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Abstract

Background: Renal cell carcinoma (RCC) account for over 80% of renal malignancies. The most common type of
RCC can be classified into three subtypes including clear cell, papillary and chromophobe. ccRCC (the Clear Cell
Renal Cell Carcinoma) is the most frequent form and shows variations in genetics and behavior. To improve
accuracy and personalized care and increase the cure rate of cancer, molecular typing for individuals is necessary.

Methods: We adopted the genome, transcriptome and methylation HMK450 data of ccRCC in The Cancer Genome
Atlas Network in this research. Consensus Clustering algorithm was used to cluster the expression data and three
subtypes were found. To further validate our results, we analyzed an independent data set and arrived at a consistent
conclusion. Next, we characterized the subtype by unifying genomic and clinical dimensions of ccRCC molecular
stratification. We also implemented GSEA between the malignant subtype and the other subtypes to explore
latent pathway varieties and WGCNA to discover intratumoral gene interaction network. Moreover, the epigenetic
state changes between subgroups on methylation data are discovered and Kaplan-Meier survival analysis was
performed to delve the relation between specific genes and prognosis.

Results: We found a subtype of poor prognosis in clear cell renal cell carcinoma, which is abnormally upregulated in
focal adhesions and cytoskeleton related pathways, and the expression of core genes in the pathways are negatively
correlated with patient outcomes.

Conclusions: Our work of classification schema could provide an applicable framework of molecular typing to ccRCC
patients which has implications to influence treatment decisions, judge biological mechanisms involved in ccRCC
tumor progression, and potential future drug discovery.
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Background
ccRCC, the most common type of kidney cancer, repre-
senting approximately 92% of such cases. Most people
with kidney cancer are usually over 55 years of ages and
this cancer is more common in men [1].The global pat-
tern of genetic changes underlying ccRCC includes alter-
ations in genes controlling cellular oxygen sensing and
the maintenance of chromatin states [2]. Early mutations

and inactivation of VHL is commonly seen in ccRCC
[3]. Other recurrently mutated genes include PBRM1,
BAP1 and SETD2, located in chromosome 3p, whose
loss is the most frequent arm-level events inccRCC (91%
of samples) [4]. Losses on chromosome 14q and gains of
5q were also frequent observed, specially, the former is
associated with more aggressive phenotype [5]. These
genetic aberrations are critical for clinical diagnosis and
personal therapy. We collected gene expression data of
ccRCC from TCGA and using Consensus Clustering [6]
algorithm cluster all samples to detect potential sub-
types. We discovered three subtypes and survival ana-
lysis showed one subclass has far poorer prognosis than
the other three. Thus, we compared the poor subclass
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with the other and find some pathways changes and
genes that may cause adverse outcomes.

Methods
Consensus clustering identified three subtypes of ccRCC
Features of Consensus Clustering algorithm are the 2D
feature and item subsampling and it provides a method to
represent the consensus across multiple runs of a cluster-
ing algorithm, to determine the number of clusters in the
data, and to assess the stability of the discovered clusters
[6]. The method can also be used to represent the consen-
sus over multiple runs of a clustering algorithm with ran-
dom restart (such as K-means, model-based Bayesian
clustering, SOM, etc.), so as to account for its sensitivity
to the initial conditions [7].This method has gained popu-
larity in cancer genomics, where new molecular subclasses
of disease have been discovered [8–11].
We select the samples of ccRCC in expression data

which contain molecular subtypes in TCGA and filter
out samples without molecular information and genes

with low signal across samples to get more precise clas-
sification results. We classify samples into three robust
expression clusters (EC) utilizing Consensus Clustering
together with hierarchical clustering. The clustering sta-
bility increases from k = 2 to k = 3, but not for k > 3
(Fig. 1a and b) and delta area under the curve in k = 3
also has appreciable increase (Fig. 1c). Combined with
the clinical data, we performed Kaplan meier analysis
and the survival curve shows the EC1 subtype are obvi-
ously more malignant than the other (Fig. 2a).

