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Abstract

Background: Robust and precise molecular prognostic predictors for luminal breast cancer are required. This
study aimed to identify key methylation sites in luminal breast cancer, as well as precise molecular tools for
predicting prognosis.

Methods: We compared methylation levels of normal and luminal breast cancer samples from The Cancer Genome
Atlas dataset. The relationships among differentially methylated sites, corresponding mRNA expression levels
and prognosis were further analysed. Differentially expressed genes in normal and cancerous samples were
analysed, followed by the identification of prognostic signature genes. Samples were divided into low- and
high-risk groups based on the signature genes. Prognoses of low- and high-risk groups were compared. The
Gene Expression Omnibus dataset were used to validate signature genes for prognosis prediction. Prognosis
of low- and high-risk groups in Luminal A and Luminal B samples from the TCGA and the Metabric cohort
dataset were analyzed. We also analysed the correlation between clinical features of low- and high- risk
groups as well as their differences in gene expression.

Results: Fourteen methylation sites were considered to be related to luminal breast cancer prognosis because
their methylation levels, mRNA expression and prognoses were closely related to each other. The methylation
level of SOSTDC1 was used to divide samples into hypo- and hyper-methylation groups. We also identified an
mRNA signature, comprising eight transcripts, ESCO2, PACSIN1, CDCA2, PIGR, PTN, RGMA, KLK4 and CENPA,
which was used to divide samples into low- and high-risk groups. The low-risk group showed significantly
better prognosis than the high-risk group. A correlation analysis revealed that the risk score was an
independent prognostic factor. Low- and high- risk groups significantly correlated with the survival ratio in
Luminal A samples, but not in Luminal B samples on the basis of the TCGA and the Metabric cohort dataset.
Further functional annotation demonstrated that the differentially expressed genes were mainly involved in
cell cycle and cancer progression.

Conclusions: We identified several key methylation sites and an mRNA signature for predicting luminal breast
cancer prognosis. The signature exhibited effective and precise prediction of prognosis and may serve as a
prognostic and diagnostic marker for luminal breast cancer.
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Background
Breast cancer is one of the most commonly diagnosed
cancers and one of the leading causes of death among
female cancer patients. It has been estimated that, glo-
bally, approximately 12% of the newly diagnosed breast
cancers occur in China [1]. Despite great efforts spent
on improving the diagnosis and treatment of breast
cancer, its prognosis varies greatly among patients. An
effective molecular tool is urgently needed for predicting
and classifying prognoses of breast cancer patients [2].
Cancer is caused by the accumulation of mutations in

cancer susceptibility genes and the resulting abnormal
cell growth. In addition to genetic variations, aberrant
DNA methylation and variations in gene expression pat-
terns have also been recognised to play an important
role in tumourigenesis [3, 4]. Extensive studies have
shown that global DNA hypomethylation and regional
hypermethylation of Cytosine-Phosphate-Guanine (CpG)
-rich islands are prevalent in cancers [4, 5]. Promoter
methylation suppresses gene transcription, and aberrant
methylation is one of the major causes leading to in-
stability of the genome, activation of oncogenes and
suppression of tumour suppressor genes. Accordingly,
aberrant methylation may contribute greatly to breast
cancer onset and progression.
Based on variations in gene expression, breast cancer

is currently classified into five major subtypes: luminal
A, luminal B, ErbB2+, basal-like and normal-like. How-
ever, based on the copy number, gene expression and
long-term clinical outcomes, breast cancer is further di-
vided into at least 10 intrinsic subtypes, which demon-
strate the complexity of the landscape of breast cancer
[6]. Each subtype has a unique expression pattern and
unique clinical features [3, 7] and has a distinct response
profile to the same therapy [8]. Thus, attempts to define
the prognosis related gene expression signature remain
necessary.
Specific methylation profiles may also exist for differ-

ent subtypes. Holm et al. [9] have reported that certain
patterns of hypermethylation, which modulate gene
expression and promote tumor progression, may be vi-
able targets in some luminal breast cancers. Reportedly,
CpGs in the luminal B subtype are the most frequently
methylated and those in the basal-like subtype are the
least frequently methylated [10]. Significantly higher
methylation levels of tumour suppressor genes Ras
Association Domain family 1 (RASSF1) and Glutathione
S-transferase Pi 1 (GSTP1) have been observed in the
luminal B subtype than in the basal-like subtype [10].
Furthermore, the expression levels of both genes have
been shown to be downregulated by hypermethylation in
breast cancer [11–15]. The hypermethylation and
reduced expression of RASSF1 and GSTP1 have been
correlated with cancer onset and progression [13, 14].

