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Abstract

Background: Tumors comprise a variety of specialized cell phenotypes adapted to different ecological niches that
massively influence the tumor growth and its response to treatment.

Methods: In the background of glioblastoma multiforme, a highly malignant brain tumor, we consider a rapid proliferating
phenotype that appears susceptible to treatment, and a dormant phenotype which lacks this pronounced proliferative
ability and is not affected by standard therapeutic strategies. To gain insight in the dynamically changing proportions of
different tumor cell phenotypes under different treatment conditions, we develop a mathematical model and underline
our assumptions with experimental data.

Results: We show that both cell phenotypes contribute to the distinct composition of the tumor, especially in cycling low
and high dose treatment, and therefore may influence the tumor growth in a phenotype specific way.

Conclusion: Our model of the dynamic proportions of dormant and rapidly growing glioblastoma cells in different therapy
settings suggests that phenotypically different cells should be considered to plan dose and duration of treatment schedules.
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Background

Gliomas are the most common type of primary brain tu-
mors including their highly malignant form, the glio-
blastoma multiforme (GBM), which accounts for about
15% of all brain tumors [1]. Despite current standard
treatment of GBM by surgical resection and adjuvant
radio- and chemotherapy, the median survival time for
GBM patients is still poor, approximating 12—15 months
[2], mostly due to unsatisfactory response of the tumor
to treatment strategies. Additionally, combined aggres-
sive radio—/chemotherapy is causing severe side effects
frequently necessitating interruptions of the therapy due
to e.g. blood toxicity [3]. GBMs and also many other tu-
mors are heterogeneous tumors, being composed of cells
with different, partly specialized phenotypes [4]. Besides
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e.g. rapidly proliferating tumors cells, invading immune
cells, endothelial cells and (tumor) stem cells, also a sub-
population of so called dormant tumor cells exists in the
heterogeneous tumor mass. These cells enter a quiescent
state driven by cell-intrinsic or extrinsic factors, including
permanent competition for nutrients, oxygen, and space
(“cellular dormancy”) [5—-8]. In several tumors and metas-
tases, dormant cells have been shown to be not prolifera-
tive or only very slowly cycling [9-12]. Linking dormancy
and effects of chemotherapy, studies on glioma cells
showed that cells underwent a prolonged cell cycle arrest
upon treatment with temozolomide (TMZ), the most
common chemotherapeutic in GBM therapy [13].
Evolutionary forces, such as competition and selection,
shape the growth of the tumor and therefore the progres-
sion of the cancer. These forces create different ecological
niches within the tumor encouraging the adaption of spe-
cialized tumor cell phenotypes. Accordingly, the propor-
tional balance between different tumor cellular phenotypes
can drastically change with treatment conditions. Indeed,
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compared to rapidly proliferating tumor cells, especially
dormant cells exhibit a much higher robustness against
chemotherapeutic drugs [5]. This dormant state seems to
be reversible [13], so that the conversion to dormancy and
the exit from dormancy may be a mechanism that facili-
tates tumor survival and progression even upon adverse or
changing conditions. Hence, a better understanding of the
proportional dynamics of different cell phenotypes within
gliomas under chemotherapeutic treatment may improve
further therapeutic approaches.

Mathematical models are beneficial resources to gain
insight into key mechanisms of cancer development,
growth, and evolution and to help identifying potential
therapeutic targets [14]. Among these approaches, evo-
lutionary game theory [15, 16] models the interactions
between different individuals as a game between agents
playing different strategies and relates the payoff from
this game to the reproductive fitness of the correspond-
ing agent [17-21].

Here, we use evolutionary game theory to model the
proportions of two different phenotypes of GBM cells
in a variety of different treatment conditions, see
Basanta and Deutsch [18] for a related approach in
GBM. Defining the fitness of the different cell types as
growth rate in comparison to cells of the respective
other phenotype, we focus especially on the balance
between the rapidly proliferating and the cellular dor-
mant phenotype and describe the corresponding pay-
offs in a payoff matrix which also includes the effect of
treatment. Then, we use a special form of the
replicator-mutator equation [22, 23], which takes into
account that conversion from dormant to rapidly pro-
liferating phenotype and vice versa is possible. To
strengthen our theoretical assumptions, we analyzed
cell numbers and the cellular expression of a dormancy
marker under different chemotherapy dosages and the
phenotypic conversion modalities in cultured GBM
cells in vitro. Taken together, the aim of our study was
to develop a simple theoretical model which describes
the dynamically changing proportions of two different
GBM cell phenotypes, rapidly proliferating and dor-
mant cells, under different treatment conditions.
Showing this, we suggest that different properties of
cell phenotypes should be taken into account for the
development of more efficient, less toxic treatment
schedules in order to improve patient’s prognosis and
quality of life.