Validation of subtypes in an independent data set
To validate our results, an independent data set includ-
ing 265 ccRCC patients from GEO was used to assess
the subtype reproducibility [12]. We visualize the ex-
pression data by a 164 classifying marker gene list and
hierarchical clustering. The marker genes were identified
in EC1–3 subtypes by combining Wilcoxon signed-rank
test and permutation (see methods). Unsurprisingly, the
validation data set almost coincided with the data set of
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Fig. 1 a Consensus matrices. Both rows and columns represent samples and consensus values range from 0(never clustered together) to 1
(always clustered together) marked by white to dark blue. b Consensus Cumulative Distribution Function (CDF) Plot. CDF plot shows the
cumulative distribution functions of the consensus matrix for each k (indicated by colors) c Delta Area Plot. This graphic shows the relative
change in area under the CDF curve. In k = 3, the shape of the curve approaches the ideal step function, and shape hardly changes as we
increase K past 3
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TCGA, comprising of three subtypes (Additional file 1:
Figure S1) and representing similar expression profile (Fig.
2b and Fig. 2c). Considering differences in sample size and
different sequencing techniques, obvious concordance
was seen between our classification and the results from
the earlier study, which further proves the reliability of
our analysis and the authenticity of the three subtypes.

Genetic aberrations and Clinicopathological parameters
of subtypes
We classified the three types into malignant and relative
unmalignant types because of survival analysis results

which shows EC2–3 has approximate prognosis. We
summarized the copy number mutations and single nu-
cleotide variation of EC1 and top five recurrent muta-
tion genes are VHL, PBRM1, MUC4, BAP1 and SETD2
(42.57%, 25.74%, 20.79%, 19.80%, 13.86%). Frequency of
frequently mutated genes except BAP1 were similar be-
tween these two types (Table 1), but the high-level som-
atic copy number variation (SCNV) regions between two
groups were quite different (Table 2). BAP1, a nuclear
deubiquitinase, is inactivated in 15% of ccRCCs. A sig-
nificant increase in BAP1 mutation frequency was ob-
served in EC1compared with the remainder of the

a

cb

Fig. 2 a Kaplan-Meier Overall Survival Curves. survival plot by Kaplan-Meier method, EC1 has worse prognosis compared with the other. b The
heatmap of ccRCC expression data. Using consensus clustering algorithm, samples are classified into three types. The heatmap shows that EC1
subtype has higher mortality and more patients in stage III, IV than the other groups
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samples, which is consistent with BAP1 is a potential
tumor suppressor and relevant to bad outcome in
ccRCC [13, 14].
Gain of 5q paired with loss of 3p was observed frequent

in both EC1 and EC2–3 when it is a highly frequent event
in ccRCC. However, loss of 9q21 presents a higher fre-
quency in EC1 and three common tumor suppressor genes
(TSG) are deleted in this area including CDKN2A,
CDKN2B and MTAP. CDKN2A and CDKN2B act as
tumor suppressors by regulating the cell cycle which block
traversal from G1 to S-phase or inhibits cell cycle G1 pro-
gression. The deletion, mutation or promoter methylation
of the two genes are common in various cancers, which
help to the unlimited growth of cancer cells and CDKN2A
is associated with metastatic cancer [15–18]. MTAP is key
enzyme in the methionine salvage pathway and frequently
deleted in human cancers because of its chromosomal prox-
imity to CDKN2A [19]. This SCNA pattern may conduce
to increase the potential of proliferation for EC1 subtype.
The clinical and pathological features are largely dis-

tinct from each other (Table 3). We compare EC1 with
EC2–3 in the two datasets from four perspectives: age,
gender, grade and stage and estimate the significance by
chi-squared test of 2*2 table. Besides gender, EC1 is
highly interrelated with older age, advanced grade and
stage in TCGA data, which partly explains the result that
this subtype has a poor prognosis. In GEO data, the re-
sults are similar although the Pvalues are not statistically
significant enough, probably due to the unavailable pa-
tient information. We will discuss these results detailly
in the following analysis.

Enrichment analysis reveals high potential of EC1 in
proliferation and metastasis
In order to reveal the statistically significant, concordant
differences between EC1 and other subtypes, gene sets
enrichment analysis (GSEA) algorithm (see methods) is
used and we chose KEGG gene sets as predefined gene
sets [20]. Consequently, 7 gene sets are upregulated in
EC1 and 5 gene sets are upregulated in EC2–3. The 7
gene sets of EC1 mainly focus on cell proliferation and
mobility containing Focal Adhesion, Regulation of Actin
Cytoskeleton and Chemokine (Fig. 3a). These pathways
implicate epithelial-to-mesenchyme transition (EMT),
cell proliferation and migration, closely related to tumor
progression and metastasis. By contrast, up-regulated
pathways in EC2–3 are mainly involved in metabolism
including PPAR signaling pathway and Cytochrome
P450. Next, our analysis concentrates on the core en-
richment genes, which contributes to the leading-edge
subset within the predefined gene set and have high ex-
pression level, in up-regulated pathways of EC1 for its
poor prognosis (see methods).
Actin Cytoskeleton pathway is significantly enriched and

