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Abstract

Background: Patients with cancer develop endothelial dysfunction and subsequently display a higher risk of
cardiovascular events. The aim of the present work was to examine changes in nitric oxide (NO)- and prostacyclin
(PGl,)-dependent endothelial function in the systemic conduit artery (aorta), in relation to the formation of lung
metastases and to local and systemic inflammation in a murine orthotopic model of metastatic breast cancer.

Methods: BALB/c female mice were orthotopically inoculated with 4T1 breast cancer cells. Development of lung
metastases, lung inflammation, changes in blood count, systemic inflammatory response (e.g. SAA, SAP and IL-6), as
well as changes in NO- and PGl,-dependent endothelial function in the aorta, were examined 2, 4, 5 and 6 weeks
following cancer cell transplantation.

Results: As early as 2 weeks following transplantation of breast cancer cells, in the early metastatic stage, lungs
displayed histopathological signs of inflammation, NO production was impaired and nitrosylhemoglobin concentration
in plasma was decreased. After 4 to 6 weeks, along with metastatic development, progressive leukocytosis and
systemic inflammation (as seen through increased SAA, SAP, haptoglobin and IL-6 plasma concentrations) were
observed. Six weeks following cancer cell inoculation, but not earlier, endothelial dysfunction in aorta was detected,;
this involved a decrease in basal NO production and a decrease in NO-dependent vasodilatation, that was associated
with a compensatory increase in cyclooxygenase-2 (COX-2)- derived PGl, production.

Conclusions: In 4 T1 metastatic breast cancer in mice early pulmonary metastasis was correlated with lung
inflammation, with an early decrease in pulmonary as well as systemic NO availability. Late metastasis was associated
with robust, cancer-related, systemic inflammation and impairment of NO-dependent endothelial function in the aorta
that was associated with compensatory upregulation of the COX-2-derived PGl, pathway.
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Background

The vascular endothelium, considered the body’s largest
autocrine/paracrine/endocrine organ, responds to various
physical and chemical stimuli and maintains vascular
homeostasis. Endothelial dysfunction, characterized by im-
paired production of vasoprotective endothelial mediators
such as nitrite oxide (NO) and excessive activity of pro-
oxidant, pro-thrombotic, pro-inflammatory mediators,
plays a key role in the development of atherosclerosis and
its cardiovascular complications, as well as in other cardio-
vascular diseases [1-3]. Cardiovascular complications ob-
served in cancer patients and cancer survivors [4, 5] are
also associated with the development of endothelial dys-
function that displays a similar phenotype to that described
in patients with atherothrombosis [6].

In target organs for metastatic spread, endothelial in-
flammation may promote cancer metastasis. The endothe-
lium acts as a barrier to cancer cell migration from blood
to tissue. It has been proposed that the migration and in-
vasion of circulating cancer cells into distant tissues is
supported by the same mechanisms as those involved in
leukocyte recruitment [7]. In fact, tumour cells appear to
respond to the chemokines and cell adhesion molecules
engaged in leukocyte trafficking and endothelial inflam-
matory response [8, 9]. Interestingly, recent in vitro stud-
ies have demonstrated that factors released from
dysfunctional endothelium activate NF-kB and STAT3 sig-
nalling pathways within cancer cells, and promote their
invasiveness in vitro [10]. At the same time, vasoprotective
endothelial mediators such as for example prostacyclin
(PGI,) display anti-metastatic activity, further supporting
a crucial relationship between endothelial function and
cancer metastasis [11, 12].

Metastases development is therefore related with
changes of the endothelial phenotype in the affected or-
gans (e.g. lung, liver) that contribute to the pathophysi-
ology of metastasis. In addition, development of systemic
endothelial dysfunction (e.g. in the conduit arteries) may
contribute to cardiovascular complications in cancer pa-
tients. Obviously, the mechanisms mediating local
changes in endothelial phenotype at metastatic sites and
those involved in the development of systemic endothelial
dysfunction may be different.

Among various available mouse models of cancer me-
tastasis, the most appropriate for studying local and sys-
temic endothelial response would be models, in which
cancer cells are transplanted into the tissue of their ori-
gin (e.g. mammary gland, prostate or intestine), so that
they form tumours that develop and progress from pri-
mary lesions to metastases in their natural microenvir-
onment, i.e. as orthotopically-inoculated cancer cells
syngrafted into immune-competent mice.

In the present study, we took advantage of the spon-
taneously metastasizing 4T1 murine mammary gland
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carcinoma model to examine the alterations in endothe-
lial NO- and PGI,-dependent function in aorta that ac-
company metastatic expansion. The prolonged disease
progression in a model established in our laboratory
allowed us to identify a temporal relationships between
the development of local, pulmonary inflammation, al-
terations in pulmonary endothelial function, systemic in-
flammation and endothelial dysfunction in conduit
vessel (aorta) in relation to primary tumour growth and
lung metastases. We showed that an early decrease in
pulmonary and systemic NO availability coincided with
the development of lung inflammation in the early meta-
static phase, while late systemic endothelial dysfunction
in aorta coincided with robust, systemic, cancer-related
inflammation.