Despite extensive investigations into aberrant methyla-
tion and gene expression, robust and precise molecular
prognostic predictors for specific breast cancer subtypes,
such as luminal A and B types, remain to be developed.
In the present study, we used the data from The Cancer
Genome Atlas (TCGA) as a training set and identified
methylation sites that are significantly correlated with
luminal breast cancer prognosis. The mRNA expres-
sion of genes corresponding to these sites correlated
significantly with their methylation levels and progno-
ses. We further compared mRNA expression profiles
between breast cancer and normal tissues and identi-
fied eight signature genes used for constructing a risk
scoring system. Based on this system, luminal breast can-
cer patients were classified into low-risk and high-risk
groups, which exhibited significant prognostic and
molecular differences.

Methods
Data source
Data on breast cancer methylation and mRNA expression
profiles were downloaded from the TCGA data portal
(https://gdc-portal.nci.nih.gov/). A total of 1241 samples
were available, 628 of which were marked as luminal type
(type A or B). Luminal type samples with methylation data
(Platform: Illumina Infinium Human Methylation 450)
and mRNA-Seq data (Platform: Illumina HiSeq 2000
RNA sequencing) were selected for further analysis.
From this analysis, 231 samples were obtained,
including 21 control (non-cancerous) tissues and 210
luminal breast cancer tissues. Among the 210 breast
cancer tissues, 191 had the corresponding survival in-
formation and status.

Primary screening of methylation data
Continuous variables were expressed as mean ± standard
deviation (SD), and categorical variables were expressed
as sample size (composition ratio) in clinical information
statistics. Methylation sites with significantly different
methylation levels were obtained by comparing the
methylation levels between cancer and control samples
using the Wilcoxon rank sum test. The influence of the
methylation level of these sites on the overall survival of
luminal breast cancer patients was analysed using the
Cox model. Sites with high correlation were further
analysed using a linear correlation model to assess the
relationship between their methylation levels and the
corresponding mRNA expression. We obtained a subset
of methylation sites, the methylation levels of which
were significantly correlated with the corresponding
mRNA expression. Lastly, the relationship between
mRNA expression levels and luminal breast cancer prog-
nosis was assessed using the Cox model. The resulting
genes were considered as key genes in luminal breast
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cancer, as their methylation levels and mRNA expression
levels were significantly correlated with each other and
with the prognosis.

Screening for significantly differentially expressed genes
Based on the cut-off methylation levels (mean methylation
levels) of the key genes, samples were classified as hypo-
or hypermethylated. Differences in expression were ana-
lysed by comparing mRNA levels of hypo- and hyperme-
thylation groups with those of the control group (21
samples) using the EdgeR package (R3.1.0) [16]. False
discovery rate (FDR) was calculated using the multtest R
package. Genes with an FDR of < 0.05 and an expression
fold change of > 1.5 or < 0.67 were considered to be
significantly differentially expressed genes.

Screening for prognosis-relevant signature and risk score
calculation
Significantly differentially expressed gene mRNAs that
significantly correlated with prognosis were screened
using Cox regression in the survival R package [17].
P-value and the prognosis-relevant coefficient β were
obtained using log-rank test. Risk score was defined
as follows:

Risk score ¼ βgene1 � exprgene1þ βgene2 � exprgene2 þ⋯

þ βñgenen exprgenen;

Where β and expr are the prognosis-relevant coefficient
and expression level of the corresponding gene,
respectively. The risk score was calculated for each sam-
ple, and the median risk score was set as the cut-off for
determining which samples were divided into low-and
high-risk groups [18–20].

