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Diagnostic and prognostic implications of
ribosomal protein transcript expression
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Abstract

Background: Ribosomes, the organelles responsible for the translation of mRNA, are comprised of four rRNAs and ~ 80
ribosomal proteins (RPs). Although canonically assumed to be maintained in equivalent proportions, some RPs have been
shown to possess differential expression across tissue types. Dysregulation of RP expression occurs in a variety of human
diseases, notably in many cancers, and altered expression of some RPs correlates with different tumor phenotypes and
patient survival. Little work has been done, however, to characterize overall patterns of RP transcript (RPT) expression in
human cancers.

Methods: To investigate the impact of global RPT expression patterns on tumor phenotypes, we analyzed RPT expression
of ~ 10,000 human tumors and over 700 normal tissues from The Cancer Genome Atlas (TCGA) using t-distributed
stochastic neighbor embedding (t-SNE). Clusters of tumors identified by t-SNE were then analyzed with chi-squared and
t-tests to compare phenotypic data, ANOVA to compare individual RPT expression, and Kaplan-Meier curves to assess
survival differences.

Results: Normal tissues and cancers possess distinct and readily discernible RPT expression patterns that are
independent of their absolute levels of expression. In tumors, RPT patterning is distinct from that of normal tissues,
identifies heretofore unrecognized tumor subtypes, and in many cases correlates with molecular, pathological, and
clinical features, including survival.

Conclusions: RPT expression patterns are both tissue-specific and tumor-specific. These could be used as a powerful
and novel method of tumor classification, offering a potential clinical tool for prognosis and therapeutic stratification.
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Background
Eukaryotic ribosomes are among the most highly evolu-
tionarily conserved organelles, comprised of four riboso-
mal RNAs (rRNAs) and approximately 80 ribosomal
proteins (RPs). Responsible for translating mRNA into
proteins, ribosomes were long believed to be nonspecific
“molecular machines” with unvarying structures and
function in different biological contexts. Recent evidence
has shown, however, that some individual RPs are
expressed in tissue-specific patterns and can differen-
tially contribute to ribosome composition, affect rRNA

processing, and regulate translation [1]. Despite the
complexity of RP assembly in ribosomes, early studies of
ribosome function revealed that the catalytic activity re-
sponsible for peptide bond formation might depend only
on the presence of rRNAs and a small number of core
RPs [2]. This finding, in conjunction with the observa-
tion that some RPs are expressed in a tissue-specific
manner, has led to speculation that one purpose for the
evolutionary emergence of RPs may have been to confer
translational specificity and adaptability [1, 3].
An increasing body of evidence continues to show that

RPs do, in fact, have important roles in imbuing ribo-
somes with mRNA translational specificity. During em-
bryonic development, RPs are expressed at different
levels across tissue types, and loss of RPs due to
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mutation or targeted knockdown produces specific de-
velopmental abnormalities in plants, invertebrates, and
vertebrates. The tissue-specific patterning that occurs as
a consequence of individual RP loss suggests that some
RPs serve to guide the translation of specific subsets of
transcripts in order to influence cellular development.
While the mechanism(s) by which RPs confer translation
specificity are not entirely known, one may involve the
alteration of ribosome affinity for transcripts with spe-
cific cis-regulatory elements, including internal ribosome
entry sites (IRES) elements and upstream open reading
frames (uORFs) [1].
RPs also participate in a variety of extra-ribosomal

functions. In normal contexts, ribosome assembly from
individual rRNAs and RPs is a tightly regulated process,
with unassembled RPs undergoing rapid degradation.
Disruption of ribosomal biogenesis by any number of
extracellular or intracellular stimuli induces ribosomal
stress, leading to an accumulation of unincorporated
RPs. In some cases, these free RPs may participate in a
variety of extra-ribosomal functions, including the regu-
lation of cell cycle progression, immune signaling, and
cellular development. Many free RPs bind to and inhibit
MDM2, a potentially oncogenic E3 ubiquitin ligase that
interacts with and promotes the degradation of the TP53
tumor suppressor. The resulting stabilization of TP53
triggers cellular senescence or apoptosis in response to
the inciting ribosomal stress. Additional extra-ribosomal
functions of RPs are numerous, and have been recently
reviewed [4, 5].
Given their role in regulating gene translation, cellular

differentiation, and organismal development, it is per-
haps unsurprising that altered RP expression has been
implicated in human pathology. Indeed, an entire class
of diseases has been shown to be associated with hap-
loinsufficient expression or mutation in individual RPs.
These so-called “ribosomopathies,” including Diamond-
Blackfan Anemia (DBA) and Shwachman-Diamond
Syndrome (SDS), are characterized by early onset bone
marrow failure, variable developmental abnormalities
and a life-long cancer predisposition that commonly in-
volves non-hematopoietic tissues [6, 7]. The loss of
proper RP stoichiometry and ensuing ribosomal stress
result in increased ribosome-free RPs, which bind to
MDM2 and impair its ubiquitin-mediated degradation of
TP53 [6, 8–10]. The resulting TP53 stability is believed
to underlie the bone marrow failure that affects the
erythroid or myeloid lineages in DBA and SDS, respect-
ively. The developmental abnormalities of the ribosomo-
pathies are variable and associate with specific RP loss
or mutation. For example, RPL5 loss in DBA is specific-
ally associated with cleft palate and other craniofacial
abnormalities whereas RPL11 loss is associated with
isolated thumb malformations [11].

