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Abstract

Background: Improving our understanding of cancer and other complex diseases requires integrating diverse data
sets and algorithms. Intertwining in vivo and in vitro data and in silicomodels are paramount to overcome intrinsic
difficulties given by data complexity. Importantly, this approach also helps to uncover underlyingmolecularmechanisms.
Over the years, research has introduced multiple biochemical and computational methods to study the disease, many
of which require animal experiments. However, modeling systems and the comparison of cellular processes in both
eukaryotes and prokaryotes help to understand specific aspects of uncontrolled cell growth, eventually leading to
improved planning of future experiments. According to the principles for humane techniques milestones in alternative
animal testing involve in vitro methods such as cell-based models and microfluidic chips, as well as clinical tests of
microdosing and imaging. Up-to-date, the range of alternative methods has expanded towards computational
approaches, based on the use of information from past in vitro and in vivo experiments. In fact, in silico techniques are
often underrated but can be vital to understanding fundamental processes in cancer. They can rival accuracy of
biological assays, and they can provide essential focus and direction to reduce experimental cost.

Main body: We give an overview on in vivo, in vitro and in silicomethods used in cancer research. Common models
as cell-lines, xenografts, or genetically modified rodents reflect relevant pathological processes to a different degree,
but can not replicate the full spectrum of human disease. There is an increasing importance of computational biology,
advancing from the task of assisting biological analysis with network biology approaches as the basis for
understanding a cell’s functional organization up to model building for predictive systems.

Conclusion: Underlining and extending the in silico approach with respect to the 3Rs for replacement, reduction
and refinement will lead cancer research towards efficient and effective precision medicine. Therefore, we suggest
refined translational models and testing methods based on integrative analyses and the incorporation of
computational biology within cancer research.

Keywords: Cancer research, Computational biology, Cancer bioinformatics, Integrative analysis, In silicomodeling,
In vitro methods, In vivo techniques, Ex vivo systems, Tumor growth, Alternative animal experimentation, 3Rs

Background
Cancer remains to be one of the top causes of
disease-related death.WorldHealthOrganization (WHO)
reported 8.8 million cancer-related deaths in 2015 [1].
Around one out of 250 people will develop cancer each
year, and every fourth will die from it [2]. WHO estimates
the number of new cases will rise by ∼ 70% over the next
twenty years. Despite decades of research [3], mortality
rates and recurrence remain high, and we have limited
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options for effective therapies or strategies regarding can-
cer prevention.
Tumor cells exhibit chaotic, heterogeneous and highly

differentiated structures, which is determinative to the
lack of effective anticancer drugs [4]. For that matter, pre-
dictive preclinical models that integrate in vivo, in vitro
and in silico experiments, are rare but necessary for the
process of understanding tumor complexity.
A biological system comprises a multiplicity of inter-

connected dynamic processes at different time and spa-
tial range. The complexity often hinders the ability to
detail relationships between cause and effect. Model-
based approaches help to interprete complex and variable
structures of a system and can account for biological
mechanisms. Next to studying pathological processes or
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molecular mechanisms, they can be used for biomarker
discovery, validation, basic approaches to therapy and
preclinical testing. So far, preclinical research primarily
involves in vivo models based on animal experimentation.
Intertwining biological experiments with computational

analyses and modeling may help to reduce the num-
ber of experiments required, and improve the qual-
ity of information gained from them [5]. Instead of
broad high-throughput screens, focused screens can lead
to increased sensitivity, improved validation rates, and
reduced requirements for in vitro and in vivo experiments.
For Austria, the estimated number of laboratory animal
kills per year was over 200 000 [6]. In Germany the num-
ber of animal experiments for research is estimated as 2.8
millions [7]. Worldwide, the quantity of killed animals for
research, teaching, testing and experimentation exceeds
100 000 000 per year [6–14], as shown in Fig. 1.
Principles for humane techniques were classified as