Methods

Theoretical model

We analyze the proportions of two different GBM cell phe-
notypes, dormant (D, please refer to Table 1 for symbols
used in the equations) and rapidly proliferating (P) cells, in
a mathematical model including the influence of different
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Table 1 Overview of all used symbols in the model

ny number of cells of type X

Xx ratio of cells of type X in population

D, P index for dormant or rapidly proliferating cell type, respectively
£ Fitness of dormant (D) cells

A treatment cost on normally growing cells

o probability for spontaneous conversion between types

f total average fitness of all cell types in the population

treatment conditions. In the following, we characterize the
cells in terms of their fitness, which we define as the
growth rate in comparison to cells of the other phenotype.
Dormant cells always have a very low or even zero
growth rate ¢, which we assume to be independent of
the exact composition of the population and the treat-
ment condition. Rapidly proliferating P cells, on the
other hand, have a very large fitness advantage com-
pared to dormant cells, which means they proliferate
much faster, but they also compete with each other for
space and resources. Facing another P cell, a focal P cell
has an intermediate fitness, which we assume to be still
much larger than the growth rate of D cells e. Their fit-
ness therefore depends on the relative fraction of D vs.
P cells. Due to the very slow growth of D cells, P cells
will represent the vast majority of glioblastoma cells in
the absence of treatment.

Under treatment conditions, however, the population
composition changes. Even though D cells still have the
same very low (or zero) growth rate g, P cells experi-
ence a fitness cost A due to treatment. The reduction of
the fitness due to treatment only applies to P cells, be-
cause cytotoxic drugs mostly affect rapidly dividing
cells. The fitness cost parameter A can be adjusted to
account for the strength of the applied treatment. In
principle we can continuously vary this parameter.
However, for simplicity we focus on two different treat-
ment strategies: In high dosage (HD) chemotherapy the
treatment strength parameter A is large compared to
the growth rate of the P type. Since high dosage
chemotherapy has strong side effects for the whole or-
ganism (for GBM: [3]), in reality this treatment strategy
cannot be maintained for extended time periods.
Therefore, strong treatment needs to be applied in
turns with weaker or no treatment. For low dosage
(LD) chemotherapy, A means only a small reduction of
the growth rate of the P cells. As the side-effect stress
to the organism should also be lower, this treatment re-
gime could be applied for longer time spans.

Dormant (D) and rapidly proliferating (P) pheno-
types in glioblastoma and their aforementioned inter-
actions can be described by the following payoff
matrix [18]:
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This matrix gives the fitness for each type if con-
fronted with any of the two other types. Here, we find
for example that the fitness of a focal P cell interacting
with a D cell is 1 - & -1, which includes both the small
or zero growth rate of D cells € and the fitness cost for P
cells under treatment A.

As the phenomenon of dormancy is presumably a re-
versible process that also occurs without any treatment,
we assume that conversion between both phenotypes is
possible with a small rate o. Thus, P cells may enter a
dormant phenotype, and D cells may exit from their qui-
escent state, converting into a P phenotype at any time
point.

In the following, we include these fitness effects and
phenotypic conversion into a set of ordinary differential
equations. In general, the growth of a whole cell popula-
tion can be explained in terms of a differential equation
that describes the change in the number of individuals
over time

% =r(n,t)n-.

Here 7 is the number of individuals, £ is the time and
r(n, t) is the growth rate, which can itself depend on the
number of cells and the time.

At first, we focus on the number of D cells, #np, in the
population over time, which have a very small but con-
stant growth rate ¢

A o
For P cells on the other hand, the growth rate of np
given by the average fitness from the payoff matrix
(weighted to the cell fractions), changes with the com-
position of the population

dl’lp np 1 np
— = 1-e-1 —-A .
dt nP<( € )I/ID+}’IP+<2 >HD+I’IP
Since the system under consideration is constrained,
both in terms of nutrients and space, in reality the cell
population only grows exponentially as indicated by the
growth equations in the very beginning of the process

where the constraints regarding space or nutrients are
negligible. However, we are mainly interested in the frac-

tion of D cells xp =."2- in the population and vice
p+np
versa the fraction of P cells xp = 1-xp = nD”jnP. To ob-

tain the change in fractions for both types, we subtract
the average growth rate f of the population from both
individual growth rates,
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f =exp+ [(l—s—/l)xD + G —)L) xp] xp

