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Abstract

Background: The right drug to the right patient at the right time is one of the ideals of Individualized Medicine
(IM) and remains one of the most compelling promises of the post-genomic age. The addition of genomic
information is expected to increase the precision of an individual patient’s treatment, resulting in improved
outcomes. While pilot studies have been encouraging, key aspects of interpreting tumor genomics information,
such as somatic activation of drug transport or metabolism, have not been systematically evaluated.

Methods: In this work, we developed a simple rule-based approach to classify the therapies administered to each
patient from The Cancer Genome Atlas PanCancer dataset (n = 2858) as effective or ineffective. Our Therapy Efficacy
model used each patient’s drug target and pharmacokinetic (PK) gene expression profile; the specific genes considered
for each patient depended on the therapies they received. Patients who received predictably ineffective therapies were
considered at high-risk of cancer-related mortality and those who did not receive ineffective therapies were considered
at low-risk. The utility of our Therapy Efficacy model was assessed using per-cancer and pan-cancer differential survival.

Results: Our simple rule-based Therapy Efficacy model classified 143 (5%) patients as high-risk. High-risk patients had
age ranges comparable to low-risk patients of the same cancer type and tended to be later stage and higher grade
(odds ratios of 1.6 and 1.4, respectively). A significant pan-cancer association was identified between predictions of our
Therapy Efficacy model and poorer overall survival (hazard ratio, HR = 1.47, p = 6.3 × 10− 3). Individually, drug export
(HR = 1.49, p = 4.70 × 10− 3) and drug metabolism (HR = 1.73, p = 9.30 × 10− 5) genes demonstrated significant survival
associations. Survival associations for target gene expression are mechanism-dependent. Similar results were observed
for event-free survival.

Conclusions: While the resolution of clinical information within the dataset is not ideal, and modeling the relative
contribution of each gene to the activity of each therapy remains a challenge, our approach demonstrates that
somatic PK alterations should be integrated into the interpretation of somatic transcriptomic profiles as they likely
have a significant impact on the survival of specific patients. We believe that this approach will aid the prospective
design of personalized therapeutic strategies.

Keywords: Individualized medicine, Cancer treatment protocols, Transcriptome profiling, Pharmacokinetics,
Genomic interpretation

Background
The right drug to the right patient at the right time is one
of the promises of Precision or Individualized Medicine
(IM) [1]. The integration of genetic information and tar-
geted therapies into patient care is expected to increase
the precision of individual patient’s treatment, resulting in

improved outcomes [2–4]. Previous work has reported the
successful use of genomics information to discover causal
or driver mutations [5], guide treatment [6–9] in oncol-
ogy, and investigated the feasibility of relating somatic al-
terations to known druggable targets [5, 10–15]. These
studies mostly focused on drug target identification.
However, there are additional factors that influence the
fate of drug therapies. Pharmacokinetic (PK) genes medi-
ate transport of drugs into and out of cells and their meta-
bolic processing. For example, PK genes can be activated
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within tumor tissues and thereby compromise the efficacy
of an administered therapy independent of the target.
While interest in PK genes has recently increased for
interpreting the effects of epigenetic and copy number al-
terations in recurrent ovarian cancer [16, 17], systematic
pan-cancer investigation of the prevalence and impact of
PK alterations using patient-level data has not been per-
formed, despite being a well-understood mechanism.
The basic mechanisms of PK genes have been studied

extensively [18], as have PK gene alterations’ impact on
drug response [19–22]. It has been shown that specific
mechanisms of PK activation are associated with resist-
ant cancer cell lines and patient tissues [23–25]. More-
over, cancer cell lines may increase expression of drug
metabolism genes active against administered therapies
[26]. As a specific example for a commonly administered
chemotherapy, the efficacy of 5-florouracil (5-FU) has
been shown to be diminished by activation of the gene
DPD, which degrades 5-FU [27], by altered expression
levels of export genes [28], or by inhibited expression of
metabolically activating enzymes [29], while greater effi-
cacy is observed with genomic deletions of DPD [30].
Thus, the systematic integration of PK knowledge, which
we defined as the known relationships between genes
and therapies, into the interpretation of individual pa-
tient’s tumor genomics may improve IM in oncology.
In this study, we investigated the potential contribution

of PK knowledge, specifically the individualized prediction
of drug efficacy, to the interpretation of tumor gene ex-
pression from The Cancer Genome Atlas (TCGA). We fo-
cused on therapies administered early in each patient’s
course of treatment, because TCGA data was derived from
untreated primary tumors. We assessed patient data from
multiple tumor types (pan-cancer). First, we developed a
simple rule-based Therapy Efficacy model (TEM) using a
small number of features that correspond to well-
established PK mechanistic processes [31–33]. We used
the TEM to evaluate the therapies administered to each
patient, accounting for their corresponding transcripto-
mics data. Therapies were predicted to be effective or
ineffective. Next, we used survival analysis to validate pre-
dictions made by our model. To perform survival analysis,
we first defined two groups of patients. Patients who re-
ceived a predicted ineffective therapy were considered to
be at higher risk of cancer-related mortality, due to the
lack of expected drug efficacy. Those who did not receive
a predicted ineffective therapy were considered at lower
risk of cancer-related mortality. We refer to these groups
as high-risk and low-risk, respectively. We hypothesized
that high-risk patients would experience poorer therapy
efficacy and thereby shorter survival compared to low-
risk patients. Therefore, we validated our TEM predic-
tions using differential overall and event-free survival.
Our TEM categorized 5% of the patients as high-risk