Ribosomopathy-like properties have also been ob-
served in various cancers. We have recently shown that
RP transcripts (RPTs) were dysregulated in two murine
models of hepatoblastoma and hepatocellular carcinoma
(HCC) in a tumor-specific manner and in patterns unre-
lated to tumor growth rates [12]. These murine tumors
also displayed abnormal rRNA processing and increased
binding of free RPs to MDM2, reminiscent of the afore-
mentioned inherited ribosomopathies.
Perturbations of several individual RPs have been

found in numerous human cancers, including those of
the breast, pancreas, bladder, brain and many other tis-
sues [13–25]. Mutations and deletions of RP-encoding
genes have also been found in endometrial cancer,
colorectal cancer, glioma, and various hematopoietic
malignancies [26–28]. Indeed, the Chr. 5q- abnormality
associated with myelodysplastic syndrome and the
accompanying haploinsufficiency of RPS14 is considered
one of the prototype “acquired” ribosomopathies that
are often classified together with DBA, SDS and other
inherited ribosomopathies [6]. Although many free RPs
can induce cellular senescence during ribosomal stress
via the MDM2-TP53 pathway, not all RPs possess such
tumor suppressor functions. RPS3A overexpression, for
example, actually transforms NIH3T3 mouse fibroblasts
and induces tumor formation in nude mice [29].
A recent attempt to summarize the heterogeneity of

RPT expression in human cancers was limited to describ-
ing expression differences of single RPTs among cancer
cohorts, without accounting for larger patterns of
variation that might better distinguish tumors from one
another [3]. RPT expression patterns were, however,
examined in normal tissues using the dimensionality-
reduction technique Principal Component Analysis (PCA)
in the aforementioned study. These results provided hints
of cell-specific patterning in the hematopoietic tissues ex-
amined, but not all cell types clustered into obviously dis-
tinct groups.
In the current work, we leverage a machine learning

technique known as t-distributed stochastic neighbor
embedding (t-SNE) to identify distinct patterns of global
RPT expression across both normal human tissues and
cancers. Like PCA, t-SNE is a dimensionality reduction
technique used to visualize patterns in a data set [30].
With either technique, patterns shared between data
points are represented with clustering. However, t-SNE
differs from PCA in that it performs particularly well
with highly dimensional data and is able to distinguish
non-linear relationships and patterns. With this tech-
nique, we show that virtually all normal tissues and
tumors can be reliably distinguished from one another
based on their signature RPT expression patterns.
Tumors differ from normal tissues, but retain sufficient
remnants of normal tissue patterning to allow for their
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origin to be easily discerned. Finally, we show that a
number of cancers possess subtypes of RPT expression
patterns that correlate in readily understandable ways
with molecular markers, various tumor phenotypes, and
survival.

Methods
Accessing ribosomal protein transcript expression data
RNA-seq whole-transcriptome expression data for 9844
tumors and 716 normal tissues from The Cancer Genome
Atlas (TCGA) was accessed using the University of
California Santa Cruz (UCSC) Xenabrowser [31]. Only
primary tumors were included for analysis, apart from the
melanoma (SKCM) cohort, as the vast majority of tumors
with sequencing data in this cohort were metastatic (78%).
The total number of samples analyzed in each cohort can
be found in Additional file 1: Table S1. For each of the 30
cancer cohorts, RNA-seq data was selected according to
the label “gene expression RNAseq (polyA+ IlluminaHi-
Seq).” “IlluminaGA” RNA-seq expression data was used
for the cohort Uterine Corpus Endometrial Carcinoma
(UCEC), as this group of data had more samples than the
“IlluminaHiSeq” group. For all cancer cohorts, expression
data for 80 cytoplasmic RP genes were extracted and
base-two exponentiated, as the raw RPKM (Reads Per
Kilobase per Million mapped reads) expression data was
stored log-transformed. The sum of total RPKM counts
for all RP genes was calculated for each sample, and rela-
tive expression of each RP gene in a sample was calculated
by dividing the RPKM gene expression by this summed
expression.

Visualizing ribosomal protein transcript expression
Principal component analyses and t-SNE analyses of
RPT relative expression in normal tissues and tumor
samples were performed using TensorFlow r1.0 and
Tensorboard [32]. t-SNE analyses were performed at a
learning rate (epsilon) of 10 with 5000 iterations or until
the visualization stabilized. t-SNE was initially performed
in two dimensions for all analyses; data sets that could
not be cleanly visualized with two dimensions, particu-
larly those with a large number of samples, were visual-
ized with three-dimensional t-SNE. Multiple analyses
were performed with perplexity settings varying between
6 and 15 for all individual cohort analyses and 10–30 for
all grouped cohort analyses, with final perplexity settings
for each analysis chosen to maximize cluster distinc-
tions. Clusters of at least 10 samples which distinctly
separated visually from other samples were named and
samples from these clusters were identified. 3D area
maps of RPT relative expression were generated using
Microsoft Excel, with each sample listed across the
x-axis, RPTs listed across the z-axis, and relative
expression of each RPT across the y-axis.

Comparing t-SNE clusters
Relative expression of RPTs were compared between
t-SNE clusters with Analyses of Variance (ANOVA)
using R version 3.3.2 [33]. ANOVA p-values were
log10-transformed and used to generate Volcano plots
comparing expression patterns between clusters. Volcano
plots were graphed with Graphpad Prism 7 (GraphPad
Software, Inc., La Jolla, CA).
Clinical and survival data for each TCGA cancer cohort

were accessed again using the UCSC Xenabrowser under
the data heading “Phenotypes.” For each cohort, survival
curves of tumors in each t-SNE cluster were compared with
Mantel-Haenszel (log-rank) and Gehan-Breslow-Wilcoxon
methods using Graphpad Prism 7. Categorical clinical vari-
ables were compared between clusters of tumors with chi-
squared tests. Continuous variables which were normally
distributed were compared with t-tests assuming heteroske-
dasticity, and non-normally-distributed variables were com-
pared with Wilcoxon sign-rank tests. All statistical tests
were two-tailed.

