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Metabolomic profiling identifies distinct
phenotypes for ASS1 positive and
negative GBM
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Abstract

Background: Tumour cells have a high demand for arginine. However, a subset of glioblastomas has a defect in
the arginine biosynthetic pathway due to epigenetic silencing of the rate limiting enzyme argininosuccinate
synthetase (ASS1). These tumours are auxotrophic for arginine and susceptible to the arginine degrading enzyme,
pegylated arginine deiminase (ADI-PEG20). Moreover, ASS1 deficient GBM have a worse prognosis compared to
ASS1 positive tumours. Since altered tumour metabolism is one of the hallmarks of cancer we were interested to
determine if these two subtypes exhibited different metabolic profiles that could allow for their non-invasive
detection as well as unveil additional novel therapeutic opportunities.

Methods: We looked for basal metabolic differences using one and two-dimensional gas chromatography-time-of-
flight mass spectrometry (1D/2D GC-TOFMS) followed by targeted analysis of 29 amino acids using liquid
chromatography-time-of-flight mass spectrometry (LC-TOFMS). We also looked for differences upon arginine
deprivation in a single ASS1 negative and positive cell line (SNB19 and U87 respectively). The acquired data was
evaluated by chemometric based bioinformatic methods.

Results: Orthogonal partial least squares-discriminant analysis (OPLS-DA) of both the 1D and 2D GC-TOFMS data
revealed significant systematic difference in metabolites between the two subgroups with ASS1 positive cells
generally exhibiting an overall elevation of identified metabolites, including those involved in the arginine
biosynthetic pathway. Pathway and network analysis of the metabolite profile show that ASS1 negative cells have
altered arginine and citrulline metabolism as well as altered amino acid metabolism. As expected, we observed
significant metabolite perturbations in ASS negative cells in response to ADI-PEG20 treatment.

Conclusions: This study has highlighted significant differences in the metabolome of ASS1 negative and positive
GBM which warrants further study to determine their diagnostic and therapeutic potential for the treatment of this
devastating disease.
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Background
Glioblastoma (GBM) is the most common and most
lethal primary brain tumour affecting adults of all ages.
Despite improvements in imaging, surgical techniques,
radiotherapy and chemotherapy the prognosis remains
poor with a median overall survival typically around
12 months in optimally treated patients. This poor

survival is attributed to the highly invasive nature of
GBM, making complete surgical resection almost impos-
sible resulting in tumour recurrence in most cases. In
addition, these tumours exhibit a high degree of radio
and chemo resistance [1, 2].
Extensive profiling of GBM has led to a greater under-

standing of the underlying biology of this disease. For
example, the majority of genomic lesions identified to
date lie in three core signalling pathways (receptor tyro-
sine kinase/RAS/phosphatidylinosintol 3 kinase (RTK/
RAS/PI3K), p53 and retinoblastoma (RB) [3]. Hence
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aberrant signalling through these pathways is likely to be
essential for the development of GBM. Furthermore,
these studies have identified four distinct molecular sub-
classes of GBM based on the enrichment of specific
molecular alterations (proneural, classical, mesenchymal
and neural). Interestingly, these subclasses were shown
to have different responses to standard therapies [4].
This wealth of information has led to the development

of several molecularly targeted therapies for GBM, some
of which have shown promise in preclinical and clinical
settings. However, most have failed to show promise in
improving outcomes and hence the standard of care for
GBM patients remains the same [5, 6].
Since cancer cells have a high reliance on glucose and

amino acids to support their increased growth rate, one
strategy to target them is the removal of an essential
metabolic resource. This strategy has been successfully
employed for the treatment of acute lymphoid leukaemia
where asparaginase is the standard therapy in combin-
ation with chemotherapy for this cancer [7, 8].
From the initial observation that mycoplasma infection

can kill cancer cells and spare normal cells [9] and the
subsequent discovery that this was due an arginine
degrading enzyme found in mycoplasma, arginine deimi-
nase (ADI) [10, 11], there has been an explosion in the
use of arginine deprivation as a therapeutic strategy for
numerous cancers.
Arginine is a nonessential amino acid that fuels an

array of metabolic reactions including nitric oxide syn-
thesis, polyamines and amino acids such as glutamine
and proline, all of which are important regulators of cell
growth and survival [12]. Arginine is synthesized from
aspartate and citrulline by two closely coupled enzymes
of the urea cycle, argininosuccinate synthetase (ASS)
and argininosuccinate lyase (ASL) with the former being
the rate limiting step [13]. Healthy adults predominantly
obtain arginine from dietary intake and from intracellu-
lar protein degradation but can also synthesize it when
required and the level of synthesis is sufficient to meet
their energy demands [14]. Tumour cells due to their
rewired metabolism have a greater requirement for
arginine and make use of the extracellular pools [15, 16].
Cancers that have reduced expression of ASS/ASL and
unable to synthesise arginine become highly dependent
on these pools and therefore susceptible to arginine
deprivation therapy using arginine degrading enzymes
[12, 17]. Although the mechanism of ASS/ASL downreg-
ulation is not completely understood, there is strong evi-
dence for both promoter methylation and hypoxia-
inducible factor-1α mediated transcriptional repression
in some cancers [18, 19] and further mechanisms are
likely to exist. Two enzymes that are continually being
evaluated for their effectiveness in degrading arginine
are: ADI-PEG20 (a pegylated form of ADI to reduce