From this we obtain two differential equations for the
fractions of D and P cells,

Xp =%p (€-f>
B = ( {(1-84)@ + <%_A> xp] —f>

Next, we include the spontaneous conversion between
phenotypes with a constant rate o, which is independent
of the cellular growth. This leads to an additional term
to the differential equation of both phenotypes

Xp = {S—J_C] xp + o (xp—xp)

kp = [(l—s—/l)xD + (;—A)xp—f] xp + o(xp—xp) |
(1)

These equations have the important difference to the
usual replicator-mutator equation [15] that phenotype con-
version is a spontaneous process with a constant rate and is
independent of the growth in the population. This allows
conversion from D to P even if D cells do not grow at all.

Using these equations, we model different therapy
schedules combining different treatment strengths in
different cycling time plans. Since the equations are non-
linear, we use numerical integration with Odeint of the
Python library Scipy' to examine the temporal dynamics
of the system under different treatment regimes. Add-
itionally we analytically determine the fixed points of the
system and their stability.

Experimental model

Cell culture and cell number determination

The GBM cell line LN229 was purchased from ATCC/
LGC Standards (Middlesex, UK, ATCC-CRL 2611) and
cultured in Dulbecco’s modified eagle medium (DMEM)
plus 10% fetal calf serum (FCS, PAN Biotech, Aidenbach,
Germany). Mycoplasma contaminations were routinely
excluded by bisbenzimide staining. The GBM cell line
identity was proven routinely by STR (Short Tandem Re-
peat) profiling at the Department of Forensic Medicine
(Kiel, Germany) using the Powerplex HS Genotyping Kit
(Promega, Madison, WC). Briefly, DNA was amplified
with a STR multiplex PCR, electrophoretic separation
was performed with the 3500 Genetic Analyser (Thermo
Fisher Scientific, Waltham, MA, USA), and evaluated
using the Software GeneMapper ID-X (Thermo Fisher
Scientific). For determination of cell numbers after low
and high dose chemotherapy treatment, 25,000 cells/well
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were seeded in 6 well plates (Greiner Bio-one, Fricken-
hausen, Germany). Cells were grown for 24 h, then
washed with phosphate buffered saline (PBS), supple-
mented with fresh DMEM + 10% FCS and temozolo-
mide concentrations (Sigma-Aldrich, St. Louis, MO,
USA; dissolved in dimethyl sulfoxide DMSO) as indi-
cated in Fig. 2a (5, 50 or 100 pg/ml for 10 days). Temo-
zolomide (TMZ) is a DNA alkylating drug causing
apoptotic cell death and the most commonly used che-
motherapeutic in GBM therapy. Control cells were sup-
plemented with 0.5% DMSO, which corresponds to the
solvent concentrations of each TMZ stimulated sample.
Cells were stimulated for 10 days with TMZ, while
media were changed every 2-3 days. After 10 days, cells
were detached by trypsination and total cell numbers
per well counted using trypan blue exclusion and a Neu-
bauer chamber (Brand, Wertheim, Germany). DMSO
stimulated control cells were already detached after
6 days of stimulation, split 1:10 and seeded again to ex-
clude limitations of growth due to space and nutrient
limitations. This splitting factor (1:10) was considered
when relative cell numbers of TMZ treated samples in
comparison to DMSO controls were determined for
n =5-6 independent experiments.

Immunocytochemistry

For immunocytochemistry, 50,000 cells were seeded
onto poly-D-lysine coated glass cover slips, grown for
24 h and supplemented with indicated TMZ or DMSO
concentrations as described above. From day 6, growth
media were additionally supplemented with 10 pM 5-
bromo-2’-deoxyuridine (BrdU, Sigma-Aldrich, St. Louis,
MO) to allow for incorporation in the DNA in the S
phase of the cell cycle. After 10 days, cover slips were
fixed with an ice-cold mixture of methanol and acetone
(1:1) for 10 min, rinsed with 0.1% Tween / PBS (3 x5
min), incubated with 1 M HCI for 30 min, neutralized
with 0.1 M sodium borate buffer (pH 8.5), and rinsed
again with 0.1% Tween/PBS. Afterwards, cells were
blocked for unspecific bindings with 0.5% bovine serum
albumin (BSA) / 0.5% glycine in PBS (1 h) and incubated
over night with the primary antibody against H2BK (1:
300, Biorbyt, Cambridge, UK), a marker of glioma dor-
mancy [24, 25] and the primary antibody against BrdU
(1:200, Abcam, Cambridge, UK). Then cover slips were
incubated with the secondary antibodies (donkey anti-
rabbit IgG, labelled with Alexa Fluor 488, and donkey
anti-sheep labelled with Alexa Fluor 555, both Invitrogen,
Carlsbad, CA, USA) for 1 h at 37°, and 4', 6-diamidino-2-
phenylindole (DAPI; Sigma Aldrich, St. Louis, MO, USA;
1 mg/ml, 1:30,000, 30 min at room temperature) to stain
nuclei. Cover slips were embedded using Immu-Mount
(Thermo Fisher Scientific, Rockford, IL, USA), and ana-
lysed with equal exposure times using an Axiovert
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microscope and digital camera (Zeiss, Jena, Germany).
H2BK-immunopositive, BrdU-positive and double positive
cells were counted and normalized to total cell numbers
in 6 (DMSO controls) to 10 (TMZ samples) fields of view
for n = 4 independent experiments.