who exhibit poorer survival compared to those who
were low-risk. Our data indicated that the altered PK
gene expression does not significantly impact the ma-
jority of cancer patients in this cohort. However, al-
tered PK gene expression has significant impact on
patients with these alterations and therefore could be
taken into account when designing personalized treat-
ment strategies.

Methods
Data and normalization
Tumor genomic and patient datasets
Data released during the Pan-Cancer initiative [34, 35]
was downloaded from synapse.org. We used normalized
gene expression from syn1695384. We refer to each
cancer type by TCGA abbreviation. Patient’s clinical
characteristics, follow-up, and treatment administration
data were gathered from the public access portal
(https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.
htm). According to TCGA policies, genomic data were
collected from pre-treatment tissues, limiting our
knowledge of post-treatment genomics. No embargoed
or limited access data was used. See Supplemental Text
for further detail on how clinical covariates were coded.
Patients with verified missing data (e.g. no administra-
tion times for the therapies administered) were ex-
cluded from our analysis.

Gene expression normalization
In order to quantify the level of gene expression in
each tumor as high or low, we utilized a normal-tissue
reference (Fig. 1). We considered the differential ex-
pression of an individual tumor sample compared to
the expression level seen in a collection of normal-
tissue samples. In order to achieve a more comprehen-
sive (applicable to all cancer types) yet conservative
estimate of aberrant gene expression, all normal-tissue
samples within the dataset (n = 295) were combined to
generate composite-tissue gene expression reference
ranges. Tumor gene expression levels were trans-
formed to their Z-score by median-centering each
gene and normalizing by its median absolute differ-
ence [36], using the composite-tissue reference ranges.
As a balance between the number of affected samples
and effect size, unless otherwise stated, we used a
threshold of Z ≥ 2 to define a “high” and Z ≤ − 2 a
“low” gene expression level [37].

Gene-drug relationships
Gene-drug relationships for administered therapies were
extracted from CPIC guidelines, PharmGKB pathways
[38], and DrugBank [39, 40]. We reviewed the literature
supporting each relationship in order to determine the
genes most likely to be dominant for each effect.
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Therapy normalization
Therapy administration information from TCGA could
not be used without additional processing since drugs
were referenced by generic name, brand name, or abbre-
viations. Therapy names were manually corrected for
spelling mistakes and normalized to their US generic
name. When a therapy refers to a combination of drugs,
the therapy name was de-convoluted into a normalized
set of therapy names. For instance, “Macdonald” was
converted to fluorouracil, leucovorin and radiotherapy.
Our manual review process leveraged many sources in-
cluding: uptodate.com, chemocare.com, chemoregimen.
com, dtp.nci.nih.gov, DGIdb [11], DrugBank [39], NCCN
guidelines [41–44], RxNorm [45, 46], and the NCI
Thesaurus. [47]

Defining eligible therapies for evaluation
Because TCGA samples are untreated, we focused on
first-line therapies. NCCN guidelines for multiple can-
cer types were manually reviewed to identify common
administration schedules for standard-of-care chemo-
therapies. After this review, we determined that any
group of therapies initiated within the first 1.5 years
after diagnosis was a reasonable pan-cancer approxi-
mation to first-line therapies, but will likely miss cases
that experienced early disease progression. Of note,
the majority of therapies administered after 1.5 years
are after each patient’s event-free interval (defined
below). Therefore, because our event-free survival
analysis accounted for changes in disease status, it did
not evaluate therapies administered after disease pro-
gression. Patients were considered low-risk until they

received a predicted ineffective therapy, according to our
model. When they did, their status was updated to high-risk.
It has been shown that early response to treatment

can predict long-term outcomes [48–52]. Therefore, it
is likely that the effects of early ineffective therapies will
be evident, on average, in long-term outcomes data.
Previous studies have demonstrated that tumor evolu-
tion is associated with chemotherapy resistance [53–56].
Our eligibility criteria have the added benefit of minimizing
the potential effects of treatment-induced tumor evolution
on our analysis. Determination of the most informative
duration of pre-treatment genomics data for predicting
therapy efficacy is beyond the scope of the current study.