replacement, reduction and refinement, also known as the
3Rs [15]. While most countries follow recommendations
of Research Ethics Boards [16], discussion of ethical issues
regarding the use of animals in research continues [17]. So
far, 3R principles have been integrated into legislation and
guidelines how to execute experiments using animal mod-
els, still, rethinking of refined experimentation will ulti-
mately lead to higher-quality science [18]. The 3R concept
also implies economic, ethical and academic sense behind
sharing experimental animal resources, making biomed-
ical research data scientifically easily available [19]. The
idea behind 3R has been implemented in several programs
such as Tox21 and ToxCast also offering high through-
put assay screening data on several cancer-causing com-
pounds for bioactivity profiles and predictive models
[20–22].
It is clear that no model is perfect, and is lacking some

aspects of reality. Thus, one has to choose and use appro-
priate models to advance specific experiments. Cancer
research relies on diverse data from clinical trials, in
vivo screens and validation studies, and functional studies
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Fig. 1Worldwide use of animals for studies. International comparison
in numbers of animals used for experimentation, such as toxicology
testing for cosmetics, food, drugs, research, teaching and education
[6–14]

using diverse in vitro experimental methods, such as cell-
based models, spheroid systems, and screening systems
for cytotoxicity, mutagenicity and cancerogenesis [23, 24].
New technologies will advance in organ-on-a-chip tech-
nologies [25] but also include the in silico branch of
systems biology with its goal to create the virtual physio-
logical human [26]. The range of alternative methods has
already expanded further towards in silico experimenta-
tion standing for “performed on a computer”. These com-
putational approaches include storage, exchange and use
of information from past in vitro and in vivo experiments,
predictions and modeling techniques [27]. In this regard,
the term non-testing methods has been introduced, which
summarizes the approach in predictive toxicology using
previously given information for risk assessment of chem-
icals [28]. Such methods generate non-testing data by the
general approach of grouping, (quantitative) structure-
activity relationships (QSAR) or comprehensive expert
systems, which are respectively based on the similarity
principle [29–31].
The regulation of the European Union for registration,

evaluation, authorisation and restriction of chemicals
(REACH) promotes adaptation of in vivo experimentation
under the conditions that non-testing methods or in vitro
methods provide valid, reliable, relevant information, ade-
quate for the intended purpose, or in case that testing is
technically impossible [30].
Generally, in vitro and in silico are useful resources for

predicting several (bio)chemical and (patho)physiological
characteristics of likewise potential drugs or toxic com-
pounds, but have not been fit for full pharmacokinetic
profiling yet [32]. In vitro as well as in silico models
abound especially in the fields of toxicology and cosmet-
ics, based on cell culture, tissues and simulations [33]. In
terms of 3R, in vitro techniques allow to reduce, refine and
replace animal experiments. Still, wet biomedical research
requires numerous resources from a variety of biological
sources. In silicomethods can further be used to augment
and refine in vivo and in vitro models. Validation of com-
putational models will still require results from in vivo and
in vitro experiments. Though, in the long run, integra-
tive approaches incorporating computational biology will
reduce laboratory work in the first place and effectively
succeed in 3R.
Within the next sections, we summarize commonmeth-

ods and novel techniques regarding in vivo, in vitro
and in silico cancer research, presented as overview
in Fig. 2, and associated modeling examples listed in
Table 1.

In vivomethods
Animals are the primary resource for research on the
pathogenesis of cancer. Animal models are commonly
used for studies on cancer biology and genetics as well
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Fig. 2 Preclinical techniques for cancer research. Examples for experiments on the computer (in silico), inside the living body (in vivo), outside the
living body (ex vivo) as well as in the laboratory (in vitro)

as the preclinical investigation of cancer-therapy and the
efficacy and safety of novel drugs [34]. Animal models
represent the in vivo counterpart to cell-lines and sus-
pension culture, while being superior in terms of phys-
iological relevance offering imitation of parental tumors

Table 1 Overview of exemplary models for cancer research

References

In vivo

Murine models [37]

Genetically engineered mouse model [36]

Zebra fish model [42]

Drosophila model [41]

Chick embryo model [43, 44]

In vitro

General 2D/3D in vitro models [46, 53]

Transwell model [48]

Spheroid system [49]

Microfluidic system [50]

Tissue-engineered microvessel model [51]

In silico

Sequence analysis [63, 69, 74]

General pathway analysis and network inference [132, 133, 135]