Methods

Animals

Seven- to eight-week-old BALB/c female mice were ob-
tained from Charles River Laboratories Polska -Animal
Lab (Poznan, Poland). Mice were housed in specific
pathogen-free conditions (SPF) and fed a standard la-
boratory diet and water ad libitum.

All experimental procedures used in the present study
were followed according to the Guidelines for Animal
Care and Treatment of the European Communities and
the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NIH
Publication No. 85-23, revised 1996). All procedures
were approved by the First Local Ethical Committee on
Animal Testing at the Jagiellonian University (Krakow,
Poland), permit no: 140/2013.

Tumour cell line

Mouse mammary adenocarcinoma 4 T1 cells were ob-
tained from American Type Culture Collection (ATCC).
Cells were cultured in RPMI 1640 (Laboratory of Analyt-
ical Chemistry, IIET) with Opti-MEM® media (Life Tech-
nologies) (1:1 v/v) and 5% fetal bovine serum (HyClone,
Thermoscientific), supplemented with 4.5 g/L glucose,
2 mM glutamine, 1.0 mM sodium pyruvate (all from
Sigma-Aldrich) and antibiotics (penicillin and strepto-
mycin; Polfa Tarchomin). Cell cultures were maintained at
37 °C in a humidified atmosphere with 5% CO..

Murine model of metastatic breast cancer

1 x 10* viable 4 T1 tumour cells suspended in 0.05 ml of
Hanks Balanced Salt Solution were orthotopically
inoculated into the right mammary fat pad of female
BALB/c mice. Analyses were conducted at 2, 4, 5 and
6 weeks after 4 T1 cancer cell transplantation. Prior to each
analysis, animals were randomly divided into two
experimental groups (one group designated for the analysis
and the other for further tumour development), so that the
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mean tumour volumes and tumour volume distributions
were similar between experimental groups. Healthy BALB/
¢ mice were used as a control group, and were analysed
simultaneously with the tumour-bearing mice at 2, 4, 5 and
6 weeks after 4 T1 cancer cell transplantation.

Animals were anesthetized by intraperitoneal (i.p.) injec-
tion of a mixture of ketamine and xylazine (100 mg keta-
mine and 10 mg xylazine/kg body weight). Blood samples
were collected from the right ventricle of the heart using a
syringe containing anticoagulant (EDTA 1.6 mg/ml).

Assessment of the primary tumour and number of
metastases in the lungs
Primary tumours were carefully dissected from the sur-
rounding tissues and weighed. Isolated lungs were washed
in saline, weighed, and fixed with 4% formalin buffered so-
lution. The number of metastases was macroscopically
assessed; metastatic sites visible on the lung surface were
visually counted using a magnification glass.

Macroscopic analysis of the lungs was followed by par-
affin embedding, histological HE staining and histo-
pathological assessment of the tissue.

Histological and immunohistochemical analysis of the
lungs

Lungs were fixed in 4% buffered formalin (for at least
48 h). After macroscopic analysis of the number of metas-
tases, the lungs were prepared using the paraffin method,
cut into 6 pm sections on an Accu-Cut® SRM™ 200 Rotary
Microtome and stained with hematoxylin and eosin.

Light microscopic examination and photographic
documentation were performed using an Olympus
BX53F microscope equipped with a digital camera. Pic-
tures were taken under the magnification 20x and 200x.

For immunohistochemical staining of VCAM-1 and
VWE in the lung vasculature following deparaffinization,
sections were pretreated according to the citrate-based
HIER protocol and then preincubated with 5% goat serum
(Jackson ImmunoResearch) and 2% dry milk to minima-
lize non- specific binding of antibodies. Primary rat-anti-
mouse VCAM-1 (Chemicon) or rabbit-anti-mouse vWF
(Abcam) antibodies were used, followed by Cy3-
conjugated goat-anti-rat or Cy3- conjugated goat-anti-
rabbit secondary antibodies (Jackson ImmunoResearch),
respectively. Images were acquired using the AxioObser-
ver D2 inverted fluorescent microscope (Carl Zeiss) and
an AxioCam HRm monochromatic digital camera and
stored as TIFF files. Fluorescence intensity was analysed
automatically by Columbus software (Perkin Elmer).

Assessment of NO production in the isolated lung
preparation

Lungs were isolated from anaesthetized (pentobarbit-
one, 140 mg/kg, ip.) animals and perfused at a
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constant flow of about 1.50 ml/min with low glucose
DMEM with 4% albumin and 0.3% HEPES, mounted
in a water-jacketed artificial thorax and ventilated
with negative pressure at a rate of 90 breaths/min.
The end-expiratory pressure in the chamber was set
to -3 ¢m H,O and inspiratory pressure was adjusted
between -6 and — 10 cm H,O to yield an initial tidal
volume (TV) of about 0.2 ml. Every 5 min during the
experiment, a deep breath of -21 c¢cm H,O end-
inspiratory pressure was automatically initiated in
order to avoid atelectasis. The PAP was set to around
3 cm H,0. Venous pressure was set to 2-5 cm H,O.
All lungs preparations were allowed to equilibrate for at
least 15 min under perfusion. Nitrate and nitrite concen-
trations were then measured in the effluent from the
isolated lungs perfused with constant, non-recirculating
flow. The samples were analysed via sensitive high-
pressure liquid chromatography (HPLC) -based tech-
niques (ENO-20 NOx Analyser; EiCom, Kyoto, Japan).