immunogenicity in humans and extend half-life) and
recombinant human arginase 1 [20–23]. ADI-PEG20
degrades arginine to citrulline and ammonia and argi-
nase 1 degrades it to ornithine and urea. Since the first
reports of arginine deprivation in melanoma [24] and
hepatocellular carcinoma (HCC) [25], the list of cancer
types that are amenable to this therapeutic strategy is
constantly growing and includes prostate, breast, ovar-
ian, lung, sarcoma and malignant pleural mesothelioma
to name but a few including our own study in GBM [26,
27]. Since most of these studies have used ADI-PEG20
to degrade arginine, this enzyme has been extensively
evaluated [28]. Many of these studies revealed mechanis-
tic insights into the molecular effects of arginine
deprivation in ASS deficient tumours identifying
additional vulnerabilities prompting the use of other
agents in combination with this strategy to achieve more
effective killing. For example the use of TRAIL in meso-
thelioma [29], cisplatin in multiple tumour types [28],
chloroquine in sarcomas [30] and 5FU in HCC [31].
In contrast, given the diverse role of arginine in

numerous metabolic pathways there are far fewer studies
investigating the metabolic effects of arginine
deprivation and to our knowledge no studies have been
performed in GBM. One such study includes our own
study in bladder cancer where we observed ASS negative
cells had increased uptake of thymidine which becomes
suppressed upon ADI-PEG20 treatment. Since thymi-
dine can be imaged by positron emission tomography,
its reduced uptake can serve as a biomarker of response
to therapy [32]. Similarly, Locke et al. [33] through their
metabolomic analysis identified that ASS1 negative
mesothelioma have a dependency for polyamine
metabolism and that ADI-PEG20 decreases polyamine
metabolites. Thus, this finding provides a dual synthetic
lethal strategy for ASS negative mesothelioma with ADI-
PEG20 and inhibition of polyamine synthesis. Another
study by Kremer et al. [34] identified a potential syn-
thetic lethal interaction with ADI-PEG20 and glutamine
inhibition in sarcoma, as a consequence of discovering
up-regulation of glutamine anerplerosis and serine bio-
synthesis upon ADI-PEG20 therapy. To our knowledge,
there are no studies specifically looking at basal meta-
bolic differences between ASS negative and positive
GBM tumours.
Metabolic reprogramming manifested as altered nutri-

ent uptake and use has been proposed to be a hallmark
of cancer. Since this reprogramming is thought to be
essential for rapid cancer cell proliferation, a metabolo-
mic analysis of cancer metabolism will paint a broad pic-
ture of the altered pathways and their interactions with
each other. Metabolomics is the profiling of metabolites
within a cell, the levels of which integrate the effects of
gene regulation, post-transcriptional regulation, pathway

Mörén et al. BMC Cancer  (2018) 18:167 Page 2 of 16



interactions, and environmental perturbations [35, 36].
Thus, this downstream synthesis of diverse signals ultim-
ately makes metabolites and patterns thereof direct
molecular readouts of cell status that reflect a meaning-
ful physiological phenotype.
Combined with bioinformatic approaches that con-

sider the multivariate interaction between multiple vari-
ables (i.e. chemometric bioinformatics), metabolomics
can aid to detect patterns of metabolites as biomarkers
(latent biomarkers) to better map and predict complex
metabolic events [37, 38].
The present study was carried out to investigate our

hypothesis that metabolomic analysis, represented here
by 1D and 2D GC-TOFMS combined with chemometric
bioinformatics, can discriminate between ASS1 positive
and ASS1 negative GBM cell lines and potentially iden-
tify metabolic biomarkers for the non-invasive detection
of these subtypes and unveil additional novel targets for
their treatment. Novel treatment strategies are desper-
ately needed as currently there are no effective therapies
for this devastating tumour.

Methods
Cell culture
All GBM cell lines used in this study are negative for the
IDH1 mutation (previously sequenced in our lab) and
were obtained from ATCC. ASS negative (LN229,
SNB19, GAMG) and ASS positive (U118, T98G, U87)
GBM cell lines were plated into 6 replicate wells of a 6
well plate at a density of 1.5 × 105 cells/well in 3 ml of
DMEM or MEM media (T98G) containing 10% fetal calf
serum (FCS). Supernatants and cell pellets were col-
lected 48 h after plating and stored at − 80 °C until
required. Control wells containing media alone were
included for normalization purposes.