Deriving the therapy efficacy model
Defining tumor genomics features
We developed our Therapy Efficacy model (TEM) using a
simple rule-based approach that leveraged each patient’s
tumor genomics features. Three features were considered,
each hypothesized to negatively affect drug efficacy: one
feature for drug transport, one for drug metabolism, and
one for drug targets. Specifically: 1) low gene expression
of drug import genes that bring the therapy into tumor
cells or high expression of drug export genes that pump
the therapy out of tumor cells (e.g. ABCC1 exports pacli-
taxel from tumor cells); 2) high expression of genes known
to metabolically degrade the therapy, or, when pro-drug
activation occurs within target cells, low expression of
pro-drug activating genes (e.g. CYP3A4 breaks down pac-
litaxel within tumor cells); 3) low expression of target
genes (Fig. 2; e.g. paclitaxel binds to tubulin proteins). We
list additional and specific drug-gene examples that were
important for our TEM, in our results.

Fig. 1 Human tumors may up- or down-regulate PK genes. Each gene was scored relative to a composite-normal reference to generate
conservative estimates of aberrant somatic gene expression. RSEM normalized gene expression data were used. The expression score of each
gene in each tumor sample is the signed Z-score relative to normal tissue samples. Example probability density distributions of gene expression
for two genes are shown: (Left) drug importer SLC16A2 and (Right) drug exporter ABCC5
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Defining rules from tumor genomic features
Each tumor genomics feature corresponds to a different
molecular mechanism (transport, metabolism, and target)
and could be activated independently of the others, for a
particular patient. Therefore, the assessment of each feature
individually and their combinations is of interest. For
individual-feature rules, we classified a therapy as ineffective
if any gene within the patient’s tumor genomics profile fit
the features’ criteria as described above. We considered
three rules that utilized combinations of features. The first
combination was an “Any-Hit” rule which was a simple
Boolean combination of all individual-feature rules. The sec-
ond combination was an “Any-PK-Hit” rule where a therapy
is predicted to be ineffective if any gene met the criteria for
either of the two PK features. Finally, we considered the fea-
tures from statistically significant rules (see below for details)
and combined them to generate our TEM. Our TEM is
therefore derived from an empirical and iterative process
from a small number of well-established features. Our TEM

used two features: high expression of any exporter gene or
high expression of at least two drug metabolism genes.

Validating the therapy efficacy model using survival analysis
Classifying patients using rules from tumor genomic features
Patients who received a predicted ineffective therapy
were considered high-risk, while patients who did not
receive a predicted ineffective therapy were considered
low-risk. We compared the overall and event-free sur-
vival of high-risk patients to low-risk patients to validate
the predictions of tumor genomics rules, including our
Therapy Efficacy model.

Survival analysis models
Using Cox regression, we first evaluated survival differ-
ences between high-risk and low-risk patients, per can-
cer. We computed univariate survival models that only
used our patient classification, as well as multivariate
survival models that adjusted for clinical covariates such

Fig. 2 Clinical decision making is augmented by interpreted tumor genomics. a The clinical decision making cycle of therapy selection is multifaceted
and can be informed by properly interpreted tumor genomics profiling. Developing high-confidence and mechanism-based algorithms for properly
interpreting genomic information remains a clinical challenge. b We considered a set of rules based on tumor genomics features for interpreting
somatic PK gene expression. From these rules, we developed a simple Therapy Efficacy model for interpreting if an administered therapy may be
ineffective due to somatic PK gene expression
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as patient age and tumor stage. See Table 1 for the full list
of covariates used for each cancer type. Statistical model
results were summarized by hazard ratio (HR), the lower
and upper bounds of the 95% confidence interval, and p-
value. HRs greater than 1 indicated increased risk and
values less than 1 indicated a protective association. We
reported HRs of high-risk patients relative to low-risk pa-
tients. We used Kaplan-Meyer (KM) plots for visualization
of differences between high- and low-risk patients.
Because we considered tumor genomic information, fea-

tures may be transferrable across cancer types. However,
due to many factors (including small numbers of cases for
each cancer), observations of each rule’s HR may be vari-
able. Therefore, we used random-effects meta-analysis to
combine information across cancer types and derive a
more robust estimate of the pan-cancer HR [57, 58]. In
meta-analysis, it is assumed that each cancer type is an
observation of the “true” pan-cancer HR. The number of
high- and low-risk patients, the HR, and the confidence
interval for the HR, from each cancer type were used in
the meta-analysis. In addition to meta-analysis, we also
computed a pan-cancer Cox regression, stratified by can-
cer type. Statistical models produced by meta-analysis and
Cox regression were compared. Finally, we used 5-fold
cross-validation repeated 50 times to assess variability in
risk associated with each feature.
Overall survival times were calculated using the time

to observed cancer-related mortality. Event-free survival
was calculated using the time to any cancer-related event
(cancer-related mortality, disease progression, recurrence,
or beginning a new treatment) [59–62]. Subjects were

censored when lost to follow-up. In all survival
models, we required at least 5 patients to be in each
group, at least 10 total observed events, and at least
20 total patients. Models were compared using likeli-
hood ratio tests.