Assessment of NO-dependent endothelial function in
isolated rings of mice aorta

Mice aorta preparations and endothelial function assess-
ment of aortic rings were conducted as previously
described [13]. Briefly, NO-dependent endothelial
function was measured by response to acetylcholine
(Ach; 0.01-10 pM) in phenylephrine (Phe; 0.1-1 uM)
pre-contracted vessels. Endothelium-independent vaso-
dilatation was determined using sodium nitroprusside
(SNP; 0.001-1 pM). To ensure that entire Ach-evoked
response was NO-dependent the response to Ach and
SNP was also measured in the presence of L-NAME. Re-
sponses were recorded using a data acquisition system
and recording software (Power Lab, Lab Chart, AD In-
struments, Australia).

Assessment of nitrite production in isolated aorta rings
Basal NO production by the aorta was estimated using
measurements of nitrite. Segments from the aortic arch
were longitudinally opened, placed in a 96-well plate
with endothelium facing up, and incubated for 1 h in
120 pl K-H buffer at 37 °C using a specially-designed
closed chamber (BIO-V (Noxygen)) that was equilibrated
with carbogen gas mixture (95% O,, 5% CO,). Samples
from the incubation buffer were put on ice and used for
measurement of nitrite with reductive gas-phase chemi-
luminescence in 1% wt/vol KI in acetic acid using Sie-
vers* Nitric Oxide Analyzer NOA 280i, according to the
manufacturer’s instructions. The averaged blank signal
(without aortic rings) for a given set of experiments was
subtracted as a background signal, to account for nitrite
contamination in the buffer and/or laboratory atmos-
phere. Nitrite concentration was expressed as ng/ml/mg
of dry weight of aortic rings.
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Assessment of PGI, production in isolated rings of mice
aorta

PGI, production by aortic rings was quantified on the
basis of the formation of 6-keto PGF1,, a stable metab-
olite of PGI,, in the supernatant of the aortic rings.

Aortic rings were incubated on a thermoblock (Liebisch
Labortechnik) at 37 °C, in 1 ml of K-H buffer equilibrated
with carbogen gas mixture (95% O,, 5% CO,), either in
the absence or presence of selective COX-2 inhibitor
DuP-697 (1 pM) or nonselective COX-1/COX-2 inhibitor
indomethacin (5 uM). Both DuP-697 and indomethacin
were dissolved in DMSO. Control rings were incubated
with DMSO (1 pl/ml).

After equilibration and pre-incubation in the presence
or absence of inhibitors, the aortic rings were placed in
fresh buffer and incubated with or without inhibitors for
30 min. Effluent samples were taken after 3 (initial) and
30 (final) minutes of incubation. PGI, production was cal-
culated as the difference between final and initial 6-keto
PGF1, concentrations and was expressed as pg/ml/mg of
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dry weight of aortic rings. 6-keto-PGF-1,, concentration
was measured using an EIA kit (Enzo, Life Technologies).

Immunohistochemistry of aortic endothelium

Aortic rings were placed perpendicularly in OCT com-
pound (Thermo) and then snap-frozen at — 80 °C. The
blocks were mounted on the cryostat holder and cut into
10-pum-thick cross-sectional slides using the Leica
CM1950 automatic cryostat. The sections were placed
on polylisine-covered (Sigma-Aldrich) microscopic slides
(Super Frost, Mentzel Gléaser), and then acetone fixed
(10 min). Pre-incubation with 2.5% horse serum (Vector
Labs) and 2% dry milk was performed to minimize non-
specific binding of antibodies. For indirect immunohis-
tochemical detection of von Willebrand factor in
endothelium, sections were incubated inside humid cham-
bers with polyclonal rabbit anti-mouse vWF Ig (Abcam)
following rinsing in PBS secondary biotinylated horse
anti-rabbit Ig (Vector Labs). After another rinse in PBS,
sections were incubated with Cy3-conjugated streptavidin
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Fig. 1 Weight of primary tumour (a), * indicates p < 0.05; *** indicates p < 0.001; **** indicates p < 0.0001 vs. 2-week group, number of metastases
in the lungs (b), ** indicates p < 0.01 at 2, 4, 5 and 6 weeks after cancer cell inoculation in mice. Results are expressed as mean + SEM, n=10-17
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(Jackson ImmunoResearch), and then mounted in
glycerol-PBS. Images of the immunostained sections were
acquired using the AxioObserver D2 inverted fluorescent
microscope (Carl Zeiss) connected to a AxioCam HRm
monochromatic digital camera, and stored as TIFF files.
Fluorescence parameters were analysed automatically by
Columbus software (Perkin Elmer).