Pan-cancer [62, 82, 134, 139]

Chemical perturbation mapping [64, 66, 68]

Pharmacogenomic mapping [99, 102, 117, 136]

Genome-phenotype mapping [81]

Clinical data integration [106]

Structure mapping [102, 103]

Structure and activity [100, 101]

Framework for key events and mode of action [97, 98]

Image classification [85, 87]

Growth prediction [91–93]

and a heterogeneous microenvironment as part of an
interacting complex biochemical system.
In general, animal models primarily based on murine

or rodent models can be subdivided into the follow-
ing groups of (I) xenograft models, which refer to the
heterotopic, subcutaneous intraperitoneal or orthotopic
implantation into SCID (Severe Combined Immune Defi-
ciency) or nude mice, (II) syngenic models involving
the implantation of cells from the same strain into
non-immunocompromised mice, and (III) genetically
engineered models, which allow for RNA interfer-
ence, multigenic mutation, inducible or reversible gene
expression [35, 36].
Several engineered mouse models on cancer and

related diseases have been developed so far [37]. In
case of xenograft models, tumor-specific cells are trans-
planted into immunocompromisedmice. Common tumor
xenograft models lack the immune system response
that can be crucial in tumor development and progres-
sion [38]. Xenograft models can be patient-derived, by
transferation of a patient’s primary tumor cells after
surgery into immunocompromised mice. The transplan-
tation of immortalized tumor cell-lines represents a
simplified preclinical model with limited clinical appli-
cation possibilities [39]. For these reasons, there is a
trend towards genetically engineered animal models,
allowing for site-directed mutations on tumor-suppressor
genes and proto-oncogenes as the basis for studies on
oncogenesis [40].
Next to the gold standard of murine and rodent mod-

els, there are other animal model systems frequently
used, such as the Drosophila melanogaster (fruit fly) or
Danio rerio (zebra fish) [41, 42]. The fruit fly offers the
advantage of low-cost handling and easy mutant gen-
eration while it holds a substantially high conservation
of the human cancer-related signaling apparatus [41].
There are additional animal models, commonly referred
to as alternatives, such as zebra fish models for angio-
genesis studies and chick embryo CAM (chorioallantoic



Jean-Quartier et al. BMC Cancer  (2018) 18:408 Page 4 of 12

membrane) models, offering rapid tumor formation due
to the highly vascularized CAM structure [40, 43, 44].
So far, preclinical model systems do not provide suffi-

cient information on target validation, but aid in identify-
ing and selecting novel targets, while new strategies offer a
quantitative translation from preclinical studies to clinical
applications [45].

In vitro methods
In vitro models offer possibilities for studying several cel-
lular aspects as the tumor microenvironment using spe-
cific cell types, extracellular matrices, and soluble factors
[46]. In vitro models are mainly based on either cell cul-
tures of adherent monolayers or free-floating suspension
cells [47]. They can be categorized into: (I) transwell-
based models which include invasion and migration
assays [48], (II) spheroid-based models involving non-
adherent surfaces [49], hanging droplets and microfluidic
devices [50], (III) tumor-microvessel models which come
with predefined ECM (extracellular matrix) scaffolds and
microvessel self-assemblies [51], and (IV) hybrid tumor
models including embedded ex vivo tumor sections, 3D
invasion through clusters embedded in gel, and 2D vac-
scular microfluidics [52].
Generally, such cell culture models focus on key aspects

of metabolism, absorption, distribution, excretion of
chemicals or other aspects of cell signaling pathways,
such as aspects of metastasis under a controlled envi-
ronment [53]. Scale-up systems attempt to emulate the
physiological variability in order to extrapolate from in
vitro to in vivo [54]. Advanced models as 3D culture sys-
tems more accurately represent the tumor environment
[55]. Cell culture techniques include the formation of cell
spheroids, which are frequently used in cancer research
for approximating in vitro tumor growth as well as tumor
invasion [56]. In particular, multicellular tumor spheroids
have been applied for drug screening and studies on
proliferation, migration, invasion, immune interactions,
remodeling, angiogenesis and interactions between tumor
cells and the microenvironment [46].
In vitro methods include studies on intercellular, intra-