DiO retention and cell countings on phenotype conversion
To monitor the conversion to and from dormancy we
used the green fluorescent vital dye DiO (Invitrogen), as
rapidly proliferating cells lose the dye due to repeated di-
visions, while resting, dormant (or very slowly cycling)
cells retain the dye and can be detected by fluorescence
microscopy. Investigating the conversion to dormancy,
150,000 LN229 cells were seeded into 6-well-plates,
stained with Vybrant® DiO Cell-Labeling Solution
(Thermo Fisher Scientific, Waltham, MA, USA) follow-
ing the manufacturer’s instructions and stimulated with
100 pg/ml TMZ (or equal volume of the solvent DMSO)
for 10-12 days. Cells were photographed combining
transmitted-light microscopy and fluorescence micros-
copy with equal exposure times for TMZ and control
treated cells, and green fluorescent cell portions were
determined in comparison to total cell counts. To deter-
mine the influence of different cell densities on the inci-
dence of conversion, 50,000 and 150,000 cells were
seeded, respectively, into 6-well-plates and treated with
100 pg/ml TMZ (or equal volumes of the solvent
DMSO) for 10 days. As the DMSO control treated cells
rapidly proliferate, cells were detached at day 6 (50,000)
or day 3 and 6 (150,000), cell numbers counted using a
Neubauer chamber to determine the growth rate over
this time period, and seeded again at initial density, to
allow for cell growth without limitation of space and nu-
trients. After 10 days, TMZ and control treated cells
were detached and counted. To extrapolate the total cell
numbers of control cells, growth rates determined at day
3, 6 and 10 were used, and TMZ surviving cells were
calculated as percentage of extrapolated total cells.

Statistical analysis

Statistical analysis and graphical presentation of experi-
mental data were performed with Graph Pad Prism
using a two-tailed t-test (*** p <0.001).

Results

Modelling the dynamics of cell frequencies

The temporal dynamics of the proportion of D against P
cells in GBM strongly depends on the treatment conditions.
Therefore, we first analyze the fixed points of the dynamical
system and how they change for different treatment
strengths A, without considering possible conversions of
phenotypes. The fixed points mark a stable equilibrium be-
tween the portions of P and D cells under certain, prede-
fined conditions and are found by setting Eq. 1 to zero. Of
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particular interest are stable fixed points, as the system
returns into this state again after a small perturbation [26].

For our system, there is only one stable fixed point
for each treatment condition (Fig. 1a). If we consider
the case of no phenotype conversion, 0=0, we can
give the exact position of this point for each treat-
ment condition A. The fraction of D cells at the fixed
point is then given by

0 21 "
1-2¢
21 21
_ -1 1< <2

D =19 1-2¢ 1-2¢
21

1 2<
1-2¢

For small treatment strengths A the fraction of D cells
in the population at the stable fixed point is zero, but
after reaching a threshold, the fraction of dormant cells
increases linearly with A until the whole population con-
sists of dormant cells at very high treatment strengths.

With conversion between the two phenotypes (o > 0),
the analytical calculation for the stable fixed points is
more difficult and the result is not instructive. By con-
trast to the previous results without phenotype conver-
sion, there is always a small proportion of dormant cells
in the population, even at very low treatment strengths.
The proportion of dormant cells at the fixed points in-
creases immediately with increasing treatment strength
until it approaches a maximum at high treatment
strengths. For both D cell growth rates € (¢ =0, orange
lines; and € = 0.1, blue lines) the population composition
is very similar or even the same without phenotype con-
version at very small or large treatment strengths A. In
contrast, the largest effect of € on the population com-
position is at intermediate values of treatment strength.