Software used
Analyses were conducted using the R programming lan-
guage [59, 60, 63] (version 3.1.1), leveraging the survival
(version 2.38.3), coxme (version 2.2.5), meta (version 4.3.0),
and forestplot (version 1.1.0) packages.

Results
Classification of therapies and patients using rules from
tumor genomic features
Our Therapy Efficacy model classified 229 therapies (9.
0%) as ineffective within the context presented by the
corresponding patient’s tumor genomics profile. These
therapies were administered to 143 (5.5%) patients,
leading to classification of these patients as high-risk.
While high-risk patients were distributed across cancer
types (Table 2), a higher proportion was observed in
BRCA and OV. Differences in prevalence between can-
cer types also corresponded with moderate differences
in clinical covariates; high-risk patients trended towards
higher grade, later stage, and younger age at cancer diag-
nosis. Further details on the cohort characteristics, num-
ber of genes annotated for each therapy, and the fraction
of administered therapies affected by PK gene expres-
sion, are available in Additional file 1: Figures S1, S2.

Table 1 Number of samples available and covariates considered for each cancer type. Column names designate covariates with a
bullet indicating inclusion of that covariate in survival models

#T #E #N TSSa Age Sex Stage Grade LIb Smoke statusc Tumor specificd

GBM 394 154 0 ● ● ● ●

OV 573 262 0 ● ● ● ● ● ●

BRCA 905 817 104 ● ● ● ●

UCEC 473 333 5 ● ● ● ●

KIRC 505 470 65 ● ● ● ● ●

COAD 424 192 0 ● ● ● ● ● ●

READ 168 71 0 ● ● ● ● ● ●

BLCA 139 96 13 ● ● ● ● ●

LUAD 447 353 55 ● ● ● ●

LUSC 404 220 16 ● ● ● ●

HNSC 409 303 37 ● ● ● ● ● ●

#T, total number of tumor samples
#E, number of tumor
#N, number of tissue-matched normal samples
aRandom intercept terms were included for Tissue Source Site
bLymphatic Invasion; coded as “present” or not
cCigarette smoking status
dMeasures used in only one cancer type. GBM: Radiation dosage. OV: tumor residual disease. BRCA: menopause status, margin status. COAD and READ: history of
colon polyps
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Per-Cancer survival analysis
We utilized survival analysis comparing high- and low-risk
patients to validate the predictions of our simple TEM. Sur-
vival analysis was first applied to each cancer type inde-
pendently. Differential survival was assessed using the TEM
classification (univariate) and with adjustment for clinical
covariates (multivariate; see Table 3). For univariate ana-
lysis, only KIRC showed a statistically significant associ-
ation. However, the majority of cancer types exhibited
survival patterns consistent with poorer survival for high-
risk patients. In multivariate analysis, four out of eight can-
cer types demonstrated statistically significant poorer sur-
vival for high-risk patients: GBM, BRCA, KIRC, and
HNSC. Comparing univariate and multivariate models,
GBM was the only cancer type for which the risk associated
with the TEM significantly differed, but there were substan-
tial clinical differences (e.g. age and radiation). While each
per-cancer model identified a small number of high-risk pa-
tients, a significant association with survival was observed
in multiple cancers.
Kaplan-Meyer (KM) plots were used to visualize differ-

ential survival between high- and low-risk patient cohorts
(Fig. 3 and Additional file 1: Figure S3). The high- and
low-risk cohorts were not balanced with respect to clinical
characteristics. KM plots do not provide sufficient reso-
lution to account for the differences in survival due to dif-
ferent covariate balance. Therefore, we calculated
unadjusted and adjusted KM survival curves to more
clearly represent the survival associations for the TEM.

Pan-Cancer survival analysis
Across all patients, we first tested single-feature rules
(Table 4 and Additional file 1: Figure S4). Drug export
(HR = 1.49 [1.13, 1.96], p = 4.7 × 10− 3, Fig. 4 and
Additional file 1: Figure S5) and metabolism (HR = 1.73
[1.31, 2.28], p = 9.3 × 10− 5, Additional file 1: Figures. S6
and S7) both demonstrated statistically significant
associations between high-risk patients and poorer sur-
vival. Neither therapy import nor target gene expression
demonstrated significant survival associations.
We next constructed rules from combinations of fea-

tures and tested them using survival models (Fig. 3 and
Table 4). The Any-Hit model was consistent with poorer
survival, but was not statistically significant. Both the
Any-PK-Hit and TEM demonstrated statistically signifi-
cant associations between high-risk patients and poorer
survival (HR = 1.27 [0.96, 1.67], p = 9.4 × 10− 2 and 1.47
[1.11, 1.93] 6.3 × 10− 3, respectively). Associations were
consistent between univariate and multivariate models.
KM survival curves for the high-risk and low-risk co-
horts were used to visualize these associations and are
presented in Fig. 3, Additional file 1: Figures S1 and S3.
We tested if inclusion of scores from the TEM was a

significant improvement. Details are presented in our

Supplemental Information. Briefly, inclusion of the
TEM classification was significant by the likelihood ra-
tio test (Χ2(1) = 5.4, p = 0.02) over a multivariate model
including all covariates.