Co-regulated RPTs
Certain groups of RPTs possessed recurring, highly-
significant differences between multiple t-SNE clusters,
including RPL3, RPL8, RPS4X, and RPL13. For each
TCGA cohort with a cluster that possessed significantly
different relative expression of one of these transcripts,
relative expression of all other RPTs was compared be-
tween the identified cluster and other tumors in the
same cohort. Co-regulated transcripts were defined as
those with consistent differences in relative expression
when comparing clusters of interest to other tumors
from the same cohort (Table 1). For example, five TCGA
cohorts had a t-SNE cluster with significant relative
overexpression of RPL8 and RPL30. When comparing
relative expression of other RPTs between these clusters
and other tumors from the same cohorts, all five clusters
with high RPL8 and RPL30 also displayed, on average,
lower relative expression of RPL10 and higher relative
expression of RPL7.

RP gene copy number variations (CNVs)
CNV data for TCGA tumors was accessed using the
UCSC Xenabrowser under the data heading “copy num-
ber (gistic2_thresholded).” Positive values were classified
as amplifications, and negative values were classified as
deletions. The frequency of amplifications and deletions
in RP genes were compared between clusters of tumors
in each TCGA cohort using chi-squared tests and
adjusted for 5% false discovery rate. Within each cancer
cohort, clusters of tumors with significantly greater inci-
dence of a CNV compared to other tumor clusters, and
which possessed > 90% incidence of this copy number
variation, were included in Table 2.
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Classification models
Using RPT relative expression in tumors and normal
tissues, classification models were created using both lo-
gistic regression and feed-forward, fully-connected artifi-
cial neural networks (ANNs) [34]. LR models were used
for binary classifiers and developed with Stata SE 14
(StataCorp LP, College Station, TX) with c-statistics, sen-
sitivity, and specificity reported in Additional file 1:
Table S2. ANN models were generated for classifiers

with multiple outcomes (e.g. tissue of origin models)
and binary classifiers with a LR model that failed to
converge.
ANN models were created and tested using TensorFlow

with graphics processing unit (GPU) acceleration on a
Titan X Pascal (NVIDIA, Inc. Santa Clara, CA). To reduce
bias, samples were balanced for both training and testing
by cancer cohort such that each training and test set had
the same number of samples from each cohort. 60% of
data sets were used for training and 10% for validation
and hyper-parameter tuning. Hyper-parameter sweeps
were used to test all possible combinations of the follow-
ing: learning rate (0.001, 0.002, 0.005, 0.01), batch size
(100, 500, none), dropout rate (0.9, 0.95, 1), hidden layer
structure (both one and two layers with sizes varying
between 0 and 200 in increments of 25), and L2
regularization rate (0.00001, 0.0001, 0.001). All ANNs uti-
lized ReLU activation functions. Neural network training
performance was monitored with Tensorboard and
stopped once validation accuracy had plateaued. The
remaining 30% of data comprised a separate test set,
which was used to test the final model’s classification
accuracy once the hyper-parameters were chosen and the
model trained. Performance of ANN models on the separ-
ate test sets were reported as classification accuracies in
Additional file 1: Table S2.

Results
t-SNE identifies tissue- and tumor-specific RPT expression
RNA-seq expression data for 9844 tumors (30 cancer
types) and 716 matched normal tissues were obtained
from The Cancer Genome Atlas (TCGA) [35]. Relative
expression of RPTs was calculated for all samples and
first analyzed using PCA. To a modest degree, normal
tissue samples could be distinguished by their RPT
expression patterns, though many tissue types demon-
strated considerable overlap (Fig. 1a and Additional file 1:
Figure S1A). Patterns of RPT expression in tumors were
even more heterogeneous, and most cancer cohorts did
not cluster discretely (Fig. 1b).
Samples were then analyzed with t-SNE, which more

clearly identified clusters of variation due to its ability to
identify non-linear relationships among RPTs (Fig. 1a
and b and Additional file 1: Figure S1B). Clustering of
normal tissue samples correlated nearly perfectly with
tissue type. Tumors also demonstrated clustering that
strongly associated with tissue type, with 20 cohorts
segregating into largely distinct and non-overlapping
groups. When both normal tissues and tumors were
analyzed together with t-SNE, samples also generally
grouped into large clusters according to tissue type.
Normal tissues, however, localized into smaller sub-
clusters distinct from tumors (Fig. 1c and Additional
file 1: Figure S2). Thus, while samples nearly always

Table 1 Recurring patterns of RPT expression in tumors across
cancer cohorts

Primary
Difference

Co-regulated RPTs Observations

Lower
expression

Higher
Expression

Cohort Cluster

Low RPL3 RPL5, RPL10,
RPL17, RPL22,
RPL26, RPS23

RPL28, RPL35,
RPL36, RPL38,
RPLP2

THCAa 1

GBMLGG 3, 4

LIHC 2, 3

KIRC 3

THYM 2

PRAD 2, 3

PAAD 1

PCPG 1

DLBC 2

High RPL8 and
RPL30

RPL10, RPL13A,
RPL19, RPL21,
RPL34, RPL37A,
RPL4, UBA52,
RPL5, RPS11,
RPS12, RPS13,
RPS17, RPS27A,
RPS8, RPS9

RPL36A, RPL7,
RPS20

BRCA 3

LIHC 3

PRAD 2

LUNG 1

SKCM 2

HNSC 2

High RPS4X RPL13, RPL23,
RPL37, RPL8,
RPLP1, RPS16, RPS2

RPS3A, RPL17 PRAD 1

KIRC 1

THCA 1, 2

STAD 2

LAML 1

CESC 2

High RPL13 RPL10, RPL10A,
RPL26, RPL3,
RPL35A, RPL41, RPL5, RPL7,
RPL7A, RPS12,
RPS13, RPS14,
RPS15A, RPS18,
RPS23, RPS27,
RPS3, RPS3A,
RPS4X, RPS5