The average fitness f for the whole tumor cell popula-
tion including P and D cells decreases linearly from the
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maximum at treatment strength A =0 until it reaches the
minimum of f = ¢ at the point where the fraction of dor-
mant cells in the population starts to increase (Fig. 1b).
Interestingly, with spontaneous conversion ¢ > 0, the aver-
age fitness at the fixed point can become smaller than ¢
and even negative for high treatment strengths, potentially
leading to a shrinking tumor. This is caused by conversion
of D cells into P cells which are then susceptible to
treatment.

Comparison to experimental data

To test our mathematical model of phenotype compos-
ition upon treatment, we used LN229 cells as an experi-
mental in vitro model. We treated these cells for 10 days
with temozolomide (TMZ), the most commonly used
cytotoxic drug in glioma therapy. In a first step, we fo-
cused on different treatment strength and analysed the
portions of surviving cells in comparison to control cul-
tures and the percentage of cells expressing H2BK (his-
tone cluster 1), a marker of glioma dormancy [24, 25],
alongside with incorporation of BrdU in the late treat-
ment phase (day 6-10). In general, after 10 days of treat-
ment, samples stimulated with 5, 50 and 100 pg/ml
TMZ had significantly less total cell numbers than con-
trol treated cells (Fig. 2a). By immunocytochemistry of
H2BK, we could detect and quantify the fraction of dor-
mant cells within the cultures, and by adding BrdU to
the cells from day 6 of treatment and immunocytochem-
ical staining of BrdU, we could in parallel mark cells that
incorporate BrdU in the DNA (examples of microscopic
pictures in Fig. 2b). While DMSO-treated control cells
showed a low fraction of H2BK-positive cells (mean: 9.
7% t 3.5), TMZ treatment yielded increased numbers of
dormant cells reaching a plateau at high concentrations
(5 pg/ml: mean 26.8% + 9.0, 50 pg/ml: mean: 82.8% + 5.3,
100 pg/ml: 87.7% + 8.0, compare Fig. 2b, grey graph por-
tions). In parallel, we investigated the incorporation of
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Fig. 2 a Decrease of total cell numbers upon different temozolomide (TMZ) treatment strength. LN229 glioma cells were treated with different
TMZ concentrations for 10 days, control cells were treated with the solvent DMSO (0.5%). Total cell numbers strongly decreased in a TMZ
concentration dependent manner. Given are mean values of cell counting + SD from n =3 independent experiments. b Increase of the H2BK
positive dormant cell portion upon different TMZ treatment strength, and incorporation of BrdU. The fraction of dormant cells as determined by
immunoreactivity for the glioma dormancy marker H2BK and counting of the positively stained cells was remarkably increased in a concentration
dependent manner (grey portions of the graph). The fraction of cells with BrdU incorporation in turn decreased (hatched portions of the columns), but,
remarkably, in higher TMZ concentrations, H2BK and BrdU double positive cells were frequently observed (hatched, grey portions of the columns).
Microscopic pictures exemplarily show cells expressing the dormancy marker H2BK (green) and the incorporation of BrdU (red) upon stimulation with

different concentrations of TMZ for 10 days. The pictures are representative examples from 6 to 10 fields of view that were analyzed for n =4 independent
experiments and summarized in the graphs in the upper part; the bars indicate 20 um. ¢ Influence of cell density on portions of dormant cells. Left: When
stained with the vital dye DiO and treated with 100 pug/ml TMZ for 10-12 days, nearly all cells (@bout 98%) cease from dividing which is indicated by the

retention of the green fluorescent dye. Meanwhile, in control treated cells (DMSO), nearly all cells lose the green fluorescent dye due to repeated cell
divisions. Right: Graphs show surviving dormant cells after 10 days of TMZ treatment (100 ug/ml) in dependence of the initially seeded cell numbers.
Portions of surviving cells are very low in comparison to total (extrapolated) cell numbers in DMSO control cultures, and do not depend on initially seeded
cell numbers. Given are mean values of cell counting + SD from n =6 independent experiments

BrdU in the DNA and determined a high portion (66.0%
+7.8) of BrdU positive cells in the control cultures and
lower portions upon TMZ treatment (5 pg/ml: 53.6% +
14.5; 50 pg/ml: 33.4%+5.3; 100 pg/ml: 33.7% + 10.1,
compare Fig. 2b, hatched graph portions). Interestingly,
BrdU incorporation also took place in TMZ treated cul-
tures, so that staining for the dormancy marker H2BK
and for BrdU could be observed in the very same
cells (compare examples of microscopic photographs
in Fig. 2b) indicating that cell cycle arrest may occur
after the S phase of the cell cycle. Together with our ex-
periments described in the following section and Fig. 2c,
showing that dormant cells hardly divide within our

experimental time frame, these observations suggest that
dormant glioma cells are not or only very slowly cycling.
Furthermore, taking into account that we use a clonal cell
line, the occurrence of dormant cells needs to be a pheno-
typic adaption to the environmental conditions as all cells
are genetically homogenous (as proven by routinely STR
profiling, compare Materials and Methods section).