ADI-PEG20 treatment
SNB19 and U87 cells, cultured in DMEM + 10% FBS
and normal human astrocytes, cultured in speciality
media provided by lonza were seeded in replicates (n =
12) at 8 × 104 cells per well in 6-well dishes (Corning,
NY, USA). 24 h post seeding, cells were washed with
phosphate buffered saline (PBS) and cultured in the
presence or absence of ADI-PEG20 (1 μg/ml) in media
containing, 1 mM citrulline and 10% fetal FBS. ADI-
PEG20 was added at the start of the experiment and no
fresh media was added to any of the experimental plates
before harvesting. ADI-PEG20 treated and untreated
media (n = 3) was included for normalization purposes.
48 h after ADI-PEG20 treatment replicate samples for
each condition (n = 3) were harvested, collecting both
spent media and cells for GC-TOFMS metabolomic ana-
lysis. Additional replicates (n = 3) of each condition were
collected for total cell count determination.

Analytical strategy
In an attempt to cover a large proportion of the metabo-
lome and to detect and identify overlapping compounds,
samples were screened for metabolites using both 1D
and 2D GC-TOFMS. The results obtained from this
initial screen were verified by a targeted amino acid ana-
lysis using LC-TOFMS.

Sample preparation
Frozen samples (supernatants and cell pellets) were
thawed at room temperature and 900 μl of extraction
solution (90% methanol, 10% water, 7 internal standards
(Salicylic acid, myristic acid, hexadecanoic acid, choles-
terol, succinic acid, glutamic acid och sucrose; 7 ng/μl))
were added to 100 μl of supernatant and to the cell
pellet. Two tungsten beads were also added to the pel-
lets. Samples were extracted using a MM301 vibration
Mill (Retsch GmbH & Co. KG, Haan, Germany) for
2 min at 30 Hz and placed on ice for 2 h and centrifuged
for 15 min at 14,000 rpm at 4 °C. 200 μl of the superna-
tants were transferred to vials and evaporated to
complete dryness before being stored at − 80 °C. Before
1D and 2D GC-TOFMS analysis the samples were meth-
oxymated with 30 μl of methoxyamine solution in
pyridine (15 μg/μl) first at 70 °C for 1 h and then at
room temperature for 16 h. Thereafter, the samples were
trimethylsilylated with 30 μl of MSTFA at room
temperature for 1 h before the addition of 30 μl of hept-
ane (containing 0.5 μg of methyl stearate). Prior to ana-
lysis, the samples were randomized and analysed
together with a series of n-alkanes (C12-C32) to allow
retention indexes to be calculated.
For the ADI-PEG20 experiment, samples were ran-

domized, defrosted at room temperature and vortexed.
For the cell media fraction, 200 μl were transferred to
individual microcentrifuge tubes. A quality control sam-
ple was prepared from a pool of each sample, and 200 μl
were transferred to individual microcentrifuge tubes.
1.5 ml of methanol was added to each sample, mixed for
5 min and spun at 10,000 g for 10 min at 4 °C. 1.3 ml of
supernatant was transferred to individual silylated glass
tubes and evaporated to dryness at 40 °C under nitrogen
gas in a concentration evaporator (Turbovap LV,
Biotage, Uppsala, Sweden).
For the cellular fraction, 200 μl cell lysate was trans-

ferred to individual microcentrifuge tubes and 1.3 ml
extraction mixture (water:MeOH [2:10]) was added,
giving a final methanol concentration of 80% together
with the cell lysate. Samples were vortexed for 5 min for
cellular disruption and extracted on ice for 20 min,
following centrifugation at 4 °C at 17,500 g for 10 min.
1.4 ml supernatant was transferred to silylated glass
tubes and dried at 40 °C under nitrogen gas with a con-
centration evaporator.
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Both individual and pooled standards were prepared,
making a stock solution in water (10 mg/ml). Individual
samples were diluted in methanol (0.005 mg/ml), and
100 μl were transferred to silylated glass tubes. Pooled
standards were diluted to 300 μl water containing
metabolite standards and 200 μl methanol.

GC-TOFMS
One μl sample was injected splitless by an Agilent 7683
Series autosampler (Agilent, Atlanta, GA) into an Agilent
6980 GC equipped with a 10 m× 0.18 mm i.d. fused-silica
capillary column chemically bonded with 0.18 μm DB5-MS
stationary phase (J&W Scientific, Folsom, CA). The injector
temperature was 270 °C. Helium was used as carrier gas
with a constant flow rate of 1 ml/min. The purge time was
60 s at a purge flow rate of 20 ml/min and an equilibration
time of 1 min per analysis. Initially, the column temperature
was kept at 70 °C for 2 min and then increased to 320 °C at
30 °C/min, where it was kept for 2 min. The column efflu-
ent was introduced into the ion source of a Pegasus III
TOFMS (Leco Corp., St Joseph, MI). The transfer line
temperature was 250 °C and the ion source temperature
200 °C. Ions were generated by a 70 eV electron beam at a
current of 2.0 mA. Masses were acquired from m/z 50 to
800 at a rate of 30 spectra/s, and the acceleration voltage
was turned on after a solvent delay of 165 s.
The acquired data was exported to MATLAB 7.11.0

