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Abstract

Background: Breast cancer is a heterogeneous disease and personalized medicine is the hope for the
improvement of the clinical outcome. Multi-gene signatures for breast cancer stratification have been extensively
studied in the past decades and more than 30 different signatures have been reported. A major concern is the
minimal overlap of genes among the reported signatures. We investigated the breast cancer signature genes to
address our hypothesis that the genes of different signature may share common functions, as well as to use these
previously reported signature genes to build better prognostic models.

Methods: A total of 33 signatures and the corresponding gene lists were investigated. We first examined the gene
frequency and the gene overlap in these signatures. Then the gene functions of each signature gene list were
analysed and compared by the KEGG pathways and gene ontology (GO) terms. A classifier built using the common
genes was tested using the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) data. The
common genes were also tested for building the Yin Yang gene mean expression ratio (YMR) signature using
public datasets (GSE1456 and GSE2034).

Results: Among a total of 2239 genes collected from the 33 breast cancer signatures, only 238 genes overlapped
in at least two signatures; while from a total of 1979 function terms enriched in the 33 signature gene lists, 429
terms were common in at least two signatures. Most of the common function terms were involved in cell cycle
processes. While there is almost no common overlapping genes between signatures developed for ER-positive (e.g.
21-gene signature) and those developed for ER-negative (e.g. basal signatures) tumours, they have common
function terms such as cell death, regulation of cell proliferation. We used the 62 genes that were common in at
least three signatures as a classifier and subtyped 1141 METABRIC cases including 144 normal samples into nine
subgroups. These subgroups showed different clinical outcome. Among the 238 common genes, we selected those
genes that are more highly expressed in normal breast tissue than in tumours as Yang genes and those more
highly expressed in tumours than in normal as Yin genes and built a YMR model signature. This YMR showed
significance in risk stratification in two datasets (GSE1456 and GSE2034).

Conclusions: The lack of significant numbers of overlapping genes among most breast cancer signatures can be
partially explained by our discovery that these signature genes represent groups with similar functions. The genes
collected from these previously reported signatures are valuable resources for new model development. The
subtype classifier and YMR signature built from the common genes showed promising results.
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Background

Breast cancer is a heterogeneous disease. Patients at the
same stage or in the same molecular subtype can exhibit
different clinical prognosis or different benefit from sys-
temic therapy. Personalized medicine is urgently needed
for best breast cancer care. For this reason multi-gene
signatures have been extensively studied to provide
prognostic and predictive information for breast cancer
treatment. Today more than 30 different signatures have
been reported [1-42]. Several signatures have become
commercially available including the 70-gene signature
(MammaPrint) [1], the 21-gene signature (OncotypeDx)
[4], the 97-gene genomic grade index (GGI) [15], the
EndoPredict assay [33], the breast cancer index [21], and
the PAM50 assay [3]. The 70-gene signature [1] and the
21-gene signature [4] can distinguish patients with dif-
ferent risk for relapse and patients with high risk benefit
more from adjuvant chemotherapy (CT) than patients
with low risk. The 97-gene genomic grade index [15] di-
vides classic histologic grade into low and high risk pa-
tients. The breast cancer index [21] divides patients into
groups with different risk of recurrences, and low-risk
patients have high responsiveness to adjuvant tamoxifen
therapy. The EndoPredict [33] predicts the high-risk
or low-risk groups of relapse, indicating CT/no CT.
The PAMS50 assay [3] is a classifier for subtyping
breast cancer into five subtypes: luminal A (LumA),
luminal B (LumB), HER2-enriched (Her2), basal-like
(Basal) and normal-like (Normal). PAM50 assay [3]
also assesses a patient’s risk of distant recurrence of
disease and likelihood of efficacy from neoadjuvant
CT. These commercialized signatures have proved to
work well in hormone receptor (HR)-positive breast
cancers. Several signatures have also been reported to de-
fine patients with a good prognosis within the ER-negative
tumour cohorts [18, 26]. A number of signatures were
derived to predict clinical outcome for triple-negative
breast cancers (TNBC) or basal breast cancers [31, 35, 36,
38, 41]. Signatures derived from HER2-positive cohorts
are used usually for predicting trastuzumab response [28,
39]. Several signatures have been developed for predicting
docetaxel response [2, 6, 16].

However, signatures derived for similar tumour cohorts
for similar purposes share little overlapping genes [20, 40].
For example, the 70-gene signature shares only three com-
mon genes with the 64-gene signature [20] while both
signatures were mainly derived from ER-positive patients.
A previous study using functional enrichment analysis of
a limited six gene signatures showed that there was little
overlap of functional categories among these six signa-
tures [24]. However, another study showed a prognostic
concordance among several gene expression signatures,
suggesting potential equivalence between the signatures
[43]. We hypothesized that although these signatures do
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not have many overlapping genes, they could share com-
mon functions or pathways.

The genes of previously reported signatures could be
valuable resources for new approaches because these
have been tested to be more or less associated with
clinical outcomes in the original studies. Some studies
have pooled previously reported datasets to develop a
new signature [24, 44] and one study reported that
combining several signature gene sets improved survival
prediction from breast cancer [37]. In addition, different
breast cancer datasets can be considered as resamplings
from the underlying breast cancer population and the
genes most frequently identified (common genes) in the
separate resamplings were put forward as a ‘gold stand-
ard’ [24]. Therefore, these common genes identified
from these signature genes could be valuable resources
for new signature development.