Correlation analysis between samples and their clinical
information
Clinical information of the corresponding samples,
including age, ER status, HER2 status, progesterone
receptor (PR) status, pathological stages (M, N and T),
radiation therapy and the risk score, were integrated. To
identify the clinical features significantly related to prog-
nosis, a prognosis-relevant correlation analysis between
the samples and their clinical information was performed
using univariate and multivariable Cox regression in the
survival R package. The resulting clinical features were
analysed using Kaplan–Meier survival curves.

Validation of the risk scoring system
To validate the risk scoring system, the expression profile
under the accession number GSE22226 (platform
GPL1708) [21] from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/gds/?term=) and
the Metabric cohort dataset (http://www.cbioportal.

org/study?id=brca_metabric#summary) were down-
loaded as independent validation datasets. In the
GSE22226, a total of 130 breast cancer samples were
included in the dataset, 57 of which were of luminal
type with survival information and were used for val-
idation. The expression levels of signature genes were
extracted, and the risk score was calculated for each
sample. The samples were divided into low- and high-risk
groups, and the clinical information was also integrated,
as described previously. Validation was performed by
comparing the distribution of risk scores and overall sur-
vival time (in days) as well as by Kaplan–Meier survival
curve analysis. In the Metabric cohort, a total of 1979 pa-
tients with good follow up data were included, 1140 of
which were luminal disease. The risk score was calculated
as described previously. Kaplan–Meier survival analysis
based on risk score model system and Luminal subtypes
were performed. Low- and high-risk groups were divided
by signature genes in Luminal A and Luminal B samples
from the Metabric cohort and the TCGA database. Prog-
nosis value of low- and high-risk groups were shown by
kaplan–Meier survival analysis.

Screening of genes differentially expressed between
low- and high-risk groups
Using the TCGA dataset, the samples were divided into
low- and high-risk groups according to their risk scores.
Differences in gene expression levels between low- and
high-risk groups were analysed using the limma R
package, and FDR was calculated using the multtest R
package. Genes with an FDR of < 0.05 were considered
to be significantly differentially expressed. A correlation
analysis of their expression levels and risk scores was
performed, followed by two-way hierarchical clustering
(shown as a heat map), Gene Ontology (GO) analysis
and KEGG pathway analysis. The entire analysis process
is shown in Fig. 1 as a flow chart.

Results
Features of the samples
A total of 210 luminal breast cancer samples and 21
control samples were included in our analysis, which
were obtained from patients with a mean age of 60.73 ±
13.18 and 56.38 ± 14.59 years, respectively. Other clinical
information, including ER status, can be found in the
Supplementary materials (Additional file 1: Figure S1).

Methylation sites associated with breast cancer prognosis
We compared the methylation levels of the cancer and
control issues using the Wilcoxon rank sum test. A total
of 550 methylation sites displayed significant methyla-
tion differences (Additional file 2: Figure S2 and
Additional file 3: Figure S3). The relationship between
methylation levels and breast cancer prognosis was
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analysed using the Cox proportional hazards model, and
122 methylation sites were found to be significantly
associated with prognosis (Additional file 4: Figure S4).
Aberrant methylation is considered to be correlated

with gene expression. We next evaluated the correlation
between methylation levels and mRNA expression. For
genes with methylation sites associated with prognosis,
their mRNA expression values were extracted from the
mRNA-Seq data. The correlation analysis of 122 methy-
lation site–mRNA expression pairs revealed that 59 pairs
were significantly correlated (P < 0.05), 42 of which were
negatively correlated and 17 were positively correlated
(Additional file 5: Figure S5). Further analysis of the cor-
relation between mRNA expression levels of these genes
and prognosis revealed that 14 of them, including VIM,
EPHX3, ACVR1, ANGPT1, TPM3, ALOX15, DIO1,
KCNJ2, RSPH9, SOSTDC1, SYCP2, MACF1, TDRD5 and
CELSR3, were significantly related to breast cancer prog-
nosis (Table 1). As no previous reports showed the exist-
ence of the methylation sites of these genes in other
types of breast cancer, we consider that the methylation
sites of these genes are specific to luminal breast cancer.