(R2014b) (Mathworks, Natick, MA) as NetCDF files. An
in-house script was used for alignment, peak detection,
mass spectrum deconvolution, mass spectra library search
for identification and calculation of peak height/area. To
identify the detected compounds, the mass spectral pro-
files and retention indices were compared to spectra in an
in-house spectra library established at Swedish Metabolo-
mics Centre (SMC) (www.swedishmetabolomicscentre.se).
For the ADI-PEG20 treatment experiment, samples

were subjected to GC-TOFMS on a Pegasus GC-
TOFMS (Leco Corp., St Joseph, MI, USA), connected
with an Agilent 7890 gas chromatograph, using a fused
silica capillary column (Agilent J&W Scientific), with
0.25 μm thickness and open split interface. Under
helium as carrier gas, samples were injected, with
constant temperatures for injection (220 °C), transfer
(280 °C), ion source (250 °C). Primary oven temperatures
were programmed at 70 °C for 0.2 min, raised to 270 °C
for 5 min and further increased to 310 °C for 11 min.
70 eV electron beams were used for the ionization and
masses were recorded from 40 to 600 m/z at a rate of 20
spectra/s with the detector voltage set at 1650 V.
Gas chromatograms were baseline corrected, de-

convoluted, noise-reduced, smoothed, library matched
and areas were calculated with ChromaTOF software
(LecoCorp. v 4.4). Signal-to-noise ratio above 150 were
analysed. Putative analyte identities were found by

comparing MS spectra with RI of the US National Insti-
tute of Science and Technology (NIST) library, as well
as the Fiehn library, Golm Metabolome Database,
Human Metabolome Database and in-house databases.

2D GC-TOFMS
The samples were analysed on a Pegasus 4D (Leco Corp.,
St Joseph, MI, USA) equipped with an Agilent 6890 gas
chromatograph (Agilent Technologies, Palo Alto, GA,
USA), a secondary gas chromatograph oven, a quad-jet
thermal modulator, and a time-of-flight mass spectrom-
eter. Leco’s ChromaTOF software was used for setup and
data acquisition. The column set used for the GCxGC
separation was a polar BPX-50 (30 m × 0.25 mm×
0.25 μm; SGE, Ringwood, Australia) as first-dimension
column and a non-polar VF-1MS (1.5 m × 0.15 mm×
0.15 μm; J&W Scientific Inc., Folsom, CA, USA) for the
second-dimension column. Splitless injection of 1 μl sam-
ple aliquots was performed with an Agilent 7683B auto
sampler at an injection temperature of 270 °C (2 respect-
ively 5 pre/post-wash cycles were used with hexane). The
purge time was 60 s with a rate of 20 ml/min and helium
was used as carrier gas with a flow rate of 1 ml/min. The
temperature program for the primary oven started with an
initial temperature of 60 °C for 2 min, followed by a
temperature increase of 4 °C/min up to 300 °C and where
the temperature was held for 2 min. The secondary oven
maintained the same temperature program but with an
offset of + 15 °C compared to the primary oven. The
modulation time was 5 s with a hot pulse time of 0.8 s and
a 1.7 s cooling time between the stages. The MS transfer
line had a temperature of 300 °C and the ion source 250 °C.
70 eV electron beams were used for the ionization and
masses were recorded from 50 to 550 m/z at a rate of 100
spectra/s with detector voltage set at 1780 V.
Baseline correction, peak detection, mass spectrum

deconvolution, mass spectra library search for identification
and calculation of peak height/area was done in Leco’s
ChromaTOF software. For peak picking a signal-to-noise
ratio of 10 was used. The library search was performed
against publicly available mass spectral libraries from US
National Institute of Science and Technology (NIST) and
from the Max Planck Institute in Golm [39] together with
in-house libraries established at SMC. csv-files (comma-
separated values) containing peak information for each of
the samples was exported. The csv-files were imported into
the data processing software Guineu (1.0.3 VTT; Espoo,
Finland) [40] for alignment and filtering.

Amino acid analysis
Derivatization of amino acids was achieved using the
AccQ-Tag kit obtained from Waters (Millford, MA) as
specified in the manufacturer’s instructions. An amino
acid standard mixture including 29 amino acids was
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prepared and diluted into eight concentrations ranging
from 20 pmol to 0.1 pmol. An internal standard, norva-
line [10 pmol/μl] was added to each sample and the
amino-acid standards mixture. The samples were ana-
lysed on a Waters Acquity UPLC system coupled to a
Micromass LCT Premier mass spectrometer (Waters,
Millford, MA) operated in W-mode. The acquired data
was exported as NetCDF files. MATLAB 7.11.0
(R2014b) (Mathworks, Natick, MA) was used with an
in-house script for alignment and extraction of the inte-
grated peak area for each amino acid.