there are 12 genes among core enrichment (Additional file 2:
Table S1). MAPK Signal pathway is enriched with 15 genes,
but only FLNC is core enrichment gene (Additional file 3:
Table S2). It is noteworthy that FLNC is also core enrich-
ment gene in Focal Adhesion pathway (Additional file 4:
Table S3) and it has been reported that FLNC can be a po-
tential progression marker for the development of hepato-
cellular carcinoma [21]. LAMB3 is core enrichment gene in
Focal Adhesion and Pathways in Cancer (Additional file 5:
Table S4) and research shows that repressing LAMB3 in-
hibit mutant KRAS-Driven tumor growth [22]. LAMB3 is
also associated with EMT, a crucial change that happens to
cancer cells before metastasis, and several researches con-
clude that high expression of LAMB3 is correlated with
tumor metastasis including oral squamous cell carcinoma,
bladder cancer and breast cancer [23–25]. Other core en-
richment genes in Pathways in Cancer including MMP9
and MMP2, together with LAMB3, which are components
of the extracellular matrix, may be considered as a

Table 1 Mutation frequency of genes with single nucleotide
variations in two groups

Genes EC1 EC2–3 P values All

VHL 42.57% 54.41% 0.0480 51.70%

PBRM1 25.74% 35.35% 0.0948 33.10%

MUC4 20.79% 18.25% 0.3941 18.82%

BAP1 19.80% 5.89% 4.508e-05 9.07%

SETD2 13.86% 12.93% 0.9421 13.15%

Table 2 Known cancer genes in the high-level copy number variation regions

EC1 Known cancer related genes in Region EC2–3 Known cancer related genes in Region

High-level amplified events

Cytoband 5q35 FGFR4/DOCK2 (9.09%) 5q35 FGFR4/DOCK2 (19.94%)

5q32 CD74/CSF1R (9.09%) 5q31 CTNNA1/NR3C1 (17.86%)

5q33 PDGFRB/ZNF300 (9.09%) 5q33 PDGFRB/ZNF300 (17.86%)

High-level deletion events

Cytoband 9p21 CDKN2A/CDKN2B (11.11%) 3p25 PPARG/RAF1/VHL (15.18%)

9p23 PTPRD (7.07%) 3p21 PBRM1/SETD2/BAP1 (15.18%)

3p25 PPARG/RAF1/VHL (6.06%) 3p22 TGFBR2/MYD88 (14.58%)
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molecular biomarker for ccRCC progress and metastasis.
Chemokine Signaling Pathway containing CCL5, CXCL9
and CCR5 are also upregulated in EC1 (Additional file 6:
Table S5). Chemokines play an important role in tumor
growth and angiogenesis, on the one hand, providing cy-
tokines to promote tumor growth, on the other hand, im-
proving matrix metalloproteinase activity, promoting
tumor cell through the cell membrane so as to increase
the probability of tumor metastasis. These features reveal
that EC1 subtype are more invasive and has a higher likeli-
hood of migration, indicating that patients with EC1

expression pattern are prone to distant metastasis, result-
ing in poor prognosis. To evaluate the proliferation ability
of subtypes, we next scored each sample for the expres-
sion signatures for the G1/S and G2/M phases. EC1 has
higher expression level than EC2–3 (C1/S: Ttest Pvalue =
9.486514e-07, G2/M: Ttest Pvalue = 1.371606e-06), which
reflects, to some extent, that the subtype has a stronger
proliferative capacity (Fig. 3b). Moreover, we perform dif-
ferential genes analysis between EC1 and EC2–3 to
evaluate the significance of expression difference and
find 11 genes that upregulated in 4 pathways of EC1

Table 3 Clinical characteristics of subtypes

TCGA data GEO data

EC1 EC2–3 P values EC1 EC2–3 P values

Age (mean ± SD) 63.5 ± 10.9 60.2 ± 12.5 0.01168 NA NA NA

Gender male 66 224 1 81 79 0.04636

female 35 116 38 64 (3NA)

Pathological grade Grade 1 + 2 20 174 4.67e-08 43 69 0.05186

Grade 3 + 4 81 166 74(2NA) 70 (7NA)

Stage Stage I–II 35 220 1.478e-07 22 31 0.09323

Stage III-IV 66 120 42 (55NA) 30 (85NA)

a b

c

Fig. 3 a Enrichment plot of upregulation pathways in EC1. GSEA of expression data from EC1 441 with worse prognosis, as compared to EC2–3.
X-axis is the enrichment score of each gene. Y-axis represents the order of the gene in dataset. b Volcano plot of differential genes. Red color:
up-regulated in EC1. blue color: down-regulated in EC1. Grey: not differential genes. Size of the bubble: mean expression of each gene C box plot
of mean expression level on G1/S and G2/M gene set. EC1 is higher than EC2–3. c The heatmap of ccRCC expression data of GEO. The ccRCC
expression profile of GEO has similar pattern with TCGA
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are differential genes (Padj< 0.01 & |log2FoldChange| > 1).
These genes are all high expressed in EC1 subtype
(Fig. 3c).