RPL12, RPL13,
RPL18, RPL24,
RPL27A, RPL28,
RPL32, RPL35,
RPL36, RPL37,
RPL38, RPL39,
RPLP1, RPLP2,
RPS15, RPS17,
RPS19, RPS20,
RPS24, FAU,
RPS4Y1, RPS9

PRAD 3

UCEC 3

KIRC 3

Four recurring patterns of expression distinguishing tumor clusters from
one another were observed in multiple clusters across cancer cohorts, as
shown in Figs. 2 and 3a. For each pattern, the most significant and
defining RPT expression difference is listed under “primary difference.”
Other significant RPT expression differences associated with these patterns
are listed under “co-regulated RPTs.” “Low” and “high” expression is defined
relative to other tumors within a cancer cohort. Clusters with the described
pattern are listed under “observations”
aWhile tumors in this cluster had relatively lower expression of RPL3, other
RPTs were not co-regulated in the same manner
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possessed RPT expression patterns specific to their
tissue type, normal tissues and tumors could be readily
distinguished from one another.
Five cancer cohorts, including cholangiocarcinoma

(CHOL), lung (LUNG), bladder (BLCA), cervical (CESC),
and uterine carcinosarcoma (UCS), were comprised of tu-
mors that lacked tissue-specific RPT expression profiles
and did not group into distinct clusters. These tumors dis-
played significant overlap with each other as well as with
tumors from the remaining five cohorts – liver HCC
(LIHC), colorectal (COADREAD), mesothelioma (MESO),
pancreatic (PAAD), and skin cutaneous melanoma
(SKCM) – which otherwise clustered distinctly from one
another (Additional file 1: Figure S3). Additionally, two
clusters of tumors were found that did not associate with
tissue of origin (Additional file 1: Figure S4). The first con-
tained 143 tumors from 15 cohorts, 98% of which had
amplification and relative up-regulation of RPL19, RPL23,
and ERBB2 (Her2/Neu). The second contained 77 tumors
from 12 cohorts with no clearly discernable or unifying
RPT expression pattern.

t-SNE identifies sub-types of RPT expression within
cancer types
Analyzed individually, 19 of 30 cancer types demon-
strated sub-clustering of RPT expression with t-SNE
(Fig. 1d, Additional file 1: Figure S5, and Additional file 1:
Table S1). Graphing RPT relative expression by cluster
using a 3D area map illustrated the different patterns of
expression detected by t-SNE (Fig. 1e). In some cases,
these clusters differed from one another in the expres-
sion pattern of numerous RPTs, as seen with Clusters 1
and 3 of prostate cancer. In other cases, expression

patterns appeared to be dominated by the differential
relative expression of one or two RPTs, as seen with
prostate cancer Cluster 2 and HCC Cluster 3, both of
which possess tumors that overexpress RPL8 and under-
express RPL3 (Fig. 1e). While all clusters were distinct
from normal tissues (Fig. 1c and Additional file 1:
Figure S2), some were more similar to normal tissues
than others, such as prostate cancer Cluster 1 and
HCC Cluster 1 (Fig. 1e).

Classification models
While t-SNE analyses are useful for visualization and
pattern discovery, they do not alone provide a direct
means for classification of future samples. Thus, with
the knowledge that RPTs have both tissue- and tumor-
specific expression patterns, we constructed various
tumor classifier models based on these patterns. The
constructed models consisted of both artificial neural
network (ANN) and logistic regression [35] classifiers,
and are listed in Additional file 1: Table S2. An ANN
model classified tumors by RPT content according to
their tissue of origin on a separate test set with 93% ac-
curacy. Similarly, a LR model distinguished tumors from
normal tissues with > 98% accuracy. Other LR models
could distinguish glioblastoma multiforme tumors from
other brain cancers with 100% accuracy and were able to
stratify both uterine and kidney clear cell tumors accord-
ing to prognostic group with > 95% accuracy.

Characterizing tumor clusters identified by t-SNE
In order to quantify the differences in RPT expression that
exist between clusters of tumors identified by t-SNE, RPT
relative expression was compared among clusters of