Recently, we have developed a 16 Yin Yang gene mean
expression ratio (YMR-16) signature for ER-positive/
node-negative breast cancer based on the hypothesis
that two opposing effects (Yin and Yang) could deter-
mine cancer initiation and progression [42]. These 16
genes were identified among all human genes on the
[lumina gene expression microarray platform. In this
study, we attempted to understand why there are so few
overlapping genes among the previously reported multi-
gene signatures, as well as to address our hypothesis that
signatures share common functions or pathways [42, 45,
46]. We also evaluated the cohort of genes found to be
common from multiple signatures in our Yin Yang gene
Mean expression Ratio (YMR) model [42] and as a sub-
typing classifier.

Methods
Signature genes and test data
Our approach is depicted in Fig. 1. We searched
PubMed for breast cancer gene signatures or classi-
fiers (Table 1, Additional file 1: Table S1), and col-
lected the gene lists from the original publications.
We used HUGO gene symbols to build the gene
lists. If only probe IDs were available the gene sym-
bols for the probe IDs were retrieved from the cor-
responding annotations for the platforms. Since
some studies used different gene alias names, we
uniformly identified all gene names as official gene
symbols by a custom R script. Signatures without
gene symbols or probe IDs available were excluded.
To test the usefulness of these previously reported
signature genes in new prognostic signature develop-
ment, we used three cohort data sets. One was The
Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) data [47]. A total of 1141
samples, including 997 tumours and 144 controls,
were included. The other two were from NCBI’s
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Gene Expression Omnibus (GEO) with the accession
number of GSE1456 and GSE2034. GSE1456
cludes 159 tumours with gene expression data and
clinical information. GSE2034 comprises data from
107 tumour samples. All these datasets include clinical
follow-up of disease-specific survival (DSS) or recurrence
free survival (RFS) time. In addition, 5 datasets from
Bioconductor libraries: breastCancerMAINZ (GSE11121),
breastCancerTRANSBIG (GSE7390), breastCancerUPP
(GSE3494), breastCancerUNT (GSE2990), breastCan-
cerNKI were used for signature comparisons.

in-

Comparing all signature genes

We first compiled a matrix with each of all signature
genes against each of the 33 signatures (Additional file 2:
Table S2). Then a signature number for each gene was
counted (Additional file 3: Table S3). We also generated
a matrix of 33 signatures by 33 signatures with the com-
mon genes for each signature (Additional file 4: Table S4).
This matrix allowed us to view the heat map of common
gene frequencies among all signatures using Partek
Genomics Suite software version 6.6 (Partek Inc., St.
Louis, MO, USA).

Comparing function groups enriched by signatures

To determine what biological functions or pathways are
enriched in a signature gene list, we utilized the Data-
base for Annotation, Visualization and Integrated Dis-
covery (DAVID) for gene function enrichment analysis.
We selected GO_term Biological processes and KEGG
pathways to define function enrichment with the
default settings (EASE p-value less than 0.1). Similar
approaches to gene comparison were applied to the
function distribution analysis (Additional file 5: Table
S5 and Additional file 6: Table S6), and the common
function analysis (Additional file 7: Table S7). We also
viewed the common functions among all signatures
by generating a frequency heat map.

Clustering breast cancers by common signature genes

We tested if the common genes from multiple signatures
could be used to develop breast cancer subtype classi-
fiers. A total of 65 genes were common in three or more
signatures. Sixty-two of these genes were matched to
METABRIC data set and used to cluster the 1141
METABRIC samples including 144 normal samples by
2D Euclidean clustering with complete linkage settings.
We then examined the clinical outcome of each cluster
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Table 1 Published signatures included in the analysis
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Full name Short gene Extract Cov Used for Platform® Purpose®
name # # %° Prognosis Predict Subtyping
70-gene signature [1] Mamma 70 66 100  ER+ Agilent Hu25K yes yes no
21-gene signature [4] RS 16 16 100  ER+ RT-PCR yes yes no
97-gene genomic grade index [15] GGI97 97 94 100 ER+ Affymetrix U133A yes yes no
8-gene genomic grade index [27] GGI8 4 4 100 ER+ gRT-PCR yes yes no
EndoPredict assay [33] Endo 8 8 100  ER+ gRT-PCR yes yes no
Breast cancer index [21] BCI 7 7 100  ER+ gRT-PCR yes yes no
HOXB13:L17 BR ratio [14] HI 2 2 100 ER+ Agilent Arcturus 22 k yes yes no
IHC4 Score [32] IHC4 4 4 100  ER+ IHC yes yes no
14-gene metastasis score [23] MS14 14 14 100  ER+ RT-PCR yes no no
8-gene score [29] SMS 8 8 100  ER+ gRT-PCR yes no no
PAMS50 assay [3] PAM50 50 50 100 BC Agilent human 1Av2 yes yes yes
76-gene signature [10] Wang 76 71 100 BC Affymetrix U133A yes yes no
64-gene expression signature [9] Pawitan 64 48 75  BC Affymetrix U133 yes yes no
32-gene p53 status signature [7] p53 32 21 100 BC Affymetrix U133 A or B yes yes yes
Cell cycle pathway signature [20] CCPS 26 26 100 BC Affymetrix U95 Av2 or U133 yes no no
127-gene classifier [24] Robust 127 127 100 BC Affymetrix microarray yes no no
26-gene stroma-derived prognostic SDPP 26 26 100 BC Agilent 44 k yes no no
predictor [19]
54-gene lung metastasis signature [8] LM 54 54 100 BC Affymetrix U133A yes no no
186-invasivenessgene signature [17]  1GS 186 186 100 BC Affymetrix U133 A or B yes no no
92-gene predictor [2] Chang 92 86 100 BC Affymetrix U95 Av2 no yes no
85-gene signature [6] lwao 85 73 100 BC ATAC-PCR no yes no
512-gene signature [16] Olaf 512 355 69 BC Human Oligo set 2.1 no yes no
7-gene immune response module [18]  IR7 7 7 100 ER- Agilent and Affymetrix yes no yes
microarray
T-cell metagene [26] Teell 50 50 100 ER- Affymetrix U133A yes no no
Multigene HRneg/Tneg signature [31]  Multigene 14 14 100  TNBC Affymetrix U133A yes no no
26-gene signature [35] Novel1 26 20 100  TNBC Affymetrix U133 yes yes no
264-gene signature [35] Novel2 264 225 100  TNBC Affymetrix U133 yes no no
B-cell:IL8 ratio [41] Beell 22 20 100 100 TNBC Affymetrix U133A or yes no no
U133 Plus 2.0
MAGE-A [38] MAGEA 2 2 100 TNBC Affymetrix U133 yes no no
368-gene medullary breast cancer like MBC 368 368 100  TNBC Affymetrix or Agilent aaray yes no yes
signature [36]
158-gene HER2-derived prognostic HDPP 158 158 100 HER2+ SWEGENE H_v2.1.1 55 K yes no yes
predictor [30]
GCNs of MET and HGF [39] GCN 2 2 100 HER2+ Fluorescence in situ no yes No
hybridisation (FISH)
28-gene expression profile [28] Vegran 28 27 100 HER2+ Affymetrix microarray no yes no