Pattern recognition and statistical analysis
The data from the cell pellet and the cell supernatant
from the different analytical methods were analysed sep-
arately. Prior to any data analysis, data from the cell
medium was subtracted from the cell supernatant data
to minimize the influence of the cell medium in further
investigations. Data from the amino acid analysis data
was normalized to the internal standard norvaline.
A chemometric bioinformatics approach using pattern

recognition based on multivariate projection methods was
used to detect systematic patterns in the data associated
with ASS1 status and the corresponding response to ADI-
PEG20 treatment. In this way patterns of co-varying me-
tabolites can be detected and evaluated both predictively
as latent biomarkers and mechanistically by comparing
the involved metabolites to known biochemical pathways.
To obtain an initial overview of the systematic variation

in the data and detect deviating samples (outliers), the
data was analysed using principal component analysis
(PCA) [41], an unsupervised multivariate projection
method focusing on the maximum variation in the data
(not shown). Thereafter, to investigate potential differ-
ences between ASS positive and ASS negative cell lines as
well as to evaluate the effect of arginine deprivation ther-
apy by ADI-PEG20, OPLS-DA [42] was used. OPLS-DA
is a supervised multivariate analysis method where the
systematic pattern differences between pre-defined classes
in the data are examined. Variable selection was used to
extract metabolites responsible for the separation in the
calculated OPLS-DA models. Model weight values (w*),
i.e. variable contribution values for the pre-defined sample
class separations, were extracted and metabolites with low
w*- values (|w*| < 0.05), i.e. variables unrelated to the class
separation were discarded [43]. All OPLS-DA models
were validated using cross-validation and p-values for the
cross-validated model were calculated using ANOVA [44].
A univariate p-value for each metabolite was calculated
using the Mann-Whitney U-test.

Pathway and network analysis
Identified metabolites were subjected to pathway ana-
lysis using the software Ingenuity Pathway Analysis

(IPA). Accession numbers of detected metabolites
(HMDB, PubChem, and KEGG Identifiers) were listed in
MS Excel and imported into IPA to map the canonical
pathways and generate networks of interacting biological
entities. Data were submitted as fold change values
(ratios) between ASS positive and ASS negative cells.
Comprehensive pathway and network analyses were per-
formed. Downstream biological processes were scored in
accordance to the ontology support using Ingenuity
Knowledge Base (www.ingenuity.com).

Results
GC-TOFMS analysis reveals metabolic differences between
ASS negative and ASS positive GBM
We previously demonstrated that ASS negative GBM
(deficient in the arginine biosynthetic pathway) can be
targeted by arginine deprivation therapy using ADI-
PEG20 whereas ASS positive GBM are unaffected due to
their ability to endogenously synthesize arginine [27]. (It
is important to note that these cells were negative for
the IDH1 mutation (previously screened in our lab), a
feature that can significantly impact on the metabolome.
In an attempt to identify additional metabolic vulnerabil-
ities between these two subgroups of GBM, we profiled
the metabolome of a panel of ASS negative (LN229,
SNB19 and GAMG) and ASS positive (U118 and T98G)
GBM cell lines using 1D and 2D GC-TOFMS. GBM
cells were cultured for 48 h as described in materials
and methods and both the cell supernatants and cell pel-
lets were harvested for analysis.
Using 1D GC-TOFMS, we identified 76 and 83 unique

metabolites in the supernatant and cell pellet respectively
by comparing mass spectra and retention indices to exist-
ing and available compound libraries. In contrast, using
2D GC-TOFMS a greater number of peaks were retained
in both fractions (815 in supernatant and 317 in cell pel-
let) after filtering in Guineu (1.0.3 VTT; Espoo, Finland).
Of these peaks we could adequately identify 89 unique
metabolites in the supernatants and 83 in cell pellets.
The data generated using both 1D and 2D GC-TOFMS

was subjected separately to multivariate analysis by means
of OPLS-DA to model systematic differences in metabol-
ite patterns between ASS positive and ASS negative cell
lines. This supervised multivariate projection method
allows for a division of the variation in the data into a pre-
dictive part which is related to a specified difference i.e.
ASS1 status, and an orthogonal part which is unrelated to
this difference. These variation sources can be overviewed
and interpreted on the sample level in the OPLS-DA
scores and on the variable level (contributing metabolite
patterns) in the OPLS-DA loadings. This analysis revealed
a clear systematic difference between ASS1 positive and
ASS1 negative cell lines using both 1D and 2D GC-
TOFMS data in both the cell pellet and supernatant
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(Fig. 1). Further analysis of the metabolites contributing to
this difference revealed an elevation of those involved in
the arginine biosynthetic pathway in ASS positive cells
compared to ASS negative cells (Tables 1 and 2). More-
over, ANOVA of the cross validated model showed a stat-
istical significance in the pattern of extracted metabolites
i.e. 1D GC-TOFMS cell supernatant, p = 1.84*10− 5 (63
metabolites), 1D GC-TOFMS cell pellet, p = 0.03 (50 me-
tabolites), 2D GC-TOFMS cell supernatant p = 0.0007
(180 metabolites), 2D GC-TOFMS cell pellet, p = 0.004
(122 metabolites). This analysis also revealed a large num-
ber of metabolite differences that were unrelated to the ar-
ginine metabolic pathway. This is shown in Tables 1 and 2
which summarizes all identified metabolites, their p-values
and the metabolic pathway they belong to.