Analysis of tumor genomics features
We analyzed the prevalence of each genomics feature
across the cohort and investigated which specific drug-
gene relationships were most commonly affected by al-
tered PK gene expression levels for the PK genes relevant
to each patient’s treatment.

Therapy export
Across cancer types, 4.2% (n = 109) of patients were af-
fected by high exporter gene expression for a therapy
they received. As described above, this feature was asso-
ciated with increased cancer mortality risk (Table 4 and
Fig. 4; HR = 1.49 [1.13, 1.96], p = 4.7 × 10− 3) and event-
free survival (HR = 1.43 [1.11, 1.85], p = 5.9 × 10− 3;
Additional file 1: Figure S5). Lowering the threshold
used to classify gene expression as “high” lead to more
patients identified at a lower HR and increasing the
threshold lead to a similarly high HR. This indicated
that different expression levels of drug export genes may
indicate different levels of impact on drug efficacy.
The poorer survival associated with high expression of

drug export genes was influenced by many individual
drug-gene relationships. The most recurrent alteration
observed was elevation of ABCC1 expression in 48 pa-
tients receiving doxorubicin and/or paclitaxel from
across six cancer types. The next most recurrent alter-
ations were observed for three further independent groups
of patients exhibited high expression of ABCC2 (17 pa-
tients), ABCG2 (12 patients), and ABCC10 (8 patients).
While these patients have high expression of one of these
four genes, their treatment regimen may differ, impacting
different therapies as ineffective across patients. Our
model is able to integrate across these multiple drug-gene
relationships. Specific patient cases are highlighted in
Table 5. Thus, increased exporter gene expression is a
pan-cancer feature affecting a modest fraction of cancer
patients, but which may convey a significant impact on
drug efficacy for individual patients.

Therapy metabolism
Across cancer types, 7.6% (n = 216) of patients were af-
fected by increased gene expression of any drug metabol-
ism gene active against the therapies they received, while
1.7% (n = 49) of patients were affected by concurrent high
gene expression of at least two drug metabolism genes.
Activation of any drug metabolism gene was consistent
with poorer overall (HR = 1.27 [0.94, 1.71], p = 0.12,
Additional file 1: Figure S6) and event-free survival (HR =
1.32 [0.93, 1.88], p = 0.11, Additional file 1: Figure S7).
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However, high expression of at least two drug metabolism
genes was associated with poorer overall survival (HR = 1.
73 [1.31, 2.28], p = 9.3 × 10− 5, Table 4). Varying the
threshold for calling gene expression “high,” lead to an
increased HR. This suggests that different expression
levels of drug metabolism genes may indicate different
levels of impact on drug efficacy.
Many individual relationships contributed to the asso-

ciation between administered therapies and the drug
metabolism genes that degrade them within cancer cells.
For example, we identified 41 patients in two cancer
types receiving tamoxifen where the genes UGT1A10,
UGT2B15, or CYP2D6 were highly expressed. These
genes are well established components of tamoxifen’s
metabolic pathway [64]. Across 5 cancer types, 109 pa-
tients who received paclitaxel exhibited activation of
NR1I2, many with concurrent activation of CYP2C8 or
CYP3A4 – known members of paclitaxel’s metabolic
pathway [65]. Further relationships are identified

Table 3 Per-cancer Therapy Efficacy model performance
assessed using overall survival

Univariateb Multivariatec

HR [95% CI]a p-value HR [95% CI] p-value

GBM 0.87 [0.38, 2.01] 7.5 × 10− 1 1.84 [1.17, 2.89] 7.9 × 10− 3

BRCA 1.96 [0.75, 5.12] 1.7 × 10−1 1.80 [1.40, 2.30] 3.0 × 10−6

OV 1.56 [0.94, 2.57] 8.4 × 10−2 1.46 [0.88, 2.42] 1.4 × 10− 1

KIRC 7.75 [3.25, 18.50] 3.9 × 10− 6 3.07 [2.18, 4.33] 1.7 × 10− 10

LUAD 1.53 [0.47, 4.94] 4.8 × 10−1 1.65 [0.94, 2.91] 8.0 × 10− 2

UCEC 1.60 [0.48, 5.32] 4.4 × 10−1 0.94 [0.58, 1.54] 8.1 × 10− 1

HNSC 1.39 [0.63, 3.08] 4.2 × 10−1 1.59 [1.05, 2.42] 2.9 × 10−2

LUSC 0.67 [0.21, 2.14] 4.9 × 10−1 0.63 [0.35, 1.12] 1.2 × 10−1

aThe hazard ratio (HR) and the bounds of its 95% confidence interval (CI)
bThe HR associated with being in the high-risk cohort
cThe HR associated with being in the high-risk cohort, after accounting for
clinical covariates as itemized in Table 1