To investigate if the conversion to a dormant pheno-
type depended on the cell density, initially, we deter-
mined in a DiO retention assay that nearly all cells (98.
3% + 1.2) retain the green fluorescent dye when treated
with 100 pg/ml (“high dose”) TMZ for 10—12 days, while
in control cultures (treated with equal volumes of the
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solvent DMSO) only 2.9% + 1.7 retained the dye (Fig. 2c,
left part). The vital dye is included in every cell at the
moment of staining, and is transferred to every daughter
cell upon cell division. However, this means the staining
is diminishing after several divisions of rapidly proliferat-
ing cells, but retained in non-proliferative or very slowly
cycling dormant cells. Thus, assuming that nearly all
cells that survive treatment with 100 pg/ml TMZ are
dormant in our particular setting, we determined the
relative incidence of phenotype conversion and the influ-
ence of the cell density on this conversion factor by de-
termination of TMZ surviving cells in relation to
(extrapolated) total cell numbers of control (DMSO
treated) cultures. In our experimental setting, a portion
of 0.68% +0.13 cells of initially seeded 50,000 LN229
glioblastoma cells survived this high dose treatment,
while in cultures of initially seeded 150,000 cells, the
portion of surviving cells was nearly similar (0.66% + 0.
13; Fig. 2c¢, right part) underlining the assumptions of
our theoretical model.

Thus, treatment with TMZ significantly reduced total
cell numbers of LN229 cells, while the share of dormant
cells within the culture, as detected by the dormancy
marker H2BK, was drastically elevated. The incidence of
conversion to dormancy did not depend on cell densities
in our particular experimental setting.

Treatment schedules

Next, we use our model to analyze the dynamics of the
population composition for periodically changing treat-
ment conditions. One example trajectory for a growth
rate for D cells € =0 and a conversion rate between phe-
notypes ¢ =0.1 is depicted in Fig. 3. The fraction of D
and P cells in the population alternates between the
fixed points corresponding to the momentary treatment
condition. The trajectory starts with a phase of no treat-
ment, which is characterized by a high average growth
rate and a cell population composition of mostly P cells
and only very few D cells. After the first phase of uncon-
strained growth large parts of the tumor are removed (e.g.
by surgery), leaving only a small number of cancer cells.
Under the following high dosage treatment conditions,
the dormant phenotype has the highest fitness and takes
over the population. The relative fraction of D cells will
increase until the steady state under high treatment condi-
tions is reached. The impact of treatment on P cells leads
to a strong initial decline in average growth rate, until the
population has a significant proportion of dormant cells
and the growth rate starts to recover slightly.

Under the following low dosage treatment conditions,
P cells (making up a small fraction of the whole popula-
tion at the end of the high dosage treatment) are less af-
fected by the treatment and now grow faster. The
average growth rate will have a maximum when then
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Fig. 3 Impact of cyclic treatment on the cell population. In each
treatment interval, either high dosage (H) or low dosage (L) treatment
is applied.Top: Population composition between dormant (D) and
rapidly proliferating (P) cells displayed by the relative fraction of both
phenotypes under changing conditions. Middle panel: Average growth
rate of the whole population under changing treatment condition. A
negative growth rate only occurs in phases of strong treatment.
Bottom panel: Absolute number of all tumor cells, P and D phenotype,
assuming exponential growth with the given average growth rate
(parameters: dormant cell growth rate € =0, conversion rate 0 =001,
high dosage effect Ay =1, low dosage effect A, =0.25)

relative fraction of P cells in the population is still low,
since they have a competitive advantage over D cells,
and then declines afterwards towards an equilibrium
well above the high dosage growth rate. Accordingly, the
total number of cells increases strongly again in this
regime.

Switching the order of high dosage and low dosage
treatment only has a small effect on total number of
cells: If treatment starts with low dosage, the system will
go into a state with a slightly higher fraction of dormant
cells, which makes it less susceptible to the following
high dosage treatment. Starting with low dosage there-
fore does not help to reduce the tumor size.