Assessment of nitrite in plasma and NOHb in erythrocytes
Blood samples were centrifuged (1000 x g, 5 min, 4 °C)
to isolate plasma and erythrocytes. 50 ul plasma was
mixed with 100 pl of cold ethanol and kept on ice for
protein precipitation (30 min), centrifuged (14,000 x g,
5 min.) and the resulting supernatant was used immedi-
ately after sample preparation to determine nitrite con-
centration using reductive chemiluminescence analysis
(Sievers* Nitric Oxide Analyzer NOA 280i), as described
above.

EPR spectra of the isolated erythrocytes were used for
the detection of nitrosylhemoglobin (NOHb), as de-
scribed previously [14, 15]. Briefly, erythrocytes were
snap-frozen in insulin syringes and EPR measurements
were performed in in liquid nitrogen (77 K) using a Bru-
ker EMX Plus spectrometer. Nitrosylhaemoglobin levels
were expressed as the EPR amplitude of the second hy-
perfine line of the NOHb spectra in arbitrary units, and
normalized to sample weight.

Blood count and cytokine analysis in plasma

Blood count was performed immediately after blood col-
lection using a blood counter (abc Vet, HORIBA). To
obtain blood plasma, samples were centrifuged for
7 min (1000 x g). Acute-phase protein concentration in
plasma was measured using magnetic-beads-based im-
munoassay (Multiplex, Millipore). SAA and IL-6 plasma
concentrations were measured with ELISA Kkits (Invitro-
gen and R&D Systems, respectively).

Statistical analysis

For statistical analysis, STATISTICA 10 software (StatSoft,
Inc.) and OriginPro 9 software (OriginLab, Northampton,
MA) were used. The Shapiro-Wilk test was used to verify
whether the data were normally distributed. Levene’s test
was used to determine homogeneity of variances. The sig-
nificance of between-group differences was evaluated by
the Kruskal-Wallis test or ANOVA with post-hoc Tukey
multiple comparisons test or by Mann-Whitney U test,
depending on the data distribution. Spearman or Pearson’s
correlation coefficient test was used to assess dependence
between two parameters. Results are presented as mean +
SEM. Differences between means were considered signifi-
cant if p < 0.05.
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Fig. 2 Histopathological analysis of the mice lung. Control — normal
lung tissue (a, b); lungs at 2 weeks after cancer cell injection with
visible sites of inflammation, mainly granulocyte infiltration (c, d);
4-week group lungs with few small metastatic focuses (e, f); 5-week
group lungs with many visible scattered metastatic sites of different
sizes (g, h); and lungs at 6 weeks after cancer cell injection, with
numerous, extensive, merging metastatic areas (i, j). Magnification
20x: a, ¢, e, g, i; 200x: b, d, f, h, j (magnification of chosen area)
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Results

Primary tumour growth and lung metastases
development

Small palpable tumours (0.004 + 0.001 g) were observed
2 weeks after cancer cell transplantation into mammary
glands of BALB/c female mice. As shown in Fig. 1la,
mean tumour weight increased progressively over the
course of the study to a final weight of 0.99 + 0.1 g, ob-
served on the 6th week of the experiment.

No metastatic nodules were visible in lungs isolated
from mice 2 weeks after cancer cell transplantation.
However, the mean number of metastases developed in
lungs isolated from tumour-bearing mice 4, 5 or 6 weeks
after cancer cell transplantation gradually increased,
reaching a mean of 35.2 + 9.3 metastatic nodules at week
6 of the study (Fig. 1b).

Early pro-inflammatory changes in the lungs and
impaired NO production in the pre-metastatic phase

As early as 2 weeks after cancer cell transplantation, local
inflammatory cell infiltration into lung parenchyma was de-
tected, identified as a population consisting mainly of gran-
ulocytes (Fig. 2d). However, no cancer cell clusters were
observed in the lungs at this time point in microscopic
cross-section preparations of the lungs (Fig. 2c). Inflamma-
tory cells infiltration was accompanied by enhanced expres-
sion of VCAM-1 in the pulmonary vasculature, as
evidenced by immunohistochemical staining (Fig. 3a). On
the other hand, vWF staining in the lungs showed no sig-
nificant difference between early pre-metastatic mice and
controls (Fig. 3b). Moreover, nitrite and nitrate concentra-
tions in buffer from isolated lungs perfused in a non-
recirculated manner were lower in mice 2 weeks after
cancer cell inoculation as compared to control mice (nitrite:
0.938 £ 0.301 uM and 1.749 + 0.346 uM in tumour-bearing
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and control animals, respectively; nitrate: 3.00 + 0.013 uM
and 4.714+0.445 pM in tumour-bearing and control
animals, respectively; 7 = 3 in both groups).