Intratumoral gene interaction network in EC1 relates to
cell adhesion and motion
After obtaining the relative enrichment pathways in
EC1, we aim to investigate the intratumoral gene inter-
action network. Weighted correlation network analysis
(WGCNA) algorithm (see methods) was employed to
detect gene interaction modules and intramodular hub
genes in EC1 subtype [26]. Seven major modules are de-
tected and the gene co-expression pattern within these
modules was very high (Additional file 7: Figure S2,
Additional file 8: Figure S3). After modules were de-
tected, we performed enrich analysis on the Seven mod-
ules we identified and blue colored module is markedly
enriched with genes in pathways implicating Cell adhe-
sion molecules, Cytokine-cytokine receptor interaction,
Regulation of Actin Cytoskeleton and Chemokine Sig-
naling Pathway (Table 4). This result, consistent with
previous analysis, demonstrate that these pathways are
interrelated with each other and may lead to a poor out-
come for patients, which can be used as a monitoring in-
dicator of cancer progression.
Hub genes are defined as genes that interacted with

other genes most. Correlation between modules and clin-
ical data reveals the blue module, comprised of 200 genes,
demonstrating delicacy correlation with tumor stage
(Additional file 9: Figure S4), may play a fatal part in the
growth and metastasis of ccRCC. For the blue module,
JAK3 is the hub gene filled with red color, accompanying
by LIMK1 and DENND2D (Additional file 10: Figure S5),
which are also hub genes but with less connectivity. JAK3
is a well-known cancer gene, playing an important role in
tumorigenesis and progression of hematological malig-
nancy [27] especially in leukemia [28, 29] and JAK3

inhibitor has been applied into treating for autoimmune
and blood cancer in clinic. LIMK1, a critical regulator of
actin dynamics, functioning as a regulatory role in tumor
cell invasion and proliferation [30], has been reported in
gastric and lung cancer [31–33]. Further studied are
needed to investigate the role of JAK3 and LIMK1 in the
development of ccRCC.

Discrepancies in methylation levels of genes contribute to
different phenotypes
To gain insights into the methylation states of pathways
and genes, we explored the methylation levels for EC1
and EC2–3 group. HM450K data of ccRCC was used
and unexpectedly, higher overall methylation levels are
observed in EC1 (Pvalue = 3.7e-06) (Additional file 11:
Figure S6). We inferred that the distinctions of methyla-
tion in specific genomic region result in the changes in
expression pattern. Thus, we calculate the difference for
each probe between the mean DNA methylation of each
group and test for differential expression using Wil-
coxon test adjusting by the Benjamini-Hochberg method
to search for differentially methylated CpG sites. 93 sig-
nificant hypomethylation CpG sites were found in EC1
subgroup (absolute beta-values difference 0.2 & Padj <
0.01) and 60 are located in the protein coding region
(Fig. 4a). 6 genes are related to Focal Adhesion and cell
adhesion molecular in EC1 including DOCK1, LAMC1
and TLN1. We also observed epigenetic silencing of
TOLLIP in EC1 and TOLLIP deficiency is associated
with decreased T-cell responses [34], which may reflect
the immune suppression phenomenon in EC1.
To analyze the connection between the genes that we

identify involving Focal adhesion and cell adhesion mo-
lecular and prognosis of patients, we perform survival
analysis and divide patients into two parts (high expres-
sion group: Zscore > 1.96 and low expression group:
Zscore < 1.96, confidence interval = 95%) according to

Table 4 Enrich pathways in blue module

Blue Module

Description Genes in Gene Set (K) Genes in Overlap (k) k/K ratio p-value FDR q-value