Amino acid analysis
We next proceeded to validate some of the metabolites
identified in our global screen using LC-MS by specific-
ally targeting a selection of 29 amino acids. We included
those involved in the arginine biosynthetic pathway

primarily to determine if we could detect differences in
this pathway between ASS positive and ASS negative cell
lines, in line with our hypothesis. As well as successfully
detecting all 29 amino acids by LC-MS, we were by
means of OPLS-DA also able to detect metabolite differ-
ences that were related to the arginine biosynthetic path-
way in these cell lines (Fig. 2). In the cell supernatant,
glutamic acid, proline, ornithine, arginine and citrulline
where elevated in ASS positive cell lines, all of which are
included in the arginine biosynthetic pathway. Ammonia
and leucine where elevated in the ASS negative cell lines.
In the cell pellet, ammonia, glutamic acid, ornithine,
arginine and citrulline were elevated in the ASS positive
cell lines, all of which are included in the arginine
biosynthetic pathway. Serine, glycine, GABA, tyrosine,
methionine, valine, isoleucine and N-acetylornithine
were elevated in the ASS negative cell lines.
The final cross-validated OPLS-DA score plot based

on the pattern of these 29 amino acids showed the same
class separation as detected using the global GC-
TOFMS screening (supernatant p = 0.01, pellet p = 0.2).

Fig. 1 Cross-validated scores, first predictive score (tcv[1]), based on the final OPLS-DA models showing an almost complete separation of
ASS+ve cell lines (T98G and U118; grey) and ASS-ve cell lines (GAMG, LN229 and SNB19; black) for (a) 1D GC-TOFMS data cell supernatant
(p = 1.84*10− 5) and (b) 1D GC-TOFMS data cell pellet (p = 0.03) and (c) 2D GC-TOFMS data cell supernatant (p = 0.0007) and (d) 2D GC-TOFMS data cell
pellet (p = 0.004)
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Table 1 Metabolites affected in the cell supernatant