Lung histopathology in the advanced metastatic phase

In contrast to the lungs isolated from tumour-bearing
mice at 2 weeks following cancer cell transplantation,
lungs analysed at 4 weeks displayed small, clear-cut
metastatic foci (Fig. 2e, f). 5 weeks after cancer cell
transplantation, scattered metastatic sites of different
sizes were observed in the lung parenchyma and under
the pleura (Fig. 2g, h). In the most advanced stage of
metastatic disease progression, 6 weeks after 4 T1 cell
engraftment, numerous, extensive, merging metastatic
foci were evident (Fig. 2i, j).

Development of cancer-associated systemic inflammation
Leukocytosis and other changes in blood count

At 2 weeks after cancer cell transplantation, mild changes
in the blood count of tumour-bearing mice were found,
including a drop in platelet counts that normalized over
the course of the study (Fig. 4a) and an increase in mean
platelet volume (MPV) that remained at an elevated level
until the late stage of metastatic disease development
(Fig. 4b). A significant decrease in mean cell haemo-
globin (MCH) was also noted at 2 weeks (Fig. 4c),
while in the late stage of disease (6 weeks), haemato-
crit (HCT) and average red blood cell volume (MCV)
were significantly increased (Fig. 4d; Table 1), com-
pensating for the drop in MCH seen in the early
stage of cancer progression (2 weeks).

The most pronounced alterations in the blood count
profile were observed in the late stages of metastatic dis-
ease and involved profound and progressive leukocytosis
observed at 4-6 weeks after cancer cell transplantation
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Fig. 3 Results of VCAM-1 (a) and von Willebrant Factor (b) fluorescent immunostaining in lung tissue taken from mice 2 and 6 weeks after cancer
cells inoculation. Statistically significant increase of VCAM-1 was observed in 2-week pre-metastatic group (p < 0,05 vs control) as well as
in 6-week metastatic group (p < 0,05 vs control), whereas a slight decrease of VWF was present in 6-week metastatic group (p < 0,05 vs
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(Fig. 4€; Table 1). Although the absolute numbers of gran-
ulocytes [GRA], monocytes [MON], and lymphocytes
[LYM] increased, the percentage changes indicated a sub-
stantial increase in granulocyte count, a mild increase in
monocyte count, and a relative decrease in lymphocyte
count (Fig. 4f). In fact, in control animals as well as in the
early stage of disease progression in tumour-bearing mice
(2 weeks), the most abundant WBCs were lympho-
cytes, while in the advanced stages of cancer progres-
sion (4—6 weeks) the most abundant WBCs were
granulocytes (Fig. 4f; Table 1).

There was a high correlation between number of me-
tastases and leukocytes, irrespective of whether the
change in total white blood cells, or in granulocytes,
lymphocytes, and monocytes, were analysed (Table 2).

Changes in plasma concentration of acute phase proteins
and IL-6

Along with tumour progression, there was a gradual
increase in plasma IL-6 concentration in tumour-
bearing mice. In the early stage, 2 weeks and 4 weeks
after cancer cell transplantation, plasma IL-6 concen-
tration was comparable to that of control mice, while
at 5 and 6 weeks after cancer cell transplantation,
there was a significant, 3- to 4-fold elevation in
plasma IL-6 concentration compared to control (14.5
+4.5 pg/ml and 19.8 +2 pg/ml vs. 5.8 + 1.4 pg/ml, re-
spectively; Fig. 5a). Quite a similar response pattern
was observed for acute phase proteins in plasma. The
concentrations of serum amyloid A (SAA), haptoglo-
bin and serum amyloid protein (SAP) (Fig. 5b-d) were
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Table 1 Blood counts in control mice and mice at 2, 4, 5 and 6 weeks after cancer cells inoculation

Control 2nd week 4th week 5th week 6th week
PLT [K. ul™ B 916.30 + 47.39 61875+ 128.13# 892.81 +30.04 1067.25 + 87.86 964.58 + 119.81
MPV [fl] 521 £ 0.06 563 +£0.13% 544 +0.06 573 £042 582 + 0.12**
RBC [M. pl™"] 1037 £0.17 1050+ 0.15 10.16+£0.22 1027 £ 023 10.72 + 030
MCH [pg] 15.69 + 0.20 14.67 + 0.06* 1528 £0.15 1560 + 0.27 15.74 £ 0.21
HCT [%] 5740 + 0.96 57924093 5678 £1.12% 5763 £ 1.15 62.84 + 2.01
MCV [fl] 5533 +0.18 5515+031 55.92+032 5510 £ 032 58.75 + 0.70*
WBC [K. ulf]} 3.87 £ 021 294 +0.26 31.80+6.14 169.35 + 49.59** 351.50 + 79.54%***
LYM [K. ™" 288 £ 0.15 265 +0.60 9.96 +1.26 3362 + 8.15% 62.19 + 1143%%
MON [K. ulI™"] 0.15 + 0.02 0.15+0.02 359+0.76 1846 + 5.67** 40.53 £ 8.15%***
GRA [K. plf]} 0.84 £ 0.08 0.62 +0.09 1846 £4.54 11727 + 36.28* 22436 + 69.17%%**
LYM [%] 76.14 £ 1.39 7535+2.00 40.83 + 5.03%%* 32.19 £ 4.69%*%* 20.09 + 1.86%***
MON [%] 525+ 026 6.69 + 045 10.27 £ 0.83%*** 10.34 + 0.64%%% 11.74 + 0.98%%*
GRA [%] 1861 £ 1.39 1797 £1.71 4891 +4.70* 5747 + 443%** 68.17 + 248%***