*The short name for the full name used in this paper
PFor some signatures with 100% coverage (all signature genes were found in data set), the extracted gene No (Extract# column) is less than the reported gene No
(genet column) because some genes are duplicated with different probe names within a signature
“The subtype the signatures are developed for: ER+, the signature is used for ER-positive breast cancer; ER-, the signature is used for ER-negative breast cancer;

uc-BC, the signature is used for un-classified breast cancer with mixed subtypes; TNBC, the signature is used for TNBC or basal breast cancer; HER2+, the signature

is used for HER2-positive breast cancer
%The experimental platform used for developing the signatures

®The clinical purpose of these signatures: prognosis, the signature can be used for prognosis; prediction, the signature can be used for predicting the response to

treatment or drug; subtyping, the signature can be used for further subtyping breast cancers
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of patients. Kaplan-Meier analysis on the METABRIC
patient groups was performed.

Developing YMR signature from common signature genes
We also evaluated if the previously identified signature
genes could be used for new prognostic signature devel-
opment. In this study, we developed and tested the YMR
signature. We first selected the Yin genes that were
more highly expressed in tumours than in normal breast
tissue samples and the Yang genes that were more highly
expressed in normal than in tumour tissue samples. Two
hundred thirty-eight common genes were found in two
or more signatures and 220 of them could be matched
to the METABRIC database. We used the 1141 METAB-
RIC samples data to identify the Yin and Yang genes
from the 220 common gene groups by 2D clustering.
These Yin and Yang genes were applied to the YMR
model. We then validated the YMR model using
GSE1456 and GSE2034, respectively. Patients in the two
datasets were divided into four groups with low, inter-
low, inter-high, high risk of death according to the YMR
scores. Kaplan-Meier analysis was then performed on
the four patient groups using the available clinical infor-
mation. The associated p-values generated from log-rank
test in Kaplan-Meier analysis were used to represent the
statistical significance of differential survival probabilities
between different patient groups. We used Bioconductor
geneFu package [48] to compare the YMR signature de-
veloped from the common signature genes with other
prognostic signatures including our previous YMR-16,
MammaPrint, OncotypeDx and Multigene HRneg/Tneg
signature. Risk stratifications were evaluated within each
of the five different untreated subtypes including ER-
positive/node-negative, luminal A, luminal B, HER2-
enriched and basal-like of 5 datasets from Bioconductor
libraries: breastCancerMAINZ (GSE11121), breastCan-
cerTRANSBIG (GSE7390), breastCancerUPP (GSE3494),
breastCancerUNT (GSE2990), breastCancerNKI.