In Fig. 4 we compare three different treatment sched-
ules: just one switch from initial high (H) dose to low
(L) dose treatment (HHHHHHLLLLLL, Fig. 4a, each in-
stance of the letter H or L corresponds to the same time
interval), slow cyclic switching (HHHLLL, Fig. 4b), and
fast cyclic switching (HLHL, Fig. 4c) for two different
growth rates of D cells (left panels € = 0 and right panels
£=0.1). In case of only switching once, the fixed points
for each treatment are quickly reached. At high dosage
treatment the number of cells increases very slowly or
even decreases. In the following low treatment phase,
however, P cells take over growing particularly fast and
jeopardizing any positive effect from the previous strong
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treatment. This is true for both treatment strengths of
the high dosage phase.

For the fast switching treatment schedule (HLHL,
Fig. 4c), the fixed point of the population proportion
is not reached before the treatment changes again. There-
fore the population dynamics stays between the two stable
fixed points for the two treatment regimes, but does not
reach them. By contrast, in the slow treatment switching

regime (HHHLLL, Fig. 4b) the fixed points for both high
and low dosage treatment are reached such that the com-
position of the cell population essentially resembles the
case of just one switching event (Fig. 4a). However the
time spent at these fixed points is still significantly re-
duced compared to only a single switch.

The bottom panels of Fig. 4a, b and ¢ show the total
number of cells based on the average fitness of the
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population under the assumption of exponential growth.
When the growth rate is positive the cell population
grows, otherwise it shrinks. Interestingly, the average
growth rate of the population is well below zero only for a
short period during the high dosage treatment and only if
the share of P cells is still very high and the fraction of D
cells in the population is small. However, in this regime
the fitness recovers fast and approaches equilibrium with
an average fitness close to zero, such that the total number
of cells does not change anymore. The strongly negative
growth rate directly after switching to the high dosage
treatment is therefore the reason why the number of cells
for quickly changing treatment regimes is significantly
smaller than for slowly changing treatment cases.

Population growth

To systematically examine the effect of switching treat-
ment cycles on the growth rate of the population, we
analyze the temporal dynamics of the population size for
varying treatment cycle durations and two different
growth rates of D cells ¢ (Fig. 5). Unsurprisingly, a lower
growth rate of D cells has a diminishing effect on the
overall growth of the cells. For increasing treatment
cycle length cancer cells have an increasing overall
growth, while maintaining the same total high and low
dosage treatment durations. The overall growth rate ap-
proaches a maximum with increasing treatment cycle
length when the dynamics reaches equilibrium in each
cycle.

Taken together, our mathematical model allows us to
theoretically predict the fitness and proportions of rap-
idly proliferating and dormant tumor cells under differ-
ent treatment conditions. Strengthening our theoretical
assumptions we could exemplarily show the effect of
high and low chemotherapy doses on the cell numbers
and the proportion of a dormant cell phenotype in cul-
tured GBM cells in vitro. Simulating different therapy

0.15 - ....0000_0_0‘7"

£ o
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Fig. 5 Overall growth rate for different treatment cycle length and
for two different growth rates of dormant cells e =0 and € =0.1. High
and low dosage phases are alternating with the given treatment cycle
length for in total 30 cycles. The overall growth rate is then calculated
from a linear fit to the log-plot. Other parameters as in Figs. 3 and 4

Page 9 of 12

schedules, we observed that fast switching of low and
high treatment doses yields a lower total tumor cell
number at equal total drug dose in comparison to low
switching schedules.

Discussion

In this study, we established a mathematical model and
analyzed the proportions of two different cell pheno-
types occurring in GBM, rapidly proliferating and dor-
mant cells. Corroborated by experimental data obtained
from in vitro experiments with cultured GBM cells, we
observed that treatment strength influences the balance
between both phenotypes which in turn influences the
growth of the whole tumor population. Sequential
switching of treatment strength may thus drastically in-
fluence the proportion of dormant and rapidly proliferat-
ing cells, especially if switching to the next condition
takes place before the population dynamics reaches a
steady state.

Dormancy in GBM has been shown by the existence
of distinct fraction of temporarily non-proliferative cells
in murine models [27], as well as by the identification of
clones which were able to generate indolent dormant tu-
mors both in subcutaneous and orthotropic intracranial
sites [28]. Additionally, dormancy seems to be character-
ized by specific features in GBM, such as a non-
angiogenic phenotype [24, 28, 29], and is influenced by
the (micro-)environment e.g. hypoxia [30] and coagula-
tion [31-33]. However, cellular dormancy in tumors is
not only regarded as a state to overcome times of ad-
verse conditions but has also been assigned to DNA re-
pair mechanisms [34]. Interestingly, dormant GBM cells
are hallmarked by the upregulation of specific genes like
angiomotin, ephrin type-A receptor 5 (EphA5), insulin-
like growth factor-binding protein 5 (IGFBP5), and his-
tone cluster 1 (H2BK) [24, 25]. We used the latter as a
marker to detect dormant cells in our in vitro experi-
ments and show that the proportion of dormant cells in-
creases with increasing chemotherapy concentrations.