Data are expressed as mean + SEM

PLT platelets, MPV mean platelet volume, RBC red blood cells, MCH mean cell haemoglobin, HCT haematocrit, MCV mean corpuscular volume, WBC white blood

cells, LYM lymphocytes, MON monocytes, GRA granulocytes

*p < 0.05, **p < 0.01, ***p <0.001, and **** P < 0.0001 vs. control group; #p < 0.05 vs. 5-week group; $p < 0.05 vs. 6-week group, (n=8-12)

significantly increased in tumour-bearing mice at 5
and 6 weeks following cancer cell inoculation. Plasma
levels of haptoglobin, IL-6 and SAA correlated with
the number of lung metastases in tumour-bearing
mice (Table 3). On the other hand, metastases
development did not significantly influence plasma
concentrations of «l acid glycoprotein (Fig. 5e) or a2
macroglobulin (Fig. 5f).

Changes in NO-dependent function in aorta

In all experimental groups, acetylcholine (Ach) induced a
dose-dependent vasodilation of phenylephrine-precontracted
aortic rings that was entirely inhibited by L-NAME.
The Ach-induced response in aorta was not changed
at 2, 4 and 5 weeks after cancer cell inoculation, but
was impaired in the latest stage of metastatic cancer
progression (6 weeks) as compared to control mice
(Fig. 6a). In contrast, the endothelium-independent
response induced by SNP remained unaffected for all
experimental groups at all time points (Fig. 6b).

Table 2 The correlation between the number of metastases in
the lungs of tumour-bearing mice and blood parameters
assessed via the Spearman correlation coefficient test

The pair of parameters R Spearman p

Number of metastases & WBC 0.795611 0.000000
Number of metastases & LYM 0.785315 0.000000
Number of metastases & MON 0.788080 0.000000
Number of metastases & GRA 0.755175 0.000001
Number of metastases & MCV 0.632756 0.000102
Number of metastases & MCH 0515611 0.002525

Parallel to the impairment of the NO-dependent
Ach-induced response, a deterioration of nitrite
production by the endothelium was observed in the
isolated aortic rings. As shown in Fig. 7a, basal nitrite
production was significantly lower in aortas isolated
from tumour-bearing mice at 6 weeks after cancer
cell inoculation, supporting an impairment of NO-
dependent function.

Changes in systemic NO bioavailability

Mean plasma nitrite concentration in control mice was
487 + 45 nM. Interestingly, in the early stage of cancer
development (2 and 4 weeks after cancer cell transplant-
ation) plasma nitrite concentration and NOHb concen-
tration were lower (significant for NOHD, p<0.05)
compared to control mice (Fig. 7b, c).

In contrast to the lower concentration of NO, metabo-
lites in the early phase of metastasis, the concentrations of
both NOHb and nitrite were significantly increased at
6 weeks after cancer cell transplantation (Figs. 6¢ and 7b).

Changes in PGl,-dependent function in the aorta
Impairment of NO-dependent function in the aorta
was proceeded by persistent compensatory up-
regulation of PGI, production, as shown through an
increased concentration of the stable PGI, metabolite
6-keto-PGF1, in the effluent of aortic rings isolated
from tumour-bearing mice at 4-6 weeks following
cancer cell inoculation. Both DuP-697 (1 uM) and
indomethacin (5 puM) profoundly inhibited PGI, re-
lease from aortic rings, suggesting that COX-2 was
the main contributor to the upregulated PGI, produc-
tion in the vascular wall (Fig. 8).
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Table 3 The correlation between number of metastases in the
lungs of tumour-bearing mice and Interleukin-6 (IL-6), Serum
Amyloid A (SAA) and haptoglobin, as assessed via the Spearman
correlation coefficient test

The pair of parameters R Spearman p

Number of metastases & IL-6 0.655558 0.000014
Number of metastases & SAA 0.554662 0.000447
Number of metastases & Haptoglobin 0.814386 0.013844

Changes in VWF expression in aorta

As shown in Fig. 9, in the aortic endothelium of
tumour-bearing mice, vVWF expression was increased
compared to control animals. Up-regulated expression
of vVWF was observed as early as 2 weeks after cancer
cell inoculation and progressively increased through the
later stages of metastases development (Fig. 9a, b).