cellular or even intraorganellar processes, which deter-
mine the complexity of tumor growth to cancerogenesis
and metastasis, based on several methods from the
disciplines of biophysics, biochemistry and molecular
biology [23].
Ex vivo systems offer additional possibilities to study

molecular features. Such systems can be derived from
animal and human organs or multiple donors. Thereby,
ex vivo systems comprise the isolation of primary mate-
rial from an organism, cultivation and storage in vitro
and differentiation into different cell types [57]. In this
regard, induced pluripotent stem cells, in particular can-
cer stem cell subpopulations, have been presented as in

vitro alternative to xenograft experiments [58]. Moreover,
ex vivo methods can be used to predict drug response in
cancer patients [59]. These systems have been developed
to improve basic in vitro cell cultures while overcoming
shortcomings of preclinical animal models; thus, serving
as more clinically relevant models [60].

In silico analysis
The term in silico was created in line with in vivo and
in vitro, and refers to as performed on computer or
via computer simulation [28]. In silico techniques can
be summarized as the process of integrating computa-
tional approaches to biological analysis and simulation.
So far, in silico cancer research involves several tech-
niques including computational validation, classification,
inference, prediction, as well as mathematical and compu-
tational modeling, summarized in Fig. 3. Computational
biology and bioinformatics are mostly used to store and
process large-scale experimental data, extract and pro-
vide information as well as develop integrative tools to
support analysis tasks and to produce biological insights.
Existing well-maintained databases provide, integrate and
annotate ”information on various cancers [61], and are
increasingly being used to generate predictive models,
which in turn will inform and guide biomedical exper-
iments. Table 2 lists several representative examples of
such databases.
The Cancer genome project and Cancer Genome Atlas

have generated an abundance of data on molecular
alterations related to cancer [62]. The Cancer Genome
Anatomy Project by the National Cancer Institute also
provides information on healthy and cancer patient gene
expression profiles and proteomic data with the objec-
tive to generate novel detection, diagnosis and treatment
possibilities [63]. In this connection, analyzing molec-
ular changes and collecting gene expression signatures
of malignant cells is important for understanding can-
cer progression. As example, over a million profiles of
genes, drugs and disease states have been collected as
so-called cellular connectivity maps in order to discover
new therapeutic targets for treating cancer [64]. Regarding
the effect of small molecules on human health, com-
putational toxicology has created in silico resources to
organise, analyse, simulate, visualise, or predict toxicity
as a measure of adverse effects of chemicals [31, 65].
Large-scale toxicogenomics data has been collected by
multi-agency toxicity testing initiatives, for forecasting
carcinogenicity or mutagenicity [20, 66–68]. Thereby,
gene expression signatures and information on chem-
ical pathway perturbation by carcinogenic and muta-
genic compounds have been analyzed and incorporated
into in silico models to predict the potential of hazard
pathway activation including carcinogenicity to humans
[20–22, 66].
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Fig. 3 In silico pipeline. (1) Manual input into databases storing patient information, literature, images and experimental data, or direct data input
into computational tools. (2) Refinement and retrieval over computational tools for classification, inference, validation and prediction. (3) Output for
research strategies, model refinement, diagnosis, treatment and therapy. Note: Derivative elements have been identified as licensed under the
Creative Commons, free to share and adapt

The analysis of genomic and proteomic data largely
focuses on comparison of annotated data sets, by applying
diverse machine learning and statistical methods. Most
genomic alterations comprise single nucleotide variants,
short base insertions or deletions, gene copy number
variants and sequence translocations [69]. Thereby, can-
cer genes are defined by genetic alterations, specifically
selected from the cancer microenvironment, conferring
an advantage on cancer cell growth. In this regard, the

goal is set in characterizing driver genes. However, com-
bination of such genes may provide prognostic signatures
with clear clinical use. Integrating patterns of deregulated
genome or proteome with information about biomolecu-
lar function and signaling cascades does in turn provide
inside into underlying biological mechanism driving the
disease.
Analysis of genomic and proteomic data relies on

processing methods such as clustering algorithms [70].