Pathway Metabolite 1D
GC-MS

p-value 2D
GC-MS

p-value AA
Analysis

p-value

Alanine And Aspartate Metabolism Aspargine ↑ 0.000 ↑ 0.002

Alanine ↑ 0.000 ↑ 0.007

Aspartic Acid ↑ 0.029 ↓ 0.135

Amino Sugar Metabolism N-Acetyl Glucosamine ↑ 0.000

N-Acetyl Mannosamine ↑ 0.000

Beta-Alanine Metabolism Pantothenic Acid ↓ 0.292 ↑ 0.009

Citric Acid Cycle Succinic Acid ↑ 0.010

Creatine Metabolism Creatinine ↑ 0.003

Cystein ↑ 0.121

Cysteine And Methionine Metabolism Cystein (2 Derivative) ↑ 0.005

Cystine ↑ 0.005 ↑ 0.003

Methionine ↑ 0.003 ↑ 0.044

Fatty Acid Biosynthesis 3-Hydroxybutyric Acid ↑ 0.004

Butanoic Acid ↑ 0.000

Hexadecanoic Acid ↓ 0.200

Fructose-1- Phosphate ↑ 0.050

Fructose And Mannose Degradation Mannose ↓ 0.020

Fructose ↑ 0.011

Galactose Metabolism Galactose ↓ 0.225

Glutamate Metabolism Glutamic Acid ↑ 0.000 ↑ 0.247

GABA ↑ 0.001

Glutamine ↑ 0.000 ↑ 0.009

Glutathione Metabolism Pyroglutamic Acid ↑ 0.000

Glycerolipid Metabolism Ethanolamine ↑ 0.010

Glycine, Serine And Threonine
Metabolism

Glycine ↑ 0.068 ↑ 0.012 ↑ 0.152

Sarcosine ↑ 0.000

Serine ↑ 0.007 ↑ 0.020

Threonine ↑ 0.017 ↑ 0.155

Glycolysis. Gluconeogenesis. Glucose ↓ 0.143

Pyruvate Metabolism Glyceric Acid ↑ 0.000

Lactic Acid ↑ 0.002

Malic Acid ↑ 0.039

Histidine Metabolism Histidine ↑ 0.033 ↑ 0.027

Homocysteine Degradation 3-Methyl-2-Ketobutyric Acid ↑ 0.000

Inositol Metabolism Inositol ↑ 0.002

Lysine Metabolism Lysine ↑ 0.044 ↑ 0.008 ↑ 0.191

Lysine (2 Derivative) ↑ 0.027

Nicotinate And Nicotinamide
Metabolism

Nicotinamide ↑ 0.021 ↑ 0.001

Arabinose ↑ 0.003

Nucleotide Sugar. Pentose Metabolism Arabitol ↑ 0.000

Nucleotide Sugars Metabolism Xylose ↑ 0.004

Pentose Phosphate Pathway Gluconic Acid 1.4-Lactone ↑ 0.034

Ribofuranose ↑ 0.013

Ribose ↑ 0.000 ↑ 0.028

Sedoheptulose-7-Phosphate ↑ 0.276
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ASS positive and ASS negative GBM have different
metabolic responses to arginine deprivation induced by
ADI-PEG20 treatment
To investigate the metabolic response of these different
GBM cell populations to arginine deprivation, a repre-
sentative ASS negative (SNB19) and ASS positive (U87)
cell line was treated with or without the arginine degrad-
ing enzyme, ADI-PEG20 (1 μg/ml) for 48 h and both

supernatants and cell pellets were analysed by 1D GC-
TOFMS. We included normal human astrocytes (non-
tumour cells), and media alone in this analysis. The data
generated from the 1D–GC-TOFMS analysis of the cell
supernatants was subjected to OPLS-DA in order to
obtain an overview of the metabolic variation between
the samples. As can be seen in Fig. 3, the second pre-
dictive component, shows a unique effect in the ASS

Table 1 Metabolites affected in the cell supernatant (Continued)

Pathway Metabolite 1D
GC-MS

p-value 2D
GC-MS

p-value AA
Analysis

p-value

Phenylalanine Metabolism Phenylalanine ↑ 0.000 ↑ 0.022

Purine Metabolism Allantoin ↑ 0.051

Pyrimidine Metabolism Uracil ↓ 0.024

Riboflavin Metabolism Ribitol ↑ 0.000

Sugar. Sugar Substitute. Starch Erythritol ↑ 0.002

Tryptophan Metabolism Tryptophan ↑ 0.035

Tyrosine Metabolism Tyrosine ↑ 0.034 ↑ 0.010 ↑ 0.052

Urea Cycle. Arginine and Proline
Metabolism

Ammonia ↓ 0.038

Arginine ↑ 0.015 ↑ 0.010 ↑ 0.070

(Arginine biosynthetic pathway) Argininosuccinate ↑ 0.021

Asymetrical-N.N- Dimethylarginine ↑ 0.018

Citrulline ↑ 0.098

Citrulline (Arginine) ↑ 0.016

Citrulline (Ornthine) ↑ 0.019

Hydroxyproline ↑

Ornithine (2 Derivative) ↑ 0.000

Ornithine ↑ 0.006 ↑ 0.156

Proline ↑ 0.000 ↑ 0.000

Urea ↑ 0.058 ↑ 0.001

2-Keto-3-Methylvaleric Acid ↑ 0.002

Valine. Leucine And Isoleucine
Degradation

2-Oxoisocaproic Acid ↑ 0.002 ↑ 0.000

Isoleucine ↑ 0.008 ↑ 0.033 ↓ 0.373

Leucine ↑ 0.056 ↓ 0.253

Valine ↑ 0.010 ↑ 0.002 ↓ 0.132

Other 2-Aminobutyric Acid ↑ 0.000

2-Deoxy-Galactose ↑ 0.002

Allothreonine ↑ 0.010 ↑ 0.000

Cellotriose ↓ 0.224

Ellagic Acid ↓ 0.293

Gluconic Acid ↓ 0.095

Isoerythritol ↑ 0.000

Mannitol ↓ 0.031

Pentanoic Acid ↑ 0.000

Propanoic Acid ↑ 0.001

Silanamine ↑ 0.021

Sorbose ↑ 0.002

Xylitol ↑ 0.000

↑ Elevated in ASS+ve cell lines, ↓ lowered in ASS+ve cell lines. p-values was calculated using a Mann-Whitney U-test
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Table 2 Metabolites affected in the cell pellet