Results

33 signatures

A total of 33 published breast cancer gene signatures
were included in the study (Table 1, Additional file 1:
Table S1). More than half of these signatures (18/33)
were developed using the Affymetrix microarray plat-
form. We classified signatures into three types based on
their applications in the original studies: clinical progno-
sis (prognosis), prediction of treatment benefit (predic-
tion), and subtyping breast cancers (subtyping), though
many signatures can be used for more than one applica-
tion. We also classified signatures into four categories
based on the population they were used for: ER-positive
breast cancer (ER+), TNBC or basal breast cancer
(TNBC), HER2-positive breast cancer (HER2+), un-
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classified breast cancer patients (uc-BC) or mixed types.
IR7 was used for ER-negative breast cancer while Tcell
was for ER-negative or HER2-positive breast cancer, so
we classified Tcell to both the TNBC and the HER2+
signature group and IR7 to the TNBC group. Therefore,
the number of signatures included in ER+, uc-BC, TNBC
and HER2+ groups are 10, 12, 8 and 4, respectively. The
10 signatures Mamma, RS, GGI97, GGIS8, Endo, HI, BCI,
IHC4, MS14 and SMS were mostly applied to ER-
positive breast cancers. Five of them, Mamma, RS,
GGI97, Endo, and BCI, have been commercialized.
GGI8 is a 4-gene version of GGI97, while HI signature
was included in BCI. These signatures can be used to
predict the risk for recurrence for ER-positive patients
and thus inform recommendations for taking adjuvant
therapy in these patients. The other 11 signatures,
PAM50, Wang, Pawitan, p53, CCPS, Robust, SDPP, LM,
Chang, Iwao and Olaf were used for primary or mixed
breast cancer subtypes. Among these 11 signatures,
PAMS50 was used for subtyping, three (Chang, Iwao and
Olaf) were for predicting docetaxel response while the
others were mainly used for prognosis prediction. IGS
was derived by comparing the gene-expression profile of
CD44 + CD24-/low tumorigenic breast cancer cells with
that of normal breast epithelium for predicting
invasiveness.

Tcell and IR7 signatures were used to define patients
with a good prognosis from ER-negative tumours. The
six signatures, Multigene, Novell, Novel2, Bcell,
MAGEA and MBC, were developed to predict clinical
outcome for TNBC patients or basal breast cancers.
Three signatures, HDPP, GCN and Vegran, were based
on HER2-postive patients. HDPP defined groups with
better and worse prognosis, while GCN and Vegran
were predictive of trastuzumab response.

The gene numbers of each signature reported in the
original publications are shown in Table 1. Nine signa-
tures (29%) consisted of less than 10 genes, 11 signatures
(33%) 10~ 50, seven signatures (21%) 50~ 100, and six
(18%) more than 100 genes. We could not collect the
full gene lists for 2 signatures (less than100% coverage),
because they contained some gene symbols that are un-
known and some were duplicated in the same
signatures.

Common genes among the 33 signatures

A total of 2239 genes were obtained from the 33
signatures. The majority (1657) of these genes
appeared in the signatures only once (Additional file
2: Table S2 and Additional file 3: Table S3). Two
hundred thirty-eight genes were replicated: 173 genes
were found in two signatures, 41 genes were found in
three signatures, 14 genes were found in four signa-
tures, 6 genes were found in five signatures, 4 genes
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were found in 6~ 8 signatures. There are a total 1895
unique signature genes after we removed replicated
genes from the total 2239 genes (Additional file 8:
Figure Sla).

We have ranked the individual signature genes based
on their frequency of appearing in different signatures
(Additional file 3: Table S3). The top 30 genes were
shown in Fig. 2a. The top gene MKI67 (Marker of prolif-
eration Ki-67) was found in eight signatures (CCPS,
GGI97, IHC4, MBC, PAMS50, Pawitan, Robust and RS)
(Additional file 2: Table S2 and Additional file 3: Table
S3). This gene encodes a nuclear protein that is associ-
ated with and may be necessary for cellular proliferation.
However, except for MBC, the other 7 signatures were
mainly based on ER-positive tumours or breast cancers
which mostly included ER-positive patients. Most of
these top ranked genes, such as MYBL2, CCNBI,
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RRM2, PRC1, MELK, KPNA2, CDC20, CDC2 and
UBE2S, overlapped in signatures developed for ER-
positive and mixed breast cancer subtypes. CX3CR1 was
involved in four signatures that were grouped to differ-
ent tumour subtypes.

The gene PGK1 was found in four signatures, and
three out of the four signatures were derived from
TNBC or invasive tumours. SPP1 was found in four sig-
natures that were derived from ER-negative or TNBC or
metastatic cancers.

The number of overlapping genes among signa-
tures is showed in Fig. 3a. It can be seen that there
are two major areas in the heat map with more
common genes than other areas. One has more red
spots including signatures used for ER-positive breast
cancers. Another contains signatures that were more
relevant to ER-negative breast tumours. It might be
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groups would not have 100% of genes in common.
The two signatures, GGI97 and Wang, derived

expected that signatures developed from similar
breast cancer cohorts in terms of known biology and

developed for a known application would tend to
have more common genes, but consistent with the
also recognized heterogeneity in existing biological

mostly from ER-positive patients using the same
Affymetrix platform showed little overlap genes
(Additional file 9: Figure S2).
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Common functions among the 33 signatures

A total of 1979 significant function terms were derived
from enrichment analysis of each of the 33 signature gene
lists (Additional file 5: Table S5) and 988 unique terms were
obtained after removing replicates among signatures. The
number of significant function terms of each signature gen-
erated by DAVID is listed in Additional file 1: Table S8. No
significantly enriched function terms were found for four
signatures (HI, IHC4, Multigene and MAGEA). There are
195 terms shared by any two signatures, 99 terms shared
by three signatures, 58 terms shared by four signatures, 39
terms shared by five signatures, nine terms shared by six
signatures, and 29 terms shared by seven or more signa-
tures (Additional file 8: Figure S1b and Additional file 6:
Table S6). The function terms were ranked by the fre-
quency with which they appear in multiple signatures
(Additional file 6: Table S6). The top 30 functional groups
were shown in Fig. 2b and they are cell cycle, cell death, re-
sponse to wounding, response to organic substance and
intracellular signaling cascade.