Table 2 List of main databases and data resources in cancer research

Name Url References

cBioPortal http://www.cbioportal.org [116, 128]

BioPreDyn-Bench https://sites.google.com/site/biopredynbenchmarks/ [105]

CGAP https://cgap.nci.nih.gov/ [63]

EPA Toxcast Screening Library https://actor.epa.gov/dashboard/ [21, 66]

EpiFactors http://epifactors.autosome.ru/ [77]

Human Protein Atlas https://www.proteinatlas.org/ [111, 112]

GDSC http://www.cancerrxgene.org/ [102, 104]

GDC/TCGA https://portal.gdc.cancer.gov/ [62, 139]

Gene Ontology http://www.geneontology.org/ [129]

KEGG http://www.genome.jp/kegg/ [131]

NCI-60 databases https://discover.nci.nih.gov/cellminer/ [116, 145]

Open TG-GATEs http://toxico.nibiohn.go.jp/english/ [67]

Reactome https://reactome.org/ [130]

pathDIP http://ophid.utoronto.ca/pathdip/ [135]

http://www.cbioportal.org
https://sites.google.com/site/biopredynbenchmarks/
https://cgap.nci.nih.gov/
https://actor.epa.gov/dashboard/
http://epifactors.autosome.ru/
https://www.proteinatlas.org/
http://www.cancerrxgene.org/
https://portal.gdc.cancer.gov/
http://www.geneontology.org/
http://www.genome.jp/kegg/
https://discover.nci.nih.gov/cellminer/
http://toxico.nibiohn.go.jp/english/
https://reactome.org/
http://ophid.utoronto.ca/pathdip/
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Cluster analysis depicts the statistical process of group
formation upon similarities, exemplary for exploratory
data mining [71]. Understanding the heterogeneity of
cancer diseases and the underlying individual variations
requires translational personalized research such as sta-
tistical inference at the patient level [72]. Statistical infer-
ence represents the process of detailed reflections on
data and deriving sample distributions, understanding
large sample properties and concluding with scientific
findings as knowledge discovery and decision making.
This computational approach involving mathematical and
biological modeling, allows to predict disease risk and
progression [72].
Besides directly studying cancer genes and proteins,

it is increasingly recognized that their regulators, not
only involving so far known tumor suppressor genes and
proto-oncogenes but also non-coding elements [73–75]
and epigenetic factors in general can be highly altered in
cancer [76, 77]. These include metabolic cofactors [78],
chemical modifications such as DNA methylation [79],
and microRNAs [80]. Another approach to studying can-
cer involves the view of dysregulated pathways instead of
single genetic mutations [81]. The heterogeneous patient
profiles are thereby analyzed for pathway similarities in
order to define phenotypic subclasses related to geno-
typic causes to cancer. Next to elucidating novel genetic
players in cancer diseases using genomic patient pro-
filing, there are other studies focusing the underlying
structural components of interacting protein residues in
cancer [82]. This genomic-proteomic-structural approach
is used to highlight functionally important genes in can-
cer. In this regard, studies on macromolecular structure
and dynamics give insight into cellular processes as well as
dysfunctions [83].
Image analysis and interpretation strongly benefit from

diverse computational methods in general and within the
field of cancer therapy and research. Computer algorithms
are frequently used for classification purposes and assess-
ment of images in order to increase throughput and generate
objective results [84–86]. Image analysis via computer-
ized tomography has been recently proposed for evaluating
individualized tumor responses [87]. Pattern recogni-
tion describes a major example on extracting knowledge
from imaging data. Recently, an algorithmic recognition
approach of the underlying spatially resolved biochemi-
cal composition, within normal and diseased states, has
been described for spectroscopic imaging [88]. Such an
approach could serve as digital diagnostic resource for
identifying cancer conditions, and complementing tradi-
tional diagnostic tests towards personalized medicine.
Computational biology provides resources and tools

necessary for biologically-meaningful simulations, imple-
menting powerful models of cancer using experimental
data, supporting trend analysis, disease progression and

strategic therapy assessment. Network models on can-
cer signaling have been build on the basis of time-course
experiments measuring protein expression and activity in
use of validating simulation prediction and testing drug
target efficacy [89]. Simulations of metabolic events have
been introduced with genome scale metabolic models
for data interpretation, flux prediction, hypothesis test-
ing, diagnostics, biomarker and drug target identifica-
tion [90]. Mathematical and computational modeling have
been further used to better understand cancer evolution
[91–93].
Since the concept of 3R has its primary focus on replac-