Fig. 3 Our Therapy Efficacy model identified high-risk patients who received therapies with specific PK mechanisms activated within their tumors.
a We first plot the Kaplan-Meyer survival curves of the pan-cancer cohort classified by our genomics-based efficacy model based on high expression
of the exporters or metabolizers of the drugs administered. Shaded bands indicate 95% confidence intervals. Analogous per-cancer survival curves are
shown for (b) KIRC and (d) OV. In this retrospective study, cohorts were not balanced with respect to disease state or clinical characteristics
(Additional file 1: Figure S1). Thus, we plot survival curves adjusted to a uniform cohort of 50 year olds with stage-3 grade-3 (c) KIRC or (e) OV.
Analogous plots are shown for all cancer types in Additional file 1: Figure S3. We assessed statistical significance using Cox regression with
results shown in Table 3 and Figs. 4, 5 and 6
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Table 4 Pan-cancer Therapy Efficacy model performance assessed using overall survival

Univariate Multivariate

Rulea Genomics
features

Low-risk (N) High-risk (N) High-risk (%) HR [95% CI] p-value HR [95% CI] p-value

Export 1 2749 109 3.8 1.49 [1.09, 2.05] 1.2 × 10−2 1.49 [1.13, 1.96] 4.7 × 10− 3

Import 1 2777 81 2.8 0.90 [0.61, 1.33] 6.0 × 10−1 1.00 [0.76, 1.32] 1.0 × 100

Metabolism 1 2642 216 7.6 1.26 [0.94, 1.69] 1.3 × 10−1 1.12 [0.85, 1.48] 4.2 × 10− 1

Metabolismb 1 2809 49 1.7 1.74 [1.09, 2.77] 2.1 × 10− 2 1.73 [1.31, 2.28] 9.3 × 10− 5

Target 1 2780 78 2.7 1.12 [0.76, 1.66] 5.6 × 10− 1 1.07 [0.81, 1.41] 6.3 × 10− 1

Any-Hit 3 2530 328 11.5 1.21 [0.94, 1.55] 1.4 × 10− 1 1.17 [0.88, 1.53] 2.8 × 10− 1

Any-PK-Hit 2 2660 198 6.9 1.26 [0.97, 1.64] 7.8 × 10−2 1.27 [0.96, 1.67] 9.4 × 10− 2

Efficacy Model 2 2715 143 5.0 1.41 [1.06, 1.88] 1.9 × 10−2 1.47 [1.11, 1.93] 6.3 × 10− 3

aRules based on tumor-genomic features; see Methods for definitions
bRequiring at least two metabolism genes affected; see Additional file 1: Figure S1 for additional comparisons

Fig. 4 High expression of drug export genes for administered therapies is associated with poorer overall survival. a Our pan-cancer analysis revealed a
statistically significant association between high expression levels of genes known to export therapies administered to each patient and overall survival.
Pan-cancer cohort size is indicated (N) along with the number of patients affected (M) Varying the expression threshold used identified a tradeoff
between the number of patients affected and HR magnitude. A distribution diagram highlights the analogous region considered for each model.
Models are summarized by p-value, HR, and bounds of the 95% confidence interval. Meta-analyses are summarized by a diamond centered on the HR
and its width extending to the confidence interval bounds. b For the Z≥ 2 criteria, per-cancer models are summarized in a Forest plot. For each cancer
type, the HR is marked and scaled by M; a line extends to the confidence interval bounds
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including high expression of the gene NQO1 in 33 pa-
tients receiving doxorubicin and the gene NT5C in 17
patients receiving gemcitabine. These and other relation-
ships between administered therapies and the genes that
metabolize them within tumor cells contribute to the sur-
vival association implicated by our pan-cancer survival
model.

Therapy targets
Across cancer types, 241 (8.4%) of patients were affected
by low gene expression of any drug target gene for their
administered chemotherapy, while 2.7% (n = 78) of pa-
tients were affected by concurrently low gene expression
of at least two drug targets. We tested the association
between survival and low drug target gene expression
for administered therapies, but found no overall statis-
tical association, either for one gene (HR = 0.99, p = 0.92)
or two genes (HR = 1.12, p = 0.56). However, specific
therapies did exhibit statistically significant associations
with overall survival. The direction of association was
mechanism-dependent (Fig. 5). Among the most fre-
quent drug target associations were with MAPT, MAP2,
and MAP4 for patients receiving paclitaxel or docetaxel
(Table 5). In total, 110 patients across 6 cancer types
were affected by this mechanism. These three MAP pro-
teins associate with microtubules and function to
stabilize them in a phosphorylation-dependent manner
[65, 66]. Increased MAP4 expression has been previously
shown to enhance sensitivity to paclitaxel [67]. Thus,
our analysis has recapitulated this known mechanism
and demonstrated its pan-cancer prevalence. Another
frequent alteration was low expression of growth factor
receptors for patients receiving therapies that target
them. For example, eight patients across four cancer
types were identified with low expression of EGFR when
receiving cetuximab or lapatinib, or of ERBB2 when re-
ceiving erlotinib. Additional individual patient examples
included 14 patients receiving kinase inhibitors for
which the primary target (KIT, RET, MTOR) was lowly
expressed and 12 patients receiving tamoxifen when
ESR2 was lowly expressed. These cases demonstrate the
potential for individualized tumor genomics to inform
the expected efficacy of administered therapies.
Platinum-based therapies are cytotoxic agents that