Cell adhesion molecules(CAMs) 134 9 0.0672 1.06E-08 1.97E-06

Regulation of actin cytoskeleton 216 10 0.0463 5.56E-08 5.17E-06

Chemokine signaling pathway 190 9 0.0474 2.14E-07 1.33E-05

Cytokine-cytokine receptor interaction 267 10 0.0375 3.97E-07 1.82E-05

Primary immunodeficiency 35 5 0.1429 4.90E-07 1.82E-05

Leukocyte transendothelial migration 118 7 0.0593 1.10E-06 3.41E-05

Natural killer cell mediated cytotoxicity 137 7 0.0511 2.99E-06 7.94E-05

Complement and coagulation cascades 69 5 0.0725 1.50E-05 3.49E-04

Hematopoietic cell lineage 88 5 0.0568 4.88E-05 1.01E-03

Jak-STAT signaling pathway 155 6 0.0387 7.36E-05 1.37E-03

Toll-like receptor signaling pathway 102 5 0.049 9.86E-05 1.67E-03

Wu et al. BMC Cancer  (2018) 18:287 Page 6 of 9



the expression level of genes. We find that most of the
genes that enrichment or hypomethylation in EC1 are
negatively related to prognosis. Four genes involving in
Focal Adhesion, Pathway in cancer, Chemokine and
cytoskeleton are relevant to survival evidently including
LIMK1, COL5A1, MMP9 and CCL26 (Fig. 4b).

Results
We use the consensus clustering method and discover a
new subpopulation of ccRCC, with a poor prognosis,
higher degree of malignancy, pathological grade and
clinical stage. The features of the subgroup in gene mu-
tation, expression interation network and methylation
manifest stronger potential of proliferation and metasta-
sis, coinciding with the clinical performance which
furtherly validate our findings.

Discussion
Here, we apply unsupervised Consensus Clustering algo-
rithm and identify three distinct subtypes based on hier-
archical clustering. Validation on an independent data
set further illustrates the reliability of this typing. Three
subtypes are characterized by divergent biological path-
ways and significant association with survival outcomes.
In this analysis, we compare different subtypes to detect
variances in pathways and also grope for the gene inter-
action network in the worse prognosis group. Further-
more, methylation analysis demonstrates epigenetic
changes in subtypes and further validate the findings in
genome and transcriptome. Our method is highly repro-
ducible and able to identify stable categories with gene
expression patterns and clinical meaning, which may be
informative of tumor behavior and prognosis.

a

b

Fig. 4 a Volcano plot of differential methylation sites. Data are obtained from HM450K methylation data. β-values represent mean methylation
level of CpG sites. b Kaplan meier survival plot of four genes. Red line indicates the median survival time
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The clinical features are markedly different in survival
outcome, grade and stage between subgroups. EC1 is as-
sociated with advanced grade, stage and worse prognosis
but there is no significant difference between EC2 and
EC3. Given the set of characteristic subtype abnormalities,
we deem it likely that patients transition between subtypes
during different stages of their disease. The explanation
may lie in the origin that ccRCC stem from renal tubular
epithelial cells and the three subtypes present similar gen-
etic changes including loss of 3p, gain of 5q and somatic
mutations or epigenetic alterations of VHL. Future studies
on larger number of patients are needed to validate the
cell origin and transition process of different subtypes.
Further analysis indicates the up-regulated pathways

and hypomethylation genes mainly concentrate on Focal
adhesion and mobility in EC1. Other pathways referring
to Chemokine and cytokine also play as an assistant to
produce progress. This kind of panel of genes in EC1
regulate EMT and cell cycle, causing tumor invasion and
metastasis even before diagnosis and become aggressive
and lethal compared with other subtypes. Early diagnosis
and treatment are essential for patients with this class of
molecular subtypes. The subtypes with better prognosis
possess relatively overexpressed genes associated with
hypoxia, PPAR signaling pathway and drug metabolism
cytochrome P450. Intriguingly, these up-regulated genes
or pathways are known to be broadly dysregulated in
ccRCC. We have discovered VHL and other structural
alterations in most samples across subtypes and rea-
soned that EC1 subtype may have acquired other genetic
variations that enhance its ability of invasion and prolif-
eration, contribute to a more aggressive phenotype and
cover up the signature of VHL inactivation. In addition,
it will be of interest to clarify the key changes that shape
the unique subtype and elucidate the relationship be-
tween subtypes and treatment sensitivity.

Conclusion
Our cross-platform molecular analyses mirror a correlation
between the EC1 subtype and worsened prognosis and
highlight a number of important characteristics of genetics.
Further analysis identifies some critical genes that may lead
to the bad clinical outcome and become prognostic bio-
markers, which will hopefully provide the foundation for
the development of effective forms of therapy for this dis-
ease. Our work should lay the groundwork for an improved
understanding of ccRCC molecular typing and personalized
therapeutic approaches that different subtypes may require.
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