ing animal experimentation within the area of chemical
assessment, several in silico methods have been or are
being developed in the field of toxicology. So far, compu-
tational toxicology deals with the assessment of hazardous
chemicals such as carcinogens rather than computational
biomedicine and biological research concerning cancer.
Still, underlying methods can be likewise integrated into
both disciplines [94, 95]. Recently, toxicology has brought
up the adverse outcome pathway (AOP) methodology,
which is intended to collect, organise and evaluate rel-
evant information on biological and toxicological effects
of chemicals, more specifically, existing knowledge con-
cerning biologically plausible and empirically supported
links between molecular-level perturbation of a biological
system and an adverse outcome at the level of biological
organisation of regulatory concern [96, 97]. This frame-
work is intended to focus humans as model organism
on different biological levels rather than whole-animal
models [95]. The International Program on Chemical
Safety has also published a framework for analyzing the
relevance of a cancer mode of action for humans, for-
merly assessed for carcinogenesis in animals [98]. The
postulated mode of action comprises a description of crit-
ical and measurable key events leading to cancer. This
framework has been integrated into the guidelines on
risk assessment by the Environmental Protection Agency
to provide a tool for harmonization and transparency
of information on carcinogenic effect on humans, like-
wise intended to support risk assessors and also the
research community. Noteworthy, next to frameworks,
there are several common toxicological in silico tech-
niques. Especially similarity methods play a fundamental
role in computational toxicology with QSAR modeling
as the most prominent example [28, 29]. QSARs math-
ematically relate structure-derived parameters, so-called
molecular descriptors, to a measure of property or activ-
ity. Thereby, regression analysis and classification meth-
ods are used to generate a continuous or categorical result
as qualitative or quantitative endpoint [29, 31]. Exemplary,
models based on structure and activity data have been
used to predict human toxicity endpoints for a number
of carcinogens [22, 99–101]. Still, in order to predict drug
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efficacy and sensitivity, it is suggested to combine models
on chemical features such as structure data with genomic
features [102–104].
Combined, in silico methods can be used for both

characterization and prediction. Thereby, simulations are
frequently applied for the systematic analysis of cellular
processes. Large-scale models on whole biological sys-
tems, including signal-transduction and metabolic path-
ways, face several challenges of accounted parameters at
the cost of computing power [105]. Still, the complexity
and heterogeneity of cancer as well as the corresponding
vast amount of available data, asks for a systemic approach
such as computational modeling and machine learning
[106, 107]. Overall, in silico biological systems, especially
integrated mathematical models, provide significant link
and enrichment of in vitro and in vivo systems [108].

Computational cancer research towards precision
medicine
Oncogenesis and tumor progression of each patient
are characterized by multitude of genomic perturbation
events, resulting in diverse perturbations of signaling cas-
cades, and thus requiring thorough molecular character-
ization for designing effective targeted therapies [109].
Precision medicine customizes healthcare by optimizing
treatment to the individual requirements of a patient,
often based on the genetic profile or other molecular
biomarkers. This demands state-of-the-art diagnostic and
prognostic tools, comprehensive molecular characteriza-
tion of the tumor, as well as detailed electronic patient
health records [110].
Computational tools offer the possibility of identify-

ing new entities in signaling cascades as biomarkers and
promising targets for anticancer therapy. For example, the
Human Protein Atlas provides data on the distribution
and the expression of putative gene products in normal
and cancer tissues based on immunohistochemical images
annotated by pathologists. This database provides cancer
protein signatures to be analysed for potential biomarkers
[111, 112].
A different approach to the discovery of potential sig-

naling targets is described by metabolomic profiling of
biological systems which has been applied to find novel
biomarkers for detection and prognosis of the disease
[113–115].
Moreover, computational cancer biology and pharma-