As the fitness in the competition for space and re-
sources depends on the proportions of phenotypically
different cell subpopulations, we used evolutionary game
theory as a framework for our mathematical model. Pre-
vious studies discussed game theoretic interactions with
more phenotypes for many different types of cancer, in-
cluding glioma [35], prostate cancer [36], and multiple
myeloma [19, 37] or general tumors [38]. Also, evolu-
tionary game theory is often used in spatially structured
populations to answer questions about the effect of envir-
onmental constraints on tumor composition and invasive-
ness of cancer cells [20, 39, 40]. However, including spatial
structure in order to increase the realism of the model
leads to a large number of additional assumptions and po-
tential pitfalls [41, 42]. Other modeling approaches for
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dormancy in cancer focus on the interaction between the
immune system and the tumor [43-45], the effect of
angiogenesis [46], or spatial competition between cells
[47]. However, these approaches do not explicitly model
the conversion between phenotypes and its consequences
under therapy with varying strength.

Thus, we decided to simplify our model on several
levels: (i) We do not take spatial structure into account.
(ii) We abstract from the interaction with the immune
system. (iii) We concentrate on two tumor cell pheno-
types — rapidly proliferating and dormant cells — al-
though other cell phenotypes, such as fast migrating
cells, cells mimicking vasculature, (cancer) stem cells
and invading immune cells (e.g. [48—50]), also contribute
to the whole tumor mass. (iv) We focus on the fitness of
the respective phenotypes rather than the potentially
underlying reasons for phenotypical changes (e.g. genetic
or epigenetic changes).

An important aspect of our model is the conversion be-
tween the different cell phenotypes. Recent studies suggest
that dormant cells may originate from “normal” tumor
cells by currently intensively investigated mechanisms (e.g.
[51-53]). As a fundamental criterion for tumor dormancy,
dormant cells need to be able to reawake and start grow-
ing again, so that they then phenotypically resemble the
rapidly growing cell phenotype. Thus, we introduced a
conversion factor o into our model capturing these pheno-
typical transformation processes. Whether such conver-
sions occur spontaneously or can be induced specifically
or randomly by extrinsic or intrinsic mechanisms is poorly
understood. We thus assumed a spontaneous event which
can be modeled by a constant rate.

Using our theoretical approach we showed that
dependent on the applied treatment strength an equilib-
rium balance between rapidly proliferating cells and dor-
mant cells is eventually reached. At this fixed point and
with low dosage or no treatment, mostly rapidly prolifer-
ating cells dominate the population, similar to the find-
ings of Basanta and colleagues [35]. At stronger
treatment, the fraction of dormant cells becomes succes-
sively larger, yielding a lower growth rate of the whole
tumor. However, high dosage treatment cannot be ap-
plied for longer time periods, as it causes severe side ef-
fects (for GBM: [3]). Hence, we focused on alternative
treatment schedules.

Several previous models discuss the effect different
treatment schedules on various aspects of the cancer
growth like angiogenesis [44, 54] or evolution of resist-
ance [55]. Here, either the dosage and timing or the
type of the chemotherapeutic drug is varied, which can
have a massive effect on the growth of the tumor. Ac-
cordingly, we combine sequential cycles of low and
high dose treatment with different durations. Thereby,
we observed that the total growth of the tumor is
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considerably lower for fast switching compared to a
slow switching scheme.

Conclusion
In this study, we have developed a theoretical model to
predict the tumor growth kinetics under different treat-
ment strengths including a dormant cell phenotype and
underlined our theoretical approach with experimental
data. Using our model which allows for phenotypic con-
version, we could simulate how different tumor cell phe-
notypes proportionally contribute to the growing tumor
mass in cycling treatment schedules. Additionally, we
could observe that switching between high and low dosage
treatment (with equal total treatment amounts) remark-
ably affects tumor growth in a frequency dependent way.
Thus, the dynamic proportions between cell phenotypes
should be taken into account in the optimization of treat-
ment schedules in order to control tumor growth.

Endnotes
Thttps://www.scipy.org/
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