Table 2 RP gene copy number alterations associated with t-SNE clusters

Genes Type Location Cohort Cluster Frequency

RPL19, RPL23 Amplification 17q12 BRCA 1 98.9%, 83.1%

RPL8, RPL30 Amplification 8q22 BRCA 3 100%, 97.5%

LIHC 3 98.8%, 98.8%

PRAD 2 95.1%, 97.5%

LUNG 1 100%, 94.3%

SKCM 2 94.2%, 88.5%

HNSC 2 93.2%, 85.3%

RPS3 Amplification 11q13 BRCA 2 100%

LUNG 5 90.5%

RPS16 Amplification 19q13 LUNG 6 100%

RPL13A, RPL18, RPL28, RPS5,
RPS9, RPS11, RPS16, RPS19

Deletion 19q13 GBMLGG 5 98.8% - 99.4%

RPL11, RPL22, RPL5, RPS8 Deletion 1p GBMLGG 5 97.5%

RPS24 Deletion 10q22 GBMLGG 3 90.5%

Some tumor clusters were significantly associated with greater incidence of copy number alterations than other tumors from the same cancer cohorts (α < 0.01);
clusters with > 90% of tumors possessing a given copy number alteration are included in this table. Cancer cohorts with no tumor clusters strongly associating
with a RP copy number alteration were excluded from this table
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Fig. 1 t-SNE better identifies clusters of RPT expression than PCA. a. Relative expression of RPTs in normal tissues from five cohorts was analyzed
with PCA. In both methods, clustering occurs when samples possess similar underlying patterns of variation. t-SNE provides more distinct clusters
that better associate with tissue of origin, indicating that normal tissues have distinct patterns of RPT expression. Axes are not labeled with t-SNE,
as points are not mapped linearly and axes are not directly interpretable. b. Similar analyses in tumors. PCA clusters are poorly defined and do
not correlate strongly with tumor type. t-SNE clusters are distinct and strongly associate with cancer type, indicating that tumors possess unique
patterns of RPT expression based on their tissue of origin. c. Combined t-SNE analysis of RPT expression in normal tissue and tumor samples.
Normal tissues and tumors cluster together but can be distinguished from one another, indicating that the latter retain a pattern of RPT
expression resembling that of the normal tissue from which they originated. d. Many single cancer cohorts demonstrate sub-clustering by t-SNE.
Clustering of six cohorts are provided as examples here. The number of clusters found in each cohort is listed in Additional file 1: Table S1. e. 3D
area map of RPT relative expression in tumors from two cancer cohorts, sorted by cluster. The x-axis represents individual tumors, the z-axis represents
individual RPTs, and the y-axis represents deviation from the mean relative expression. Cluster 2 of prostate cancer and Cluster 3 of HCC are both
comprised of tumors with high relative expression of RPL8 and low RPL3. See Additional file 1: Figure S1, S2, and S5 for additional t-SNE plots of tumors and
normal tissues. Perplexity settings for t-SNE analyses are designated in each plot by “P:”. For all analyses, learning rate (epsilon) = 10 and iterations = 5000
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Fig. 2 Volcano plots of relative RPT expression in tumor clusters in twelve cancer cohorts. Relative expression of RPTs was compared between tumor clusters
in each included cancer cohort with ANOVA tests. The negative log of the ANOVA P-value for each RPT is displayed on the y-axis and the difference in relative
expression across tumor clusters is displayed on the x-axis. RPTs near the top of the graphs are most significantly differentially expressed between tumor
clusters. Note that nearly every RPT in virtually all cancer cohorts falls above –log(P) of 2, corresponding to P< 0.01 and indicating that tumor clusters have
significantly distinct expression of virtually all RPTs. For each cohort, the number of samples in each cluster are shown under the label “n”. Additional volcano
plots of seven other cancer cohorts are continued in Fig. 3
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Fig. 3 Volcano plots of relative RPT expression in tumor clusters associated with survival. a. Volcano plots comparing RPT relative expression
between tumor clusters were generated, as in Fig. 2, for the remaining seven cancer cohorts which possessed tumor sub-clustering by t-SNE.
Note that for the sake of clarity, clusters 5 and 6 are excluded from the LUNG cohort plot. These clusters correlated near perfectly with amplification
and highly significant up-regulation of RPS3 and RPS16, respectively (Table 2). b. Patient survival by t-SNE cluster. Of the 19 cancer cohorts
with sub-clustering of RPT expression patterns by t-SNE, seven possessed clusters that correlated with survival. Significance was determined with log-rank and
Wilcoxon rank sum tests where appropriate, using all survival data available, including any data points beyond what are displayed in the survival curves
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tumors with Analysis of Variance (ANOVA) and graphed
with volcano plots (Figs. 2 and 3a). Small but highly signifi-
cant differences in the expression of dozens of RPTs oc-
curred in nearly every tumor cluster (P as low as 10− 220).
As was the case with prostate cancer and HCC, these
expression patterns were often dominated by particularly
significant differences in expression of one or two RPTs,
most commonly RPL3, RPS4X, RPL8, RPL30, and RPL13.
Other tumor clusters, notably those involving the uterus,
brain, and lung, possessed more complex differences
involving larger numbers of RPTs (Figs. 2 and 3a).
Several recurrent alterations in RPT expression were

found among the 19 cancer cohorts with sub-clustering
(Table 1). Nine of these cancer clusters, arising from thy-
roid, brain, liver, kidney clear cell, thymoma, prostate,
pancreatic, pheochromocytoma and paraganglioma, and
B-cell lymphoma, contained tumors with low relative ex-
pression of RPL3. These clusters also shared expression
patterns with other RPTs, including the relative down-
regulation of RPL5 and up-regulation of RPL36 and
RPL38. Excluding thyroid cancers, all other tumor
clusters with low RPL3 also shared 11 other similarly co-
regulated RPTs. Additionally, six cancer cohorts – prostate,
breast, liver, lung, melanoma, and head and neck –
contained tumor clusters distinguished by overexpression
of RPL8, RPL30 and RPS20, with shared expression patterns
of 19 other RPTs. Relative up-regulation of RPS4X occurred
in tumors from six cohorts, all of which showed similar co-
expression patterns of nine other RPTs. Finally, tumor clus-
ters overexpressing RPL13 were found in prostate, uterine
and kidney clear cell carcinoma and shared similar patterns
of expression of 42 other RPTs (Figs. 2 and 3a and Table 1).
In some cases, RP gene copy number variations

(CNVs) were associated with and could explain the ob-
served clustering (Table 2). Notably, the aforementioned
RPL8/RPL30 overexpression pattern strongly correlated
with co-amplification of a region on 8q22–24 containing
genes encoding these two RPs as well as the Myc onco-
protein and PVT1, a long-non-coding RNA (lncRNA)
with oncogenic properties [36, 37]. Similarly, an ampli-
con containing RPL19, RPL23, and ERBB2 (Her2/Neu)
was amplified in 99% of the breast cancers in Cluster 1.
Some tumor clusters associated with specific CNVs to a
lesser degree. For example, 48% of tumors in kidney
clear cell carcinoma Cluster 3 possessed deletions of
RPL12, RPL35, and RPL7A on 9q33–34. Similarly, half of
brain cancers in Cluster 1 possessed a 1p/19q13 co-
deletion, compared to nearly 100% of tumors in Cluster
5 with this deletion (Table 2). Other tumor clusters in
various cancer cohorts had differences in overall CNV
frequencies. In testicular cancer, 39 RP genes were amp-
lified at different frequencies among the three clusters.
Endometrial cancer Cluster 1 and HCC Cluster 2 had
more CNVs overall, but no RP gene was amplified or

deleted with a frequency of greater than 65% in any
given tumor cluster.
Many tumor clusters – each representing a distinct