Discussion

Healthy endothelium inhibits formation of metastasis,
while dysfunctional endothelium has an opposite effect
[1, 7]. On the other hand, systemic endothelial dysfunc-
tion developing along with tumour progression and me-
tastasis contributes to cardiovascular complications in
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cancer patients [6]. The present work has taken advan-
tage of the prolonged time course of the disease progres-
sion in the spontaneously metastasizing, orthotopic,
4 T1 murine breast cancer model in order the
characterize the temporal relationships between the de-
velopment of local, pulmonary, and systemic endothelial
dysfunction in relation to primary tumour growth and
lung metastases formation. We showed that an early de-
crease in NO bioavailability was temporarily associated
with the development of early metastasis and lung in-
flammation, while late systemic impairment of NO-
dependent function in the aorta coincided with robust,
systemic, cancer-related inflammation. Our results show
that the local pulmonary endothelial response to murine
metastatic breast cancer development involves pulmon-
ary inflammation, granulocyte infiltration and decreased
NO bioavailability in the lung. On the other hand, im-
pairment of NO-dependent function in the aorta oc-
curred only in the late phase of metastasis formation,
most likely as a consequence of robust, cancer-related
systemic inflammation mediated by IL-6, TNFa [16] or
other mechanisms [17]. Interestingly, impairment of
NO-dependent function was associated with the
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upregulation of COX-2-derived PGI, production, which
could represent a compensatory mechanism. Indeed,
PGI,, the most potent endogenous anti-platelet agent,
has been shown to prevent cancer metastasis [11, 12].
The same activity has also been reported for PGI, ana-
logues [16, 17] and PGI,-releasing compounds [20].

Although it was recently reported that the develop-
ment of metastatic breast carcinoma in mice is asso-
ciated with changes in vascular reactivity of the aorta
[16], to our knowledge the present work reports for
the first time the temporal relationships between the
development of the local, pulmonary endothelial dys-
function that is a pre-requisite for development of
metastasis in the lung and the systemic endothelial
dysfunction and vascular inflammation that affect
general cardiovascular health.

Taking advantage of the slowly progressing 4 T1 breast
cancer-based model established by our group [14, 17],
which relies on transplantation of a low number of 4 T1
cancer cells and is similar to the recently-reported
optimized 4 T1 triple negative syngeneic micro- and
macro-metastasis model by Bailey-Downs [21], we
clearly differentiated between the occurrence of early
endothelial dysfunction in lungs at the pre-metastatic/
early metastatic stage and development of peripheral
endothelial dysfunction in the conduit artery at the late
metastastic stage. These results suggest different mecha-
nisms involved in these responses. The early pre-
metastatic phase was characterized by clear-cut evidence
of pulmonary inflammation and granulocytic cellular in-
filtration. The presence of leukocyte infiltration is con-
sistent with previous work [22-24] demonstrating that
4 T1 tumour-bearing mice display granulocytic infil-
trates in metastatic sites [25] and the result supports the
concept of a pre-metastatic niche formed in the pulmon-
ary target tissue before it is invaded by migrating cancer
cells [26]. This hypothesis is also supported by the
VCAM-1 immunofluorescent staining results showing a
pro-inflammatory phenotype in the pulmonary endothe-
lium as early as 2 weeks following cancer cell transplant-
ation, at the early stage of the metastatic process.

Based on the analysis in the isolated perfused lung prep-
aration, we found that nitric oxide production was de-
creased in the early phase of metastasis development.
Impairment of NO bioavailability may contribute to the
adhesion of cancer cells and neutrophils to the endothe-
lium and may facilitate cancer cells extravasation [25-28].
Given that NO displays anti-platelet activity and that
platelets are involved in arresting tumour cells in the
vasculature at metastatic extravasation sites [29-32], a
low-NO microenvironment could also affect the platelet-
cancer cell interaction, facilitating metastasis. Interest-
ingly, we detected a decrease in platelet number in the
early phase of metastasis, which could reflect an increased
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platelet-cancer cell interaction. Altogether, our find-
ings of early NO deficiency seem to be important in
the context of pathogenic endothelial-dependent
mechanisms of early metastasis. NO-deficient pre-
metastatic niche formation may promote early metas-
tasis in the lung involving cancer cells, leucocytes
and platelets.

Interestingly, the pre-metastatic/early metastatic phase
was associated with a transient decrease in systemic NO
availability, as evidenced by a drop in NOHb content, as

well as decreased nitrite concentration in plasma. These
results suggest that the magnitude of the impaired NO
production in the lung was high enough to impose an
effect on systemic NO bioavailability. Given that the pul-
monary endothelial surface represents approximately
30% of the total endothelial surface of the cardiovascular
system, this finding is not surprising. Later in the course
of metastatic development, nitrite and NOHDb increased,
an effect most likely linked to systemic inflammation
and NOS-2 induction [33].
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In contrast to the pre-metastatic and early metastatic
phases, the late metastatic phase of disease (5-6 weeks
after cancer cell transplantation) was characterized by a
robust systemic inflammation, including substantial leuco-
cytosis, increases in RBC number, MCV and HCT, ele-
vated platelet number, mean platelet volume, as well as
increased plasma concentration of acute phase proteins
(haptoglobin, serum amyloid A) and IL-6. Leukocytosis
seems to be compatible with the production of colony-
stimulating factors released by tumour cells in 4 T1
tumour-bearing mice, enhanced myelopoiesis in bone
marrow and extramedullary myelopoiesis occurring in the
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spleen [25], and may support metastasis by creating an en-
vironment that facilitates the recruitment and growth of
circulating tumour cells. Indeed, G-CSF neutralization
was shown to diminish tumour cell infiltration into lungs,
and consequently to reduce metastasis [24].