The number of overlapping function terms among
signatures is displayed in Fig. 3b. When we compared
the heat map of function term frequency with that of
gene frequency (Fig. 3a), it is evident that there are more
common functions than common genes among these
signatures. A similar situation was found when we
examined the common genes and common functional
groups within each subtypes (Additional file 10: Figure
S3). Many signatures share at least two common func-
tion terms with each other even when they have zero
overlapping genes. For example, there are no overlap-
ping genes but at least two overlapping function terms
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between Mamma and several ER-negative breast cancer
derived signatures (Tcell, HDPP, GCN). RS shared at
least one common function term but zero overlapping
genes with LM, Tcell, Novel2, Bcell, GCN, Vegran,
Chang, Iwao and Olaf. Most of the latter signatures,
have different applications compared to RS.

Clustering 62 common genes on METABRIC dataset
Sixty-two genes out of the 65 common genes in at least
three signatures were found in the METABRIC data set
and used for classifier testing. This analysis resulted in
nine subgroups (Fig. 4a). As expected, the normal breast
tissue samples were clustered in one group Cl. Basal
tumours were distributed in C7 and C9. Her2-enriched
patients were in C8. The eight subgroups (not including
the normal sample group) showed different clinical out-
comes (Fig. 4b). The C8 had the lowest 10-year overall
survival time while the C2 had the best overall survival
time compared to all other clusters. The 62 genes pre-
sented two high-level clusters (upper branch, lower
branch, left panel of Fig. 4a). The patients who had
higher expression of upper branch genes tended to have
worse outcome while the patients who had higher ex-
pression of lower branch genes tended to have better
prognosis.

The upper branch of genes were most frequently
found in signatures for ER-positive breast cancer or
mixed subtypes and cell proliferation related, such as
RFC4 (included in Mamma, MS14 and SMS) and
KPNA2 (included in CCPS, GGI8, GGI97, Robust and
Wang).

Survival (percent)

20%-

p=2.35e-012

27 82 137 192 247

Time (month)

Pams m Basal W healthy

Fig. 4 Evaluation of the value of the common genes in building breast cancer subtyping classifier. a 1141 METABRIC samples including 144
normal breast tissue samples were clustered by the 62 common genes that shared by at least three signatures using 2D Euclidean clustering with
complete linkage settings. The clusters were selected by level 3 or 4 branches. Nine clusters were selected (C1 to C9) including the normal
sample cluster C1. The PAMS50 subtypes were indicated under the nine cluster colour bars. b Kaplan-Meier survival analysis for the nine subgroups.
The disease specific survival (DSS) time was used for outcome endpoint

ior2 O LumA @ LumB @ Normal
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Validation of the YMR model

Based on the gene expression levels in tumour and
normal breast tissue samples of the METABRIC data
(Fig. 5a), we identified Yin and Yang genes from 220
of the 238 common genes that overlapped in at least
two signatures and whose expression value could be
extracted from METABRIC. Twenty genes (gene clus-
ter in red) which had higher expression level in
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normal (healthy) than in tumours (Lum A, Lum B,
Her2, Normal and Basal) were selected as Yang genes.
Seventy-one genes (gene cluster in green) had higher
expression level in tumours than in normal were used
as Yin genes. The 71 Yin genes were enriched with
cell cycle and 20 Yang genes were involved in diverse
functions, such as secreted extracellular region, signal
peptide, disulfide bond, regulation of apoptosis and

hical Clustering
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Fig. 5 Evaluation of the Yin Yang gene expression ratio (YMR) model using the common genes. a Defining the Yin and Yang genes from the 220
common genes using the 1141 METABRIC samples data. The rows are the 220 genes that were shared by at least two signatures and the
columns are the 1141 samples. The genes that showed consistently higher expression in normal breast tissue samples (in blue) and relative
consistently lower expression in various tumour subtypes were selected as Yang genes (red). The genes that showed consistently lower

expression in normal samples and higher expression in tumour samples were selected as Yin genes (green). The PAM50 subtypes were indicated
by colour bars. b The YMR-all signature model developed by the selected Yin and Yang genes was tested by Kaplan-Meier survival analysis using
two data sets
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blood circulation (Additional file 11: Table S9). The
YMR model was built from all subtypes (YMR-all)
using the ratio of the mean of all the Yin genes ex-
pression and the mean of all the Yang genes expres-
sion. Patients were then divided into four groups with
low, inter-low, inter-high, high risk of death according
to YMR scores. As shown in Fig. 5b, the YMR-all can
stratify patients into four risk groups using different
patient cohorts and data sets, with data set GSE1456
showing more significance than GSE2034 data set.
The low risk patients in the two datasets had signifi-
cantly higher 10-year overall survival probability than
the high risk patients.

Comparing signatures

We compared the YMR-all model with MammaPrint
(Mamma), OncotypeDx (RS) and Multigene HRneg/Tneg
signature (Multigene) and our previously reported 16-
gene YMR (YMR-16). There are two genes (CDC20 and
UBE2C) and three GO terms (cell division, Oocyte mei-
osis, and cell cycle) overlapped between these two YMR
models. We examined if these signatures were able to
stratify patients within each subtype of ER-positive/node-
negative, luminal A, luminal B, HER2-enriched and basal
breast cancers. For early stage ER+/Node-negative, the
YMR model showed significance (HR =2.5, p =9e - 07),
but a little less significance than MammaPrint (HR = 2.52,
p = 6e-07), OncotypeDx (HR =2.7, p = 1e-07), and YMR-
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16 (HR = 3.7, p = 9e-12) (Fig. 6). Only signature Multigene
did not show significance in stratifying ER-positive/node-
negative patients (HR = 0.81, p = 0.24) but worked for basal
subtype (HR=2, p=0.04, Additional file 12: Figure S4)
since it was developed from TNBC [31]. In LumA subtype,
only OncotypeDx and YMR-16 showed significant stratifi-
cation (Additional file 12: Figure S4). MammaPrint, Onco-
typeDx, YMR-16 can stratify lumB significantly.