RPT expression pattern - significantly associated with
various clinical parameters, molecular markers, and
tumor phenotypes (Table 3). This was particularly true
for brain, testicular, thyroid, lung, and endometrial can-
cers. Tumor clusters in HCC and head and neck cancers
strongly correlated with etiologically-linked infections.
For example, chronic hepatitis B infection was two-fold
more common in HCC patients with Cluster 2 tumors
compared to other HCC patients. Similarly, chronic HPV
infection was 4.7-fold more frequent in head and neck
cancer patients with Cluster 1 tumors compared to other
patients in this cohort. Patient gender also associated with
tumor clustering to varying but significant degrees in
kidney clear cell carcinoma and AML. Notably, these clus-
ters also associated with differential relative expression of
the X-chromosome encoded RPS4X. Other clinical
markers and tumor phenotypes significantly associated
with tumor clustering can be found in Table 3.
Tumor clusters were often predictive of survival,

including some clusters that did not significantly associ-
ate with any other known tumor subtype (Fig. 3b). For
example, Clusters 2 and 4 of the brain cancer cohort,
which could not otherwise be distinguished by any
known clinical parameter or tumor subtype, possessed
vastly different survival patterns. Other cancer cohorts
with significant survival differences among clusters
included breast, liver, endometrial, kidney clear cell,
melanoma, and cervical cancers.

Discussion
By investigating expression patterns of individual RPTs
and utilizing more traditional and less powerful linear
forms of dimensionality reduction such as PCA, previ-
ous studies have found modest evidence of tissue-
specific patterning of RPT expression in some normal
tissues and even less evidence in malignant tumors [3].
The failure to reproducibly identify recurrent and con-
vincing patterning is presumably due to the complex
regulation of RPT expression and the fact that many of
the RPT relationships are non-linear. As shown here,
however, the machine learning algorithm t-SNE provides
a more elegant and robust dimensionality reduction that
better highlights the distinct underlying patterns of RPT
expression in both tumors and the normal tissues from
which they originate.
Consistent with the more restricted and tentative con-

clusions of previous findings, our results using t-SNE
clearly demonstrate that RPT expression patterns are
not only tissue-specific but provide the ability to define
tissue and tumor differences with a heretofore unachiev-
able degree of resolution. The small cluster of 77
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neoplasms that did not associate with their respective
tissue clusters (Additional file 1: Figure S4) may repre-
sent either a subset of tumors that have lost control of
their underlying tissue-specific expression patterns or
that originated from a minority subpopulation of normal
cells whose RPT expression is not representative of the
remainder of the tissue.

In addition to their tissue-specific patterning, virtually
all tumors showed perturbations of RPT expression that
readily allowed them to be distinguished from the
normal tissues from which they originated. For some
cancers, the tumor-specific patterning of RPT expression
was relatively homogeneous and could not otherwise be
subcategorized. Most cohorts, however, were comprised

Table 3 Tumor phenotypes and clinical parameters associated with t-SNE clustering

Feature Cluster Comparison P-value

Breast cancer

Her2/Neu status Cluster 1–88.2% Other tumors – 7.7% < 0.0001

Hepatocellular carcinoma

Hepatitis B Cluster 2–38.4% Other tumors – 18.6% < 0.0001

Endometrial carcinoma

Type II (serous) type Cluster 1–32.4% Other tumors – 5.2% < 0.0001

Locoregional disease or recurrence Cluster 1–8.6% Other tumors – 2.2% 0.004

Lung cancer

Adenocarcinoma Cluster 2–80.0% Other tumors – 37.8% < 0.0001

Squamous cell carcinoma Cluster 4–73.6% Other tumors – 34.2% < 0.0001

Kidney clear cell carcinoma

Gender Cluster 1–92.9% female Other tumors – 29.0% female

Longest dimension Cluster 2–1.5 cm Other tumors – 1.8 cm < 0.0001

Histologic grade 3 or 4 Cluster 3–69.0% Other tumors – 41.5% < 0.0001

Pathologic stage III or IV Cluster 3–58.5% Other tumors – 25.5% < 0.0001

Thyroid carcinoma

Gender Cluster 3–35.4% male Other tumors – 11.3% male < 0.0001

Tall cell subtype Cluster 1–17.2% Other tumors – 5.03% 0.0001

Follicular subtype Cluster 3–27.7% Other tumors – 10.5% < 0.0001

Acute myeloid leukemia

Gender Cluster 1–100% female
Cluster 3–81.5% male

Cluster 2–53.6% female < 0.0001

Complex (> 3 distinct) cytogenetic abnormalities Cluster 3–21.0% Other tumors – 5.5% 0.0025