Pathway Metabolite 1D
GC-MS

p-value 2D
GC-MS

p-value AA
Analysis

p-value

Alanine And Aspartate Metabolism Aspargine ↑ 0.097 ↑ 0.077

Alanine ↑ 0.051 ↑ 0.274 ↑ 0.274

Aspartic Acid ↑ 0.068 ↑ 0.356

Beta-Alanine ↑ 0.511 ↑ 0.354

Linoleic Acid Metabolism Linoleic Acid ↑ 0.324

Amino Sugar Metabolism N-Acetyl Glucosamine ↓ 0.080

Beta-Alanine Metabolism Pantothenic Acid ↓ 0.080

Citric Acid Cycle Alpha-Ketoglutaric Acid ↓ 0.127 ↓ 0.047

Citric Acid ↓ 0.263

Fumaric Acid ↑ 0.329

Creatine Metabolism Creatinine ↓ 0.165 ↓ 0.042

Cysteine ↓ 0.113 ↑ 0.200

Cysteine And Methionine Metabolism Methionine ↓ 0.382 ↓ 0.619

Dipeptide Glycylvaline ↑ 0.168

Fatty Acid Biosynthesis Dodecanoic Acid ↓ 0.649

Hexadecanoic Acid ↓ 0.336

Mannose ↓ 0.252

Fructose And Mannose Degradation Sorbitol-6-Phosphate (Fragment) ↑ 0.600

Galactose Metabolism Galactose ↓ 0,407

Glutamate Metabolism Glutamic Acid ↑ 0.535 ↑ 0.195

Glutamine ↑ 0.651 ↑ 0.412

GABA ↓ 0.466

Glutathione Metabolism Pyroglutamic Acid ↓ 0.366 ↓ 0.125

Glycerol Phosphate Shuttle Glycerol-2-Phosphate ↑ 0.184

Glycerol-3-Phosphate ↑ 0.005 ↑ 0.003

Glycerolipid Metabolism Ethanolamine ↑ 0.658

Serine ↓ 0.081 ↓ 0.553

Glycine, Serine And Threonine
Metabolism

Glycine ↓ 0.487 ↓ 0.085 ↓ 0.157

Threonine ↓ 0.301 ↑ 0.033

Sarcosine ↑ 0.197

Glycolysis, Gluconeogenesis, Fructose-6-Phosphate ↑ 0.103

Pyruvate Metabolism Glucose ↓ 0.341

Glycolysis, Gluconeogenesis, Glucose-6-Phosphate ↑ 0.174

Pyruvate Metabolism Glyceric Acid ↑ 0.011

Glyceric Acid-2-Phosphate ↑ 0.227

Glyceric Acid-3-Phosphate ↑ 0.320 ↑ 0.228

Pyruvic Acid ↓ 0.049 ↓ 0.000

Homocysteine Degradation 3-Methyl-2-Ketobutyric Acid ↑ 0.051

Inositol Metabolism Inositol ↓ 0.066

Lysine Metabolism Lysine ↓ 0.128 ↑ 0.404

Lysine 2 Derivative ↑ 0.128

2-Amino-Adipic Acid ↑ 0.043

Nicotinate And Nicotinamide
Metabolism

Nicotinamide ↓ 0.371

Nucleotide Sugar, Pentose Metabolism Arabitol ↑ 0.294
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Table 2 Metabolites affected in the cell pellet (Continued)

Pathway Metabolite 1D
GC-MS

p-value 2D
GC-MS

p-value AA
Analysis

p-value

Oxidative Phosphorylation Pyrophosphate ↑ 0.377

Pentose Phosphate Pathway Erythrose-4-Phosphate ↑ 0.007

Glucaric Acid 1,4 Lactone ↓ 0.622

Ribofuranose ↓ 0.213

Ribose ↓ 0.359

Ribose-5-Phosphate ↑ 0.137

Polyamine Metabolism Putrescine ↓ 0.653

Spermidine ↑ 0.244

Purine Metabolism Adenine ↓ 0.265

Hypoxanthine ↑ 0.119

Pyrimidine Metabolism Uracil ↑ 0.445

Uridine ↑ 0.001

Sugar, Sugar Substitute, Starch Erythritol ↓ 0.270

Taurine And Hypotaurine Metabolism Taurine ↑ 0.282

Tryptophan Metabolism Tryptophan ↑ 0.104

Tyrosine Metabolism Tyrosine ↓ 0.221 ↓ 0.759

Urea Cycle, Arginine and Ammonia ↑ 0.258

Proline Metabolism Arginine ↑ 0.251 ↑ 0.502

(Arginine biosynthetic pathway) Asymetrical-N,N-Dimethylarginine ↑ 0.253

Citrulline (Arginine) ↑ 0.247

Citrulline (Ornthine) ↑ 0.193

Citrulline ↑ 0.122

N-Acetylornithine ↓ 0.370

Ornithine ↑ 0.313 ↑ 0.219 ↑ 0.010

2-Oxoisocaproic Acid ↑ 0.600

Valine, Leucine And Isoleucine
Degradation

Isoleucine ↓ 0.156 ↓ 0.550

Leucine ↓ 0.367

Valine ↓ 0.085

Other 1,2-Ethandimine ↓ 0.007

1,3,5-Trioxepane ↓ 0.085

1-Mo nostearoylgly cer o l ↓ 0.373

2-Pyrrolidone-5-Carboxylic Acid ↓ 