It is noteworthy that although the YMR-all model sig-
nificantly stratified ER+/Node- patients, it is not superior
to the currently used signatures RS and Mamma. One ex-
planation is YMR-all was selected from clustering and
tested without optimization. The other could be that the
YMR-all was derived from a heterogeneous cohort con-
taining all subtypes. Therefore we selected YMR genes
from different subtypes by clustering (Additional file 13:
Figure S5A, B, C, D, E), and tested their performances in
stratifying the same subtype cohorts. As expected, the
YMR_ER+ derived from ER+/Node- patients had superior
performance than either RS or Mamma on ER+/Node-
data (Fig. 6). However this approach did not work for
other subtypes. Interestingly, we found various YMR sig-
natures intended to work for Her2 subtype but with an
opposite direction (Additional file 12: Figure S4). Since
the current study focuses on the questions of functions
and pathways of previously reported signatures, further
study will be needed to look into these findings and opti-
mising their performances.
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Fig. 6 Signature comparison in ER+/Node-negative patients. The comparison was conducted bioinconductor package geneFu using patient
samples from 5 Bioconductor data sets (Materials and Methods). Total 541 ER+/Node- patients who did not undertake adjuvant treatment were
stratified by the median score of each signature and the significance was assessed by log-rank test of the Kaplan-Meier analysis using the
recurrence free survival (RFS) rate
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Discussion

The finding that there is little overlap of constituent
genes amongst molecular signatures generated by
different researchers using different patient cohort
data has long been a source of concern and the rea-
sons for it are still the focus of ongoing debate [49].
Several explanations have been proposed [24]. One is
that researchers have used different platform tech-
nologies and supervised protocols for signatures der-
ivation. Another focuses on the heterogeneity of
samples included in the different datasets. Small
sample size is also another possible contributor to
the differences seen [24]. However, it is possible that
a group of distinct genes actually support the same
function, and there are limited studies that focus on
such an analysis of the genes within different signa-
tures [24].

Breast cancer is well known to be heterogeneous. The
differences in clinical composition of the existing differ-
ent datasets may partly explain the little overlap already
found amongst different signatures. However even the
number of overlapping genes within the known ER-
positive/negative subgroups is still small*' and the one-
size-fits-all signature will not be possible. In our study,
signatures for the currently defined same type of breast
cancers (ER-positive/negative), tended to have more
common genes with each other than signatures for dif-
ferent breast cancer subtypes (Fig. 3a). However, there
are still known and unknown forms of heterogeneity
that exist among the same ER status subtypes that could
partly contribute to the limited gene overlap problem.

Many gene signatures were developed by selecting genes
whose expression levels correlate to the clinical outcomes
without any focus on gene functions. We hypothesize that
the genes in these reported signatures would functionally
associate to the diseases, either directly or indirectly.
Thirty-three signatures were included in this study. Two
hundred thirty-eight of the total 2239 genes were shared
by at least two signatures. However, 429 of the total 1979
function terms derived from the signatures were common
in at least two signatures. These function terms were cell
cycle, cell death, response to wounding, response to or-
ganic substance and intracellular signaling cascade. The
fact that signatures shared more function terms than
genes supports our hypothesis that the signature genes
represent similar functions or pathways despite actual dif-
ferent individual genes.

In this study we found that most of the signatures
from ER-positive breast cancers had common function
terms focused on cell proliferation although they did not
share common genes. Functions impacting cell prolifera-
tion, such as cell cycle process, mitotic cell cycle, DNA
replication, nuclear division were shared by signatures
mostly used for ER-positive, such as Mamma, RS, Endo,
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and GGI97. Most of the signatures from ER-negative tu-
mours shared common function terms focused on im-
mune response though they did not share common
genes. Interestingly, we found the signatures derived
from ER-negative tumours, such as Novell, Novel2,
MBC, shared common functions associated with im-
mune response including lymphocyte activation,
leukocyte activation and T cell activation. It has been re-
ported that activation of complement and immune re-
sponse pathways are associated with good prognosis in a
subclass of basal tumors [18].

One point worth noting is that there were also common
function terms between the signatures from ER-positive
and ER-negative breast cancers including cell death, regu-
lation of cell proliferation, response to organic substance,
intracellular signaling cascade, response to hormone
stimulus, response to oxygen levels, bone development,
DNA packaging, response to hypoxia, ossification and
skeletal system development. It indicates that the genes of
these function terms are generally associated with progno-
sis and treatment response prediction in different breast
cancer types. This implies that in tumour progression, dif-
ferent subtypes undergo similar biological processes. The
same ER+ prognosis using the same platform (qRT-PCR),
signature Endo shares the top pathway regulation of cell
cycle process (GO: 0010564) with signature MS14 while
this pathway shares zero genes between these two signa-
tures, again consistent with the concept that the pathway
is more important than the actual genes. Our study
strongly implies that the prognosis of different subtypes
may be determined by the similar biological processes or
pathways. However, different subtypes may have specific
pathways that can be added to or impact on the common
pathways, i.e. ER or HER2. For example, signature Onco-
typeDx was developed for ER+, signature MBC is for
TNBC, the pathway response to wounding (GO: 0009611)
is common, but pathway leukocyte activation (GO:
0045321) is unique for signature MBC. It was previously
reported that breast cancer patients whose tumors
expressed wound-response genes had significantly poorer
outcomes in both overall survival and distant metastasis-
free survival than tumors that did not express wound-
response genes [5].

In addition to proliferation pathways, we also find cyto-
skeleton organization pathways are common among ER+
signatures (MammaPrint, 97-gene GGI, BCI, MS14) as well
as organelle fission pathways are common to 97-gene GGI,
BCI, MS14. Common functions were found for signatures
for different subtypes. MammaPrint was used for ER+
and shared no common genes with several ER-
negative breast cancer derived signatures (HDPP,
Tcell, and GCN) but shared pathway intracellular signalling
cascade (GO: 0007242), pathways in cancer (hsa05200), re-
sponse to oxygen levels (GO:0070482) with HDPP, shared
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pathway positive regulation of signal transduction (GO:
0009967) with Tcell. We also found functions, such as regu-
lation of protein modification, regulation of cell death, are
enriched in signatures used for different subtypes (ER+,
TNBC, HER2+).

Another argument is that a statistical association
between multi-gene signatures and clinical outcomes
does not necessarily imply biological significance
[50]. For example, Miller and colleagues [7] devel-
oped a 32-gene expression signature which indicated
p53 status (mutant and wild-type). However, none of
the 32 genes were known transcriptional targets of
p53 or known to be involved in the p53 pathway. A
potential explanation could be that most of these
signatures were identified using Cox regression,
which simply selected the top-ranked genes using a
Cox score [51]. In this study, we hypothesized that
two opposing effects called Yin and Yang determine
the fate of tumour cells. We used Yin to represent
the effects leading to cancer progression and Yang as
the effects to maintain the normal healthy status. In
this context, we tried to develop signatures that
could indicate the biological mechanisms in breast
cancer progression.

Interestingly, many signature genes do not show a
difference in expression level between tumour and
normal breast tissue samples, at least at the RNA
level. We selected 71 Yin genes and 20 Yang genes
from the signature genes. Functional annotation
showed that most of the Yin genes functioned in the
cell cycle, while the enriched function terms of the
20 Yang genes were more diverse such as secreted
extracellular region, signal peptide, disulfide bond,
regulation of apoptosis and blood circulation. In this
study we used GO biological process terms and
KEGG pathways which may be different from those
that were used in other studies focused on function
terms and pathways.

Urgent work is needed for personalized care for TNBC
because TNBC is more heterogeneous and more aggres-
sive than ER-positive breast cancers. Current signatures
developed for TNBC have not been used clinically
mostly due to the lack of further validation and/or poor
reproducibility. We found that five signatures were de-
rived from TNBC (Multigene, Bcell, Novell, Novel2 and
MAGEA), one from basal tumours (MBC), two from
ER-negative (IR7 and Tcell), and three from invasive/
metastatic/tumorigenic breast cancers (SDPP, LM and
IGS). Interestingly, these signatures shared more com-
mon genes with each other than they shared with others
derived from ER+ and/or Her2 enriched subtypes. We
selected 64 genes common to at least two of these 11
signatures to classify 127 TNBC patients from METAB-
RIC dataset (Additional file 14: Figure S6) and 107
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TNBC patients from GSE58812 dataset (Additional file 15:
Figure S7). Two clusters were identified in both the
two datasets. Most of these common genes had a
high expression in one cluster while a low expres-
sion in another cluster. The cluster with higher ex-
pression had a better overall survival rate however
with a modest significance (p =0.14 for METABRIC,
p=0.13 for GSE58812). This inferred that the ex-
pression level of these genes could be associated
with the progression of the aggressive breast cancers.
The top pathway enriched in the 64 genes from
these 11 signatures was “regulation of immune re-
sponse” (p = 1.8E-4, FDR = 8.5E-2).

One of the limitations of this study is we used the
same significant p-value as the cutoff to evaluate the
functional groups of signatures. This informs what
functional group a signature may be involve in, but
does not tell the significance. However, it is challen-
ging to compare the significance of signatures with
different gene list size. The second limitation is we
lacked the optimization and large dataset validation
using common genes for YMR signature model de-
velopment, though this is not the focus of this study.

Conclusions

In summary, the long debate about the underlying
reasons for the lack of gene overlap in multi-gene
signatures derived from different research studies
can be partially resolved by our discovery that often
the signature genes are associated with similar func-
tions and/or pathways despite being distinct individ-
ual genes. Though diverse types of signatures with
different gene constituents are expected due to the
heterogeneity of breast cancer, the gene signatures
for the same subtypes of breast cancers would be ex-
pected to participate in similar functions. The genes
collected from these previously reported signatures
have also proved to be a valuable resource for new
model development.

Additional files

Additional file 1: Table S1. Signatures summary. A summary of 33
signatures about the platforms derived from, the subtypes used for, the
gene number included, and the function terms involved. Table S8. The
number of function terms in each signature. (PDF 82 kb)

Additional file 2: Table S2. Gene distribution among the signatures. A
matrix with each of all signature genes against each of the 33 signatures
to see how the genes distribute among those signatures. (CSV 337 kb)

Additional file 3: Table S3. The number of signatures involved in each
gene. In this table, for each signature gene, the number of signatures
including this gene was counted. (CSV 29 kb)

Additional file 4: Table S4. The number of common genes between
every two signatures. A matrix of 33 signatures by 33 signatures with the
number of common genes shared by every two signatures. (CSV 4 kb)
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Additional file 5: Table S5. Function terms distribution among the
signatures. A matrix with each of all signature genes against each of the
29 signatures to see how the function terms distribute among those
signatures. Since no significantly enriched function terms were found for
four signatures (HI, IHC4, Multigene and MAGEA), 29 of the 33 signatures
were used for analysis. (CSV 194 kb)

Additional file 6: Table S6. The number of signatures involved in each
function term. In this table, for each signature function term, the number
of signatures including this gene was counted. (CSV 57 kb)

Additional file 7: Table S7. The number of common function terms
between every two signatures. A matrix of 29 signatures by 29 signatures
with the number of common function terms shared by every two
signatures. No significantly enriched function terms were found for four
signatures (HI, IHC4, Multigene and MAGEA), 29 of the 33 signatures were
used for analysis. (CSV 3 kb)

Additional file 8: Figure S1. Genes and function terms among
signatures. A. Common genes discovered in signatures (upper panel).
Gene number in more than certain number of signatures were indicated.
The unique genes were counted in each portion (bottom panel). B.
Common function terms enriched in signatures (upper panel). Term
number in more than certain number of signatures were indicated. The
unigue terms were counted in each portion (bottom panel). (PDF 77 kb)

Additional file 9: Figure S2. Venn diagram of common genes number
in ER-positive signatures from different platform. Common genes among
signatures derived from several different platforms but used for ER-
positive patients or mixed subtypes. (TIFF 817 kb)

Additional file 10: Figure S3. Heat map of the number of common
genes or function terms between signatures in four subgroups. The
number of common genes or function terms among signatures in the
four subgroups (ER+, HER2+, TNBC, uc-BC) were compared. The two sig-
natures sharing at least three common genes or function terms present
red; the two signatures share one or two common genes/terms present
grey; the two signatures share none common genes or terms present
green. (TIFF 572 kb)

Additional file 11: Table S9. The selected Yin Yang gene lists with its
enriched function terms. We showed the Yin gene list and the significant
function terms of this gene list generated by DAVID in this table. We also
showed the Yang gene list and the significant function terms of this
gene list generated by DAVID. GO term Biological process and KEGG
pathway were used to define the functions enrichment with the default
settings (EASE p-value less than 0.1). (XLS 13 kb)

Additional file 12: Figure S4. Signatures Comparison in different
subtypes. YMR models were compared with MammaPrint (Mamma),
OncotypeDx (RS) and the Multigene HRneg/Tneg signature (Multigene)
and the previously reported 16-gene YMR(YMR-16). Signatures were eval-
uated in stratifying within each of luminal A (LumA, n=310), luminal B
(LumB, n=209), HER2-enriched (Her2, n=87) and basal (Basal, n=113)
subtype breast cancers. Five datasets from Bioconductor libraries: breast-
CancerMAINZ (GSE11121), breastCancerTRANSBIG (GSE7390), breastCan-
cerUPP (GSE3494), breastCancerUNT (GSE2990), breastCancerNKI, and the
geneFu package were used for these comparisons. All patients did not
undertake adjuvant treatment. Each cohort was stratified by the median
score of each signature and the significance was assessed by log-rank
test of the Kaplan-Meier analysis. (PDF 600 kb)

Additional file 13: Figure S5. Selection of Yin and Yang gens for
different subtypes. The 220 common signature genes expression data
of various cancer subtypes were extracted from METABRIC expression
data set. The genes (rows) were clustering among each subtype
(columns) and the normal samples (A, B, C, D, E). The contrast
clusters were selected as Yin genes (in blue) and Yang (in red)
genes. (PDF 1554 kb)

Additional file 14: Figure S6. Building TNBC subtyping classifier in
METABRIC using common genes from TNBC signature group. Sixty-four
genes overlapped in at least two of 11 signatures were used to classify
127 TNBC patients from METABRIC dataset into two clusters. Among
these 11 signatures, 6 signatures (Multigene, Bcell, Novel1, Novel2,
MBC and MAGEA) were derived from TNBC, two (IR7 and Tcell) from

ER-negative patients, three (SDPP, LM and IGS) from a mixed subtype
patients. The cluster with higher expression had a better overall survival rate
however with a modest significance (p = 0.14). (TIFF 640 kb)

Additional file 15: Figure S7. Building TNBC subtyping classifier in
GSE58812 using common genes from TNBC signature group. Six
signatures (Multigene, Bcell, Novel1, Novel2, MBC and MAGEA) were
derived from TNBC, two (IR7 and Tcell) from ER-negative patients, three
(SDPP, LM and IGS) from a mixed subtype patients. These signature
shared more common genes with each other than they shared with
others. Thus genes of this 11 signatures were pooled together. Sixty-four
genes overlapped in at least two of these 11 signatures were used to
classify 107 TNBC patients from GSE58812 dataset into two clusters. The
cluster with higher expression had a better overall survival rate however
with a modest significance (p =0.13). (TIFF 543 kb)
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