Sample grouping based on methylation β-value of SOSTDC1
One identified gene, sclerostin domain-containing
protein 1 (SOSTDC1) was of particular interest, because
SOSTDC1 showed a higher methylation level in breast
cancer tissues than the other 13 genes (Additional file 6:

Table S1) and among the three genes with the highest
significant levels (KCNJ2, CELSR3 and SOSTDC1),
SOSTDC1 was the only gene that has been reported to
be associated with metastatic survival of breast cancer
[22, 23], which indicates that SOSTDC1 plays a complex
role in metastatic breast cancer, so we chose SOSTDC1
for further study.
Extracted data on SOSTDC1 methylation for breast

cancer and the control samples indicated that
SOSTDC1 methylation levels were significantly higher
in cancer tissues than in control tissues (P = 3.05E-36)
(Additional file 7: Table S2). The mean methylation
β-value for breast cancer tissues was determined to
be approximately 0.7 (indicated as a black line) and
was set as the cut-off. Based on this cut-off value,
cancer tissues were divided into hypo- and hypermethyla-
tion groups, which contained 64 and 146 samples,
respectively.

Screening of differentially expressed genes
mRNAs with low expression levels (expression value < 5)
were removed from TCGA dataset, leaving a total of
11,858 mRNAs. The density peak of the expression
levels significantly increased after removal of low-ex-
pressing mRNAs (Additional file 8: Table S3). We
then compared control samples with both hypo- and
hypermethylation samples using significant difference
analysis. In total, 217 genes in the SOSTDC1
hypomethylated group and 312 in the SOSTDC1
hypermethylated group displayed significantly differen-
tial expression. We obtained 315 genes by combining
the two groups.

Fig. 1 A flow chart showing the analysis process of this study

Table 1 mRNAs significantly related to luminal breast cancer
prognosis

Gene Meth-ID HR lower.95 upper.95 p

VIM cg12874092 0.077 0.011 0.566 0.0117

EPHX3 cg05488632 2.483 1.214 5.078 0.0127

ACVR1 cg16682903 1.120 0.675 1.351 0.0155

ANGPT1 cg09396217 2.472 1.116 5.474 0.0257

TPM3 cg24490338 0.126 0.019 0.842 0.0326

ALOX15 cg15843823 1.419 1.018 1.976 0.0387

DIO1 cg19526600 0.823 0.676 1.003 0.0435

KCNJ2 cg19042062 0.380 0.132 1.096 0.0435

RSPH9 cg01344171 1.481 0.962 2.282 0.0447

SOSTDC1 cg06363129 0.532 0.287 0.986 0.0449

SYCP2 cg07347645 1.628 0.969 2.737 0.0456

MACF1 cg22233974 2.244 0.864 5.825 0.0468

TDRD5 cg09656934 1.414 0.951 2.104 0.0473

CELSR3 cg06621358 0.618 0.376 1.017 0.0481
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Identification of signature genes and construction of the
risk scoring system
The survival information and status of 191 breast cancer
tissues in the TCGA dataset were available and used for
survival analysis. Among the differentially expressed
genes, 67 were identified using Cox regression analysis,
with their mRNA levels significantly related to prognosis
(P < 0.05) (Additional file 9: Table S4).
To identify prognosis-associated signature genes, 67

genes were sorted according to their P-values derived
from Cox regression log-rank test. Top n genes were
used to construct a series of risk scoring systems
(Table 2). The corresponding risk scores were calculated,
and samples were divided into low- and high-risk groups
under each risk scoring system. Their correlation with
prognosis and the corresponding area under the curve
(AUC) are shown in Table 3. The correlation between
low- and high-risk groups and prognosis was at a max-
imum when the top seven genes were used, while the
AUC [20] was maximized when the top eight genes were
used. Therefore, we used the top eight genes as signature
genes [establishment of cohesion 1 homolog 2 (ESCO2),
Protein Kinase C And Casein Kinase Substrate In
Neurons 1 (PACSIN1), cell division cycle associated 2
(CDCA2), polymeric immunoglobulin receptor (PIGR),
pleiotrophin (PTN), repulsive guidance molecule A
(RGMA), kallikrein-related peptidase 4 (KLK4) and
centromere protein A (CENPA)].
Risk scores were calculated using the risk scoring sys-