Testicular cancer

Seminoma subtype Cluster 1–100% Other tumors – 14.5% < 0.0001

Embryonal carcinoma subtype Cluster 2–94.6% Other tumors – 20.6% < 0.0001

Teratoma subtype Cluster 3–84.0% Other tumors – 14.7% < 0.0001

Head and neck cancer

HPV infection Cluster 1–46.1% Other tumors – 9.8% 0.0001

Skin cutaneous melanoma

Breslow depth Cluster 1–4.8 cm Other tumors – 7.6 cm 0.0083

Brain cancer

Glioblastoma Cluster 3–100% Other tumors – 0% < 0.0001

Astrocytoma low-grade glioma Cluster 2–53.0%
Cluster 4–62.7%

Other tumors – 2.5% < 0.0001

Non-astrocytoma low-grade glioma Cluster 1–86.7%
Cluster 5–97.0%

Other tumors – 29.1% < 0.0001

Tumor phenotypes and clinical markers were compared between tumor clusters using chi-squared tests, with significance defined as α < 0.01. “Other tumors” are
comprised of all tumors from the same cancer cohort not falling into the given cluster. Data were obtained using the UCSC Xenabrowser, under the data heading
“Phenotypes.” Cancer cohorts with no tumor clusters significantly associating with any clinical parameter were excluded from this table
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of subgroups of tumors with distinct RPT expression
patterns, all of which nonetheless remained distinguish-
able from normal tissue. The fact that many of these
patterns correlated with molecular and clinical features
implicates RPT expression patterns in tumor biology.
Aside from potentially altering translation, the notion

that altered RP expression might influence the behaviors
of both normal tissues and tumors is not new. In the
ribosomopathies, the binding of any one of about a
dozen RPs to MDM2 with subsequent stabilization of
TP53 is thought to underlie the bone marrow failure
that accompanies these disorders [6, 9, 10]. It has been
proposed that subsequent circumvention of this TP53-
mediated senescence by mutation and/or dysregulation
of the p19ARF/MDM2/TP53 pathway is responsible for
the propensity for eventual neoplastic progression [38].
In cancers, the binding of free RPs to MDM2 has been
shown to mediate the response to ribosomal-stress-
inducing chemotherapeutics such as actinomycin D and
5-fluorouracil [20, 39, 40].
Individual RPs have also been associated with specific

tumor phenotypes. For example, RPL3 expression is a
determinant of chemotherapy response in certain lung
and colon cancers. RPL3 also associates with the high-
risk neuroblastoma subtype and may have a role in the
acquisition of lung cancer multidrug resistance [19–21].
Breast cancers with elevated expression of RPL19 are
more sensitive to apoptosis-promoting drugs that induce
endoplasmic reticulum stress [13]. RPS11 and RPS20
have been proposed as prognostic markers in glioblast-
oma [16] and the down-regulation of RPL10 correlates
with altered treatment response to dimethylamino-
parthenolide (DMAPT) in pancreatic cancer [22].
Our results also significantly extend the findings of

previous studies by demonstrating that, in the vast ma-
jority of cancers, subsets of RPTs are expressed coordi-
nately and have additional interpretive power when
examined in the context of global RPT expression pat-
terning. This suggests that further insights into the roles
RPTs have in tumor development may be revealed by
evaluating RPT relative expression. For example, the
regulation of chemotherapy response by RPL3 described
above may be found to occur in other cancer types once
the expression of RPL3 relative to other RPTs has been
accounted for. The apparent crucial role of RPT pattern-
ing in tumors may explain why a previous study found
conflicting results when examining the expression of
individual RPs in tumors [14].
Our results suggest a more ubiquitous role for RPL3

in regulating tumor phenotypes, beyond that already
described in colorectal carcinoma, lung cancers, and
neuroblastoma [19–21]. Of the recurring RPT expres-
sion patterns discovered by t-SNE, the pattern associated
with RPL3 down-regulation occurred most frequently

and involved tumors from nine cancer cohorts. Many
clusters of tumors with down-regulated RPL3, including
HCC, kidney clear cell cancer, and brain cancer, pos-
sessed inferior survival. The fact that relative down-
regulation of RPL3 occurred in these tumor clusters with
predictable expression of 11 other RPTs suggests that
RPL3 may be acting in concert with these other identi-
fied RPs to exert its effects.
Other recurrent RPT expression patterns across

cancer cohorts involved RPS4X, RPL13, RPL8 and RPL30
(Table 1). Altered RPS4X expression, found in six cancer
cohorts, associated with unique expression of nine other
RPTs, strongly suggesting an underlying coordinated
expression, the mechanism of which remains to be
identified. As with RPL3, deregulated RPS4X has been
previously associated with various tumors and tumor
phenotypes, including subgroups of colorectal carcin-
oma, a myelodysplasia risk signature and poor prognosis
in bladder cancer [15, 18, 41]. Interestingly, some of our
tumor clusters with altered RPS4X expression were com-
prised of a greater proportion of females than males
(Table 1 and Table 3), perhaps reflecting RPS4X’s
residence on the X chromosome. Although the cause of
perturbed RPS4X expression in these tumor clusters is
unknown, altered methylation patterns on chromosome
X have been described in different subsets of cancers
[42, 43] and could be responsible for the expression
patterns detected by t-SNE.
Unlike RPL3 and RPS4X, RPL13’s role in tumor develop-

ment is less clear. RPL13 activation has been described in
a subset of gastrointestinal malignancies and correlated
with greater proliferative capacity and attenuated che-
moresistance [44], but further evidence for a role of
RPL13 in tumor development is lacking. Furthermore,
clinical correlations of the prostate, uterine and kidney
cancer t-SNE clusters described here with relative overex-
pression of RPL13 were inconsistent. Uterine cancers with
high relative RPL13 expression tended to correlate with fa-
vorable survival, whereas prostate cancers with high
RPL13 showed no differences in prognosis or clinical fea-
tures. In contrast, kidney clear cell carcinomas with high
RPL13 expression tended to be of higher pathologic grade
and were associated with significantly poorer survival
(Tables 1 and 3, and Fig. 3b). The fact that these
clusters shared similar patterning of 42 other RPTs
suggests that the inciting factors responsible for
higher RPL13 expression are not only shared by these
tumors but coordinately regulate a common subset of
RPTs, with different biological outcomes likely reflect-
ing other tissue-specific factors.
In some cases, RPT expression patterns could be

