
PDX models with more drugs in future. An ongoing
project in our lab has constructed another 50 liver
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cancer PDX models with drug response. These models
and future new models will be stored into PDXliver.
More models with available drug response data will
make this database much more useful for drug sensitiv-
ity prediction. In addition, some important information
such as therapeutic effects and survival time of patients
are not available due to the short follow-up time, we will
add these data in future to enrich the database contents.
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