cogenomics have been used for gene targeting by drug
repositioning [116, 117]. Computational drug reposition-
ing is another example for in silico cancer research, by
identifying novel use for FDA-approved drugs, based on
available genomic, phenotypic data with the help of bioin-
formatics and chemoinformatics [118–120]. Computer-
aided drug discovery and development have improved
the efficiency of pharmaceutical research and link virtual

screening methods, homology and molecular modeling
techniques [121, 122]. Pharmacological modeling of drug
exposures helps to understand therapeutic exposure-
response relationships [123]. Systems pharmacology inte-
grates pharmacokinetic and pharmacodynamic drug
relations into the field of systems biology regarding the
multiscale physiology [124]. The discipline of pharmaco-
metrics advances to personalized therapy by linking drug
response modeling and health records [125]. Polypharma-
cological effects of multi-drug therapies render exclusive
wet lab experimentation unfeasible and require modeling
frameworks such as system-level networks [126]. Net-
work pharmacology models involve phenotypic responses
and side effects due to a multi-drug treatment, offer-
ing information on inhibition, resistance and on-/off-
targeting. Moreover, the network approach allows to
understand variations within a single cancer disease
regarding heterogeneous patient profiles, and in the pro-
cess, to classify cancer subtypes and to identify novel drug
targets [81].
Tumorigenesis is induced by driver mutations and

embeds passenger mutations that both can result in
upstream or downstream dysregulated signaling pathways
[127]. Computational methods have been used to dis-
tinguish driver and passenger mutations in cancer path-
ways by using public genomic databases available through
collaborative projects such as the International Can-
cer Genome Consortium or The Cancer Genome Atlas
(TCGA) [62] and others [128], together with functional
network analysis using de novo pathway learning methods
or databases on known pathways such as Gene Ontology
[129], Reactome [130] or the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [131–134]. These primary pathway
databases, based on manually curated physical and func-
tional protein interaction data, are essential for annotation
and enrichment analysis. To increase proteome coverage
of such analyses, pathways can be integrated with compre-
hensive protein-protein interaction data and data mining
approaches to predict novel, functional protein:pathway
associations [135]. Importantly, this in silico approach not
only expands information on already known parts of the
proteome, it also annotates current “pathway orphans”
such as proteins that currently do not have any known
pathway association.
Comprehensive preclinical models on molecular fea-

tures of cancer and diverse therapeutic responses have
been built as pharmacogenomic resource for precision
oncology [136, 137]. Future efforts will need to expand
integrative approaches to combine information on multi-
ple levels of molecular aberrations in DNA, RNA, proteins
and epigenetic factors [62, 138], as well as cellular aspects
of the microenvironment and tumor purity [139], in order
to extend treatment efficacy and further refine precision
medicine.
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Conclusion
Informatics in aid to biomedical research, especially in
the field of cancer research, faces the challenge of an
overwhelming amount of available data, especially in
future regards to personalized medicine [140]. Computa-
tional biology provides mathematical models and special-
ized algorithms to study and predict events in biological
systems [141]. Certainly, biomedical researchers from
diverse fields will require computational tools in order to
better integrate, annotate, analyze, and extract knowledge
from large networks of biological systems. This increasing
need of understanding complex systems can be supported
by “Executable Biology” [142], which embraces represen-
tative computational modeling of biological systems.
There is an evolution towards computational cancer

research. In particular, in silico methods have been sug-
gested for refining experimental programs of clinical
and general biomedical studies involving laboratory work
[143]. The principles of the 3Rs can be applied to can-
cer research for the reduction of animal research, saving
resources as well as reducing costs spent on clinical and
wet lab experiments. Computational modeling and sim-
ulations offer new possibilities for research. Cancer and
biomedical science in general will benefit from the com-
bination of in silico with in vitro and in vivo methods,
resulting in higher specificity and speed, providing more
accurate, more detailed and refined models faster. In silico
cancer models have been proposed as refinement [143].
We further suggest the combination of in silico model-
ing and human computer interaction for knowledge dis-
covery, gaining new insights, supporting prediction and
decision making [144].
Here, we provided some thoughts as a motivator for

fostering in silico modeling towards 3R, in consideration
of refinement of testing methods, and gaining a bet-
ter understanding of tumorigenesis as tumor promotion,
progression and dynamics.
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