tem containing the top eight genes (Additional file 10:
Table S5). The samples were divided into low- and high-
risk groups based on the median risk score (55.27).
Kaplan–Meier survival curve analysis showed that sam-
ple grouping by this risk scoring system correlated sig-
nificantly with prognosis (Fig. 2a). Moreover, the overall

survival was significantly longer in the low-risk group
than in the high-risk group (P = 0.00128).
We examined the expression levels of the signature

genes, which revealed that their expression levels signifi-
cantly differed between the low- and high-risk groups
(Fig. 3a, Additional file 11: Table S6). Significant differ-
ences in expression levels were also found between the
control samples and the hypo-or hypermethylation
groups. (Figure 3b, Additional file 12: Table S7). How-
ever, no significant differences were found between the
hypo and hypermethylation groups. Moreover, low- and
high- risk groups of Luminal A samples divided by the
signature genes significantly correlated with the survival
ratio. As to Luminal B samples, the survival rate of low
risk group was also higher than that of high risk group,
although this correlation was not so significant (Fig. 4a).
We also evaluated if the prediction analysis of micro-
array 50 (PAM50) intrinsic subtypes, which are prognos-
tic independent of standard clinicopathologic factors,
could well differentiate Luminal A and Luminal B sub-
types. As shown in Additional file 13: Table S8, PAM50
was not the key signature genes for splitting Luminal A
and Luminal B subtypes in the patient cohort of this
study (Additional file 13: Table S8).
To further validate the signature genes, we used the

Metabric cohort [6]. The Metabric cohort included 1979
patients with good follow up data of which 1140 were of
luminal disease. These luminal samples were also divided
into low- and high-risk groups by median risk score based
on the signature genes. Low- and high- risk groups of Lu-
minal A samples significantly correlated with the survival
ratio. As to Luminal B samples, this correlation also
showed no significant difference (Fig. 4b). We combined
Luminal A and Luminal B data of the Metabric cohort
and made a table (2 × 2) with Luminal A, Luminal B, high
score, low score. We found that the distribution of
Luminal A and Luminal B samples between low- and high
groups were significantly different. Most Luminal A
samples fell in the low score group and the majority of
Luminal B samples fell in the high score group (chisq test,
X-squared = 137.0685, p < 2.2e-16) (Table 4). Kaplan–
Meier analysis revealed that high score group was
significantly correlated with poor survival of patients
with luminal breast cancer in Metabric cohort
(Additional file 14: Table S9). The classification of Lu-
minal A and Luminal B also significantly correlated
with survival ratio of luminal subtype patients. The
patients with Luminal A breast cancer had a longer
survival time than the patients with Luminal B breast
cancer (Additional file 14: Table S9).

Validation of the risk scoring system
The GSE22226 expression profile dataset was used for
validating our risk scoring system. The expression level

Table 2 Prognosis-related genes of luminal breast cancer

Symbol P valuea Hazard Ratio β P valueb AUC

ESCO2 0.00033 1.500 5.380 0.932 0.642

PACSIN1 0.00073 0.610 2.060 0.448 0.74

CDCA2 0.00094 2.310 −7.640 0.3137 0.781

PIGR 0.00107 0.404 −1.320 0.01191 0.878

PTN 0.00108 0.796 −2.600 0.00942 0.903

RGMA 0.0011 1.130 3.680 0.00235 0.914

KLK4 0.0011 0.359 −1.172 0.000251c 0.961

CENPA 0.00127 3.230 10.400 0.00128 0.993d

ADAMTS14 0.00156 1.180 −3.740 0.00237 0.992

ACAN 0.00262 0.553 1.663 0.00228 0.991
aCorrelation of gene expression with overall survival
bCorrelation of low- and high-risk groups divide by risk score with prognosis
cP value with the highest significance
dP value with highest AUC
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values of the signature genes were extracted and the risk
score for each sample was calculated (Additional file 15:
Table S10). Each sample was divided between the low-risk
group (29 samples) and high-risk group (28 samples). The
survival ratio in both groups was evaluated. Similar to the
results seen in the TCGA training dataset, the survival
ratio in the low-risk group was significantly higher than
that of high-risk group (P = 0.0397) in the validation
dataset (Fig. 2b). Additionally, the distribution of the risk
scores and overall survival time were similar between the
validation and training datasets (Fig. 2c and d). All valid-
ation results that we obtained confirmed the robustness
and reliability of our risk scoring system.