accounted for in part by CNVs, as exemplified by the
recurrent RPL8 and RPL30 overexpression pattern
(Tables 1 and 2). Virtually all tumors with this
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expression pattern possessed co-amplification of a region
on 8q22–24 that includes RPL8, RPL30, and the onco-
genes MYC and PVT1. Amplification of this region has
been previously described in breast cancers and corre-
lates with chemoresistance and metastasis [36, 37, 45–
47]. Our results indicate that this amplification and the
ensuing overexpression of RPL8 and RPL30 also occurs
in subsets of melanoma, liver, prostate, lung, and head
and neck cancers. CNVs of RPL19 and RPL23 in breast
cancer (Table 2) likely occur due to their co-
amplification with ERBB2 on 17q12. Overexpression of
RPL19 has previously been described in a subset of
breast cancers [13]. The small cluster of 144 tumors that
did not group according to tissue of origin (Additional
file 1: Figure S4), comprised of tumors from 15 cohorts,
also shared amplification of this region on 17q12, indicat-
ing that this CNV is not restricted to breast cancers and
ultimately affects global RPT expression patterning. Amp-
lification of a region on 11q13 that contains RPS3, occur-
ring in a cluster of breast cancers and HCCs, has been
previously described in both cancers and is thought to
confer unfavorable prognosis due to amplification of the
adjacent oncogene EMS1 [48, 49]. The co-deletion of
19q13 along with 1p, which together includes 12 RP
genes, has been described in low-grade gliomas and con-
fers a favorable prognosis [50, 51].
The co-overexpression RPS25 and RPS4X detected in

one cluster of AML (Fig. 2) has been previously identi-
fied as contributing to the poor risk signature in myelo-
dysplastic syndrome [41]. This also associated with
significant differential expression of 37 RPTs, which is
consistent with our finding that RPS25 and RPS4X over-
expression occur within the context of a larger and coor-
dinated pattern of RPT expression. The RPS25 and
RPS4X overexpressing AML cases likely possess a simi-
lar molecular alteration to those with the poor risk
signature in MDS.
Collectively, our findings provide strong evidence to

support the notion that RPT regulation by both tumors
and normal tissues is complex, ordered, and highly coor-
dinated. Although the means by which altered RPT
patterns influence the pathogenesis and/or behavior of
tumors remain incompletely understood, several non-
mutually exclusive mechanisms can be envisioned. First,
changes in RP levels may influence overall ribosome
composition, thereby affecting their affinity for certain
classes of transcripts and/or the efficiency with which
they are translated. One such class of transcripts may be
those with IRES elements, cis-regulatory sequences
found in the 5′-untranslated regions of more than 10%
of cellular mRNAs. IRES elements are found with par-
ticularly high frequency in transcripts encoding proteins
involved in cell cycle control and various types of stress
responses. Efficient translation of these IRES-containing

transcripts has been shown to depend on specific RPs,
notably RPS25, RPS19 and RPL11 [52–54]. Changes in
ribosome affinity for IRES elements have been shown to
reduce translation of tumor suppressors such as p27 and
TP53 and to promote cancer development [55].
RPs may also influence cancer development via extra-

ribosomal pathways. In addition to their stabilization of
TP53 mediated by binding to and inactivating MDM2,
specific RPs have been shown to inactivate Myc; to inhibit
the Myc target Lin28B; to activate NF-κB, cyclins, and
cyclin-dependent kinases and to regulate a variety of other
tumorigenic functions and immunogenic pathways [4, 5].
In addition to providing evidence that tumors may use

RPs to direct tumor phenotypes, our findings have allowed
us to leverage the tissue- and tumor-specificity of RPT ex-
pression to generate highly sensitive and specific models
that allow for precise tumor identification and sub-
classification (Additional file 1: Table S2). Clinically, these
might be useful for determining the tissue of origin of un-
differentiated tumors and for predicting long-term behav-
iors in otherwise homogeneous cancers such as kidney
clear cell carcinoma and those of the central nervous sys-
tem (Fig. 3b). With more samples and further refinement
to ANN structures, future iterations of these models will
likely have even greater discriminatory power.
A limitation of using data from TCGA is the fact that

transcript expression does not always correlate with protein
expression, particularly in cancers [56–58]. Thus, it is diffi-
cult to predict how the different tissue-specific RPT expres-
sion patterns we identified correlate with actual protein
expression in these cancers and/or with the numerous
post-translational modifications that can alter RP behaviors
[59, 60]. As this is a cross-sectional study, we also recognize
that causality cannot be inferred, and it remains unknown
whether altered RPT expression is an early or late event in
tumorigenesis despite its predictive value. Furthermore,
while RPT expression patterns appear to have significant
predictive value in the large dataset we have analyzed, fur-
ther cross-validation with additional transcriptional data in
both primary tumors and metastatic lesions will be import-
ant in confirming potential clinical utility. Finally, additional
molecular analyses of the identified t-SNE clusters with
whole-transcriptome sequencing data, pathway analysis,
whole-genome DNA mutation data, and DNA methylation
patterning may offer additional insights into the biological
mechanisms that link altered RPT expression with tumor
phenotypes.

Conclusions
In summary, machine learning-based approaches have
allowed us to show unequivocally that RPTs are expressed
in distinct patterns across tissue types. This tissue-
specificity persists in tumors, yet normal tissues and
tumors can be readily distinguished from one another
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with high degrees of accuracy and confidence. Many can-
cers can be further sub-categorized into heretofore
unrecognized, yet clinically important, subtypes based
only upon RPT expression patterns. Several patterns of
RPT expression recur across cancer types, suggesting
common underlying modes of transcriptional regulation.
Our results indicate that the expression of RPTs in tumors
is biologically coordinated, clinically meaningful, and can
be leveraged to create potential clinical tools for tumor
classification and therapeutic stratification.

Additional file
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