nonspecifically target cellular DNA and their efficacy has
been previously associated with the expression level of
multiple genes including HMGB1 [68, 69], a critical chro-
matin modifier. HMGB1 has been shown to recognize
and bind to platinum-induced damage [70, 71] and affect
repair [72]. We investigated the association of HMGB1
expression levels in OV and identified a negative associ-
ation with overall survival (Additional file 1: Figure S8;
HR = 2.07 [1.13, 3.79]; p = 1.6 × 10− 2). Thus, our analysis

supports the mechanism of HMGB1 counteracting the
action of platinum therapies.

Cross-validation
We used repeated 5-fold cross-validation to assess variabil-
ity in outcome associations. Therapy export was included
in all cross-validated models with a similar effect size to
our overall model (median HR = 1.47 ± 0.12). Therapy me-
tabolism was included in 64% of models and both it and
our TEM showed consistent effect sizes (median HR= 1.70
± 0.13 and 1.52 ± 0.11, respectively). These results suggest
that combinations of PK features, expected a priori to com-
plement one another [31–33], validate from a data-driven
perspective and our model is robust to variation in cohort.

Interactions between concurrently administered therapies
In our analysis, the association between expression of
metabolic genes and survival in BRCA (Fig. 6) was the
opposite as expected and for which was observed in
other cancer types. For this reason, BRCA was excluded
from the analysis of therapy metabolism presented above.
We believe that this observation can be interpreted by con-
sidering the other concurrently administered therapies (in
the same regimen). In BRCA, patients are administered a
combination of anti-hormone therapy, typically CYP19A1
(aromatase) inhibitors, and cytotoxic chemotherapy, usually
taxanes. Taxanes such as paclitaxel are metabolized by
CYP19A1 and this relationship is representative of the ma-
jority of drug metabolism cases identified in BRCA. We be-
lieve the protective effect associated with drug metabolism
in BRCA is conferred by anti-hormone therapy activity, ra-
ther than metabolic activity of CYP19A1 on taxanes.
Analogous trends can be seen for CYP3A4. Specific roles
for CYP3A4 and CYP19A1 in breast cancer therapy re-
sponse have been reviewed [73, 74], but only preliminary
considerations have been made for modeling the con-
current and opposing activities of these enzymes on
therapies within the same treatment regimen. These
types of interrelationships between multiple therapies
and genes will require further development so that gen-
omic effects on concurrently administered drugs may
be properly interpreted.

Individual patient cases exhibiting multiple alterations
The associations between PK gene expression features
and survival, presented above, defined a cohort of high-
risk patients. These patients’ pre-treatment tumors ex-
hibited features likely to indicate intrinsic resistance to
the therapies they received. We summarize in Table 5,
selected cases per cancer type where we believe pro-
spective PK considerations during the interpretation of
tumor genomics could have been of clinical benefit.
Cases were selected to represent a diversity of clinical
presentations. For example, we identified gene
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expression changes that indicated poor chemotherapy
efficacy in 6 BRCA patients. These example patients had
different hormone receptor status and therefore received
differing anti-hormone therapies. However, we identified
transcriptomic alterations that potentially affected the
chemotherapies administered to each of these patients.
The full list of cases is available in Additional file 2:
Table S1. These observed alterations require additional
investigation. However, we believe they demonstrate that
PK considerations will be a critical component of inter-
preting tumor genomics for IM in oncology.

Discussion
In this study, we have demonstrated that tumor genomics
can be used to inform a deeper understanding of therapy
efficacy. We used patient-level transcriptomic profiles to
predict if administered therapies were rendered ineffective
by somatic PK gene expression. Our Therapy Efficacy
model (TEM) could be used to help select drugs that are
the most appropriate for a patient, or used to identify pa-
tients that are less likely to respond to a therapy. In this
study, we assumed that patients who are less likely to

respond to their therapies would be at higher risk of
cancer-related mortality. Therefore, we used survival ana-
lysis to validate predictions made by our TEM. While the
level of detail in clinical annotations and follow-up time in
TCGA data are not ideal, we believe they are sufficient to
identify trends in overall and event-free survival as indirect
measurements of therapy efficacy. The genomics data used
was derived from pre-treatment tissue. It is expected that
the occurrence of PK gene expression alterations will be
higher for post-treatment samples due to therapy-induced
selection. Scenarios where these assumptions do not apply
represent limitations to our current study. While we did
not detect altered somatic PK gene expression for the ma-
jority of patients, when present, it was significantly associ-
ated with poorer survival. We therefore believe that the
features leveraged by our TEM will be important for inter-
preting tumor genomics profiles for individual patients.
The TEM is based on a small set of well-established