Correlation between clinical features and prognosis
Clinical information was integrated for prognosis-related
correlation analysis (Additional file 16: Table S11). Uni-
variate Cox regression indicated that both the PR status
and the risk score were significantly correlated with
prognosis, whereas multivariable Cox regression indi-
cated that only the risk score was an independent
prognostic factor (Table 3). Further analysis demon-
strated that the survival ratio was higher in the low-
risk group than in the high-risk group in both PR-
positive (PR+) and PR-negative (PR−) patients (Fig. 5;
14 samples vs. 123 samples; P = 0.105 vs. P = 0.00552).
However, the scoring system that we used was more
sensitive in PR+ than in PR− samples because of the
difference in P-values.

Gene expression differences in the different groups
We found 121 genes that exhibited significant differ-
ential expression (FDR < 0.05) between the low- and
high-risk groups. The correlation analysis indicated
that 88 of them were positively correlated and 33 were
negatively correlated with the risk score (Additional file 17:

Table S12). The expression patterns of the top 20 positively
and negatively correlated genes are shown as heatmaps
using hierarchical clustering analysis in Fig. 6a. Fur-
ther biological function enrichment analysis revealed
that most positively correlated genes were involved in
the cell cycle, whereas most negatively correlated
genes were involved in development, cell adhesion, ion
transport and homeostasis (Fig. 6b, Additional file 18:
Table S13). KEGG pathway analysis indicated that these
genes were correlated with cancer, cell cycle and signalling
pathways (Fig. 6c, Additional file 19: Table S14). The over-
all results of the KEGG pathway analysis were consistent
with those of the biological function enrichment analysis,
considering the complex relationship between tumouri-
genesis and multiple biological processes, such as cell
cycle, cell adhesion and development.

Discussion
Variations in methylation profiles are of considerable
importance in breast cancer onset and progression [4].
Methylation profiles differ among breast cancer subtypes
and may influence gene expression [10]. In the present
study, we focused on luminal breast cancer. We down-
loaded the data from TCGA, a public database that cata-
logues the genetic profiles of over 30 human tumors,
including breast cancer. This platform contains many
types of data, such as gene expression, exon expression,
miRNA expression, copy number variation (CNV),
single nucleotide polymorphism (SNP), mutations, DNA
methylation, and protein expression. However, the
TCGA database has poor follow up data. A majority of
the samples are concatenated shortly after diagnosis,
which limited the number of available samples in our
study. Due to poor follow up data, the TCGA patient
material is not representative of any real breast cancer
population. Using data from the TCGA, we identified a

Table 3 Univariate and multivariate Cox regression analysis of the relationship between clinical data and prognosis for TCGA dataset

Variable Univariate Cox Multivariable Cox

p-value HR(CI) p-value HR(CI)

Age (58.02 ± 13.28 y) 0.163 1.045(0.982~ 1.11) – –

ER (Positive/Negative) 0.174 0.225(0.0263~ 1.929) – –

HER2 (Positive/Negative) 0.289 3.51(0.345~ 5.71) – –

pathologic_M(M0/M1) 0.586 1.564(0.331~ 2.806) – –

pathologic_N (N0/N1/N2/N3) 0.639 1.159(0.625~ 2.15) – –

pathologic_T (T1/T2/T3/T4) 0.0915 1.821(0.909~ 2.652) – –

Stage (I/II/III/IV/V) 0.121 1.586(0.885~ 2.841) – –

Radiation therapy (Yes/No) 0.184 0.336(0.0673~ 1.679) – –

Luminal type (A/B) 0.03361a 1.698(1.036–2.782) 0.0119a 2.508(1.225~ 5.134)

PR (Positive/Negative) 0.00713a 0.125(0.0274~ 0.568) 0.4649 0.725(0.306~ 1.718)

Riskscore 0.00115a 1.095(1.037~ 1.156) 0.04382a 1.229(0.729~ 2.071)
aP values with significance
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set of prognosis-related methylation sites and further
evaluated their relationship with corresponding mRNA
expression. We identified 14 genes (Table 2) whose
mRNA expression levels, methylation levels and progno-
sis of breast cancer were significantly correlated.