In our study, progression of metastasis was also associ-
ated with an increased concentration of IL-6, a major pro-
inflammatory cytokine that affects cell proliferation,
survival, and metabolism and is known to be associated
with the progression of various types of cancer [34—36]. IL-
6 stimulates the expression of adhesion molecules on the
endothelial surface that could favour the adhesion of
tumour cells [37]. Interestingly, since IL-6 has been found
to be elevated in cancer patients with distal metastases, as
compared with non-metastatic patients, an increased IL-6
concentration has been proposed as a prognostic marker in
some types of metastatic cancer [37, 38]. In the present
work, metastasis was linked with the activation of the acute
phase response, as evidenced by the elevation of serum
amyloid A, serum amyloid P and haptoglobin, a response
that could be triggered by an increased IL-6 concentration.
It has previously been reported that haptoglobin is elevated
in breast cancer and may be indicative of metastases [40,
41]. Interestingly, altered glycan content in some acute
phase proteins, for example, haptoglobin, interact with a
number of receptors on macrophages in the tumour micro-
environment, potentially modulating macrophage activity
and thereby contributing to tumour cell survival, growth,
and metastasis [41, 42]. In turn, SAA stimulates its own
transcription as well as that of the proinflammatory
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Fig. 9 Representative microphotographs of endothelial von Willebrand Factor (VWWF) expression in cross-sectional slides of the thoracic aorta (a)
and summarized results (b) analysed by Columbus texture analysis of VWF Cy3 fluorescence in aortic rings from control mice and mice at 2, 4, 5
and 6 weeks after cancer cell inoculation. ** indicates p < 0.01; *** indicates p < 0.001. Results are expressed as mean + SEM, n =4
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S100A8 and S100A9 proteins, strongly enhancing adhesion,
migration and invasion of human and mouse tumour cells
[43]. Thus, the acute phase response may contribute to the
metastasis formation via various mechanisms [41]. In our
study, metastasis in 4 T1 tumour-bearing mice was associ-
ated with substantial leukocytosis, activation of IL-6-
dependent mechanisms and an acute phase response, all of
which could contribute to the further acceleration of me-
tastasis formation [23, 39, 40]. In fact, there was a high cor-
relation between leukocyte number, IL-6, haptoglobin, SAA
plasma concentration and a number of lung metastases in
tumour-bearing mice. At the stage of advanced metastasis
associated with robust systemic inflammation, the NO-
dependent response in aorta was impaired, while the
endothelium-independent response was preserved.
Interestingly, downregulation of a NO-dependent
endothelial activity was associated with a compensa-
tory increase in COX-2-mediated synthesis of PGI,, a
vasoprotective molecule with known anti-metastatic
potential [11, 12, 18-20, 44].

In our hands, impaired NO-dependent function in the
aorta was associated with up-regulation of vWF
expression, suggesting a pro-thrombotic phenotype of
dysfunctional endothelium in aorta, compatible with
cancer-related activation of pro-thrombotic endothelial
mechanisms [6]. Interestingly, vWF did not increase in
the pulmonary endothelium, but was even lower in the
late stage of metastasis formation compatible with a
possible involvement of vWF in cancer cell metastasis to
the lungs [45, 46].

Conclusion

In the present work in orthotopic murine model of
metastatic 4 T1 breast cancer we have characterized the
temporal relationships between the development of
endothelial dysfunction in the pulmonary and systemic
circulation in relation to primary tumour growth and
lung metastases. We have demonstrated that the local
pulmonary endothelium response to cancer cells, that is
the pre-requisite response for the development of metas-
tases in the lung, involves decreased NO bioavailability
in the lung, that is also reflected by a decrease in
systemic NO bioavailability and is associated with
pulmonary inflammation with granulocyte infiltration.
All these early changes precedes the systemic inflamma-
tion and systemic endothelial dysfunction induced by
cancer development. Late impairment of endothelial
NO-dependent function in the aorta was associated with
compensatory upregulation of the COX-2-derived PGI,
pathway and coincided with robust, systemic, cancer-
related inflammation. Our results obtained in an murine,
orthotopic model of breast cancer metastasis, relevant to
human pathology, suggest a heterogeneity of mecha-
nisms of the early endothelial dysfunction in metastatic
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organ paving the way for metastases formation and the
late systemic endothelial dysfunction contributing to
systemic vascular inflammation.
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