PK features. They were individually tested using cross-
validation which showed consistency in outcome associ-
ations. As the number of patients affected by each rule
is relatively small, each fold may have too few cases to

Fig. 6 Genes involved in drug metabolism of one therapy may be the target of another therapy. High drug metabolism gene expression in BRCA
was protective. This is the opposite association as expected and observed in other cancer types. The upper panel shows the survival association
with high expression levels of drug metabolizing genes in BRCA, across a series of threshold values. Analogous data for UCEC is shown below, for
comparison. We believe this association can be explained by interactions between the molecular mechanisms of cytotoxic therapies and anti-hormone
therapies; see Discussion

Fig. 5 Low expression of drug target genes for administered therapies is associated with patient survival in a mechanism-dependent manner. For
specific therapies and per-cancer, examples with at least five patients in each group are shown. Data are presented as in previous figures; N, the
number of patients administered the therapy; M, the number of patients with low levels of at least one of the therapy’s targets
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generate a robust estimate. Inclusion of the PK features
we have considered in cross-validated models at compar-
able effect sizes to our overall model indicates a robust
association for these rare events. As cancer genomics
datasets increase, the number of cases with altered somatic
PK gene expression is also likely to increase. Additionally,
recurrent disease tends to be more resistant to baseline
therapies, making adaptation through altered PK genes
more likely. Therefore, assessing therapy efficacy using PK
features such as we have considered, will be increasingly
important.
The strongest PK features by survival analysis were

high expression of genes that export or metabolize ad-
ministered therapies. Influx genes were considered, but
no significant association with survival was identified.
We believe the difference in cancer mortality risk (quan-
tified by HRs) between therapy importers and exporters
can be simply explained by the inherent nature of the
two systems; activation of a single exporter may convey
sufficient efflux to impair the efficacy of a therapy, while
inactivation of all importer genes may be required to
sufficiently block influx of a therapy. Associations with
target-gene expression depended on each target’s
mechanism-of-action. Importantly, the risk estimates we
have identified are comparable in incidence and magni-
tude to well-established germline mutations in cancer
susceptibility genes [75] and to those observed for ca-
nonical cancer driver mutations [34]. Thus, we have
established that specific PK mechanisms may be altered
within human tumors and that a subset of them may
lead to decreased therapy efficacy, independent of the
drug target. Additionally, these features can be identified
in pre-treatment tumor data and could be used to gener-
ate individualized predictions of therapy efficacy.
In predicting if a patient was high- or low-risk using

our TEM, we assumed that receiving any ineffective
therapy would negatively affect long-term survival out-
comes. Treatment regimen are diverse [76–78] and have
often been developed by balancing efficacy and toxicity,
and relying on different individual therapies that have
synergistic or complementary effects. Accounting for the
relative contribution of each therapy within a regimen is
left for future study. Further, the relative impact of al-
tered PK gene expression on each therapy within a regi-
men could differ and may depend on each therapy’s
mechanism-of-action. For example, their impact on
cytotoxic agents may differ from molecularly targeted
agents or hormone therapies. Additionally, contributions
to PK activity from epigenetic regulation, somatic and
germline mutation, and copy number variation may be
integrated with gene expression levels to form a more
comprehensive model of therapy efficacy. That is, we
have considered the downstream readout of genomic
regulation in pre-treatment samples: gene expression.

However, cancer cells’ ability to resist chemotherapies
may depend upon their ability to change their gene ex-
pression after treatment initiation. Their ability to
change gene expression will depend on the epigenetic
state of the drug’s corresponding PK genes. Additionally,
somatic activating and inactivating mutations will modu-
late the expected positive correlation between gene ex-
pression and gene activity. Therefore, we are in the
process of building a more advanced TEM using ma-
chine learning techniques that can integrate data types
and weigh the relative contribution of each gene, leading
to greater resolution and a more detailed interpretation
of each patient’s tumor genomics data.

Conclusions
In this study, we have established a simple rule-based
Therapy Efficacy model for interpreting if a therapy will
be ineffective for a specific patient by accounting for the
patient’s somatic PK transcriptomic data. We validated
the utility of these predictions by demonstrating that pa-
tients who were administered predicted ineffective ther-
apies exhibited poorer survival than patients who were
not administered predicted ineffective therapies, across
cancer types. Thus, we suggest that PK-based guidelines
could be integrated into clinical decision making to more
effectively evaluate treatment regimen for individual can-
cer patients. These analyses demonstrate that somatic PK
activity is likely to be important for IM in oncology.
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