Among these genes, SOSTDC1 is of special interest,
considering its complex role and potential importance in
metastatic breast cancer. SOSTDC1 is a member of the
sclerostin gene family and is actively involved in the
bone morphogenic protein and Wnt signalling pathways.

a b

c d

Fig. 2 Comparison of prognosis, risk scores and expression patterns of signature genes. a and b Kaplan–Meier survival curves of the low- and
high-risk groups between the TCGA and GEO samples. Survival curves of low- and high-risk groups are indicated as black and red lines, respectively.
P-value indicates significance for the log-rank test. c and d Distribution of risk scores, overall survival time and expression profiles of signature genes in
the TCGA and GEO samples. Expression profiles are shown as heatmaps
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SOSTDC1 mRNA levels are downregulated in breast
cancer and are associated with survival [22, 23]. The
elevation in SOSTDC1 methylation level in tumour
tissues (Additional file 7: Table S2) may explain
SOSTDC1 downregulation in breast cancer because
promoter methylation has an inhibitory effect on gene
expression. Because SOSTDC1 is closely associated
with luminal breast cancer, we divided the samples
into hypo- and hypermethylation groups based on

SOSTDC1 methylation levels. Another DNA methyla-
tion signature, SAM40, was reported to discriminate
patients with luminal A breast cancer between good
prognoses and poor prognoses [24]. This highlights
the feasibility of the sub-classification of the patient
groups based on DNA methylation signature. Future
studies might focus on the combination of SAM40
and SOSTDC1 in the prognostic prediction of luminal
breast cancer.

a

b

Fig. 3 Difference in expression of signature genes. a Comparison of expression between the low- and high-risk groups. b Comparison of expression
among the normal, hypomethylated and hypermethylated groups. ‘***’ indicates P-value < 0.001
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To identify signature genes in luminal breast cancer, we
also compared mRNA expression profiles between breast
cancer and control tissues. A total of 67 differentially
expressed genes were found to be significantly correlated
with prognosis. Further analysis identified eight signature
genes (ESCO2, PACSIN1, CDCA2, PIGR, PTN, RGMA,
KLK4 and CENPA). These signature genes were used to
construct a prognosis-related risk scoring system, based
on which samples were classified into low-and high-risk
groups. The luminal breast cancer samples from the
TCGA and the Metabric cohort were used to validate this

system. Interestingly, we found prognostic differences
within the Luminal A breast cancer patients in both
databases, although the two lines in Fig. 4b were almost
overlapping. No significant prognostic differences were
found within Luminal B samples, indicating that this risk
score system might have prognostic value for patients with
Luminal A breast cancer.
Many research groups have focused on the prediction

of prognosis and chemotherapeutic benefits by construc-
tion of a risk system based on gene expression profile,
such as the 70-gene predictor [25] and the 50-gene sig-
nature [26]. The 50-gene signature test (PAM50) is one
of the most widely accepted systems for the prediction
of clinical outcomes in women with distinct intrinsic
subtypes [26]. In the patient cohorts of this analysis, our
signature genes were more suitable for splitting Luminal
A and Luminal B subtypes than PAM50. However, a
limitation of our study is that the cohort of luminal
breast cancer samples in TCGA was small. Future

a

b

Fig. 4 Prognosis of low- and high-risk groups in Luminal A and Luminal B samples from the TCGA and the Metabric cohort dataset. a Kaplan–
Meier survival curves of low- and high-risk groups divided by eight signature genes in Luminal A and Luminal B samples from the TCGA database,
respectively. The black line indicates the low-risk group, and the red line indicates the high-risk group. b Kaplan–Meier survival curves of low- and
high-risk groups divided by eight signature genes in Luminal A and Luminal B samples from the Metabric cohort, respectively. The black line indi-
cates the low-risk group, and the red line indicates the high-risk group

Table 4 Fourfold table showing the number of Luminal A and
Luminal B samples in low- and high groups

Luminal A Luminal B p value

High group 242 328 2.20E-16

Low group 437 133

Xiao et al. BMC Cancer  (2018) 18:405 Page 9 of 13



studies will utilize larger patient cohorts and enrich the
clinical data to validate our risk system.
Previous studies have shown that most signature genes

are involved in cancer progression, even though they
may not be directly involved in breast cancer. It has
been reported that ESCO2, CDCA2 and CENPA are cell
cycle-related genes involved in cancer progression.
ESCO2 is an acetyltransferase, which is required for co-
hesion acetylation and the establishment of sister chro-
matid cohesion in the S phase [27, 28], and has been

found to be upregulated in melanoma [29]. CDCA2 is
required in the formation of mitotic chromatin and is in-
volved in the progression of human squamous cell car-
cinoma [30]. CENPA is essential for centromere integrity
and chromosome segregation, and CENPA dysregulation
may promote tumourigenesis due to the resulting
genome instability [31–33]. Other signature genes, in-
cluding PTN, KLK4, RGMA and PIGR, have also been
reported to be involved in cancer progression. Increased
PTN [34, 35] and KLK4 [36–38] expression is strongly

a b c

Fig. 5 Prognosis of the low- and high-risk groups in PR-negative and PR-positive samples. a Kaplan–Meier survival curves of the low- and high-risk
groups in PR-negative samples. The black line indicates the low-risk group, and the red line indicates the high-risk group. P-value indicates the
significance of the difference between the two groups. b Kaplan–Meier survival curves of the low- and high-risk groups in PR-positive
samples. The blue line indicates the low-risk group, and the violet line indicates the high-risk group. P-value indicates the significance of
the difference between the two groups. c Combination of the Kaplan–Meier survival curves from (a) and (b)

a

c

b

Fig. 6 Functional annotation of genes differentially expressed between the low- and high-risk groups. a Hierarchical clustering analysis of the
expression levels of the top 20 positively and negatively related genes. b GO analysis of negatively (upper) and positively (lower) related genes.
c KEGG pathway analysis of significantly correlated genes
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associated with the progression of different malignant
cancers. Decreased PIGR expression has been found in
colon tumours [39], while RGMA has been reported to
have an inhibitory effect on cancer progression [40, 41].
The remaining signature gene, PACSIN1, is important in
endocytosis and synaptic vesicle recycling [42, 43]. Al-
though its direct involvement in cancer has not been re-
ported, it may play an indirect role in cancer progression.
Our results also demonstrated significant differences

in the expression of these signature genes between low-
and high-risk groups and between the control and can-
cerous tissues (Fig. 3). Our GO and pathway analyses re-
vealed that the genes that were expressed differentially
between the low- and high-risk groups were mainly
involved in biological processes, such as cell cycle and
cancer progression (Fig. 5b and c).
There are limitations in our manuscript. The gene sig-

nature is derived from the segregation of patients based
on methylation level of only one gene (SOSTDC1),
which could cause bias of data analysis. The eight-gene
signature was screened based on bioinformatics analysis
and this study may just provide clues for future study of
patients with luminal breast cancer. The future focus of
our work is to collect more samples and improve our
risk score system experimentally.
Taken together, our results supported the role of

these genes, consistent with their biological functions,
in the development and progression of luminal breast
cancer.

Conclusions
In conclusion, we identified 14 genes that were closely
related to luminal breast cancer prognosis. Their methy-
lation levels, mRNA expression and prognosis were sig-
nificantly correlated with each other. We also identified
eight clinically valuable signature genes for luminal
breast cancer, and a risk scoring system was built upon
this profile. Our results demonstrated that this system is
stable and effective in predicting prognosis and can be
used in the clinical diagnosis and treatment of luminal
breast cancer. Further functional studies on the signa-
ture genes are needed to gain a deeper insight into the
roles they play in breast cancer onset, with specific
emphasis on PACSIN1 because its direct involvement in
cancer has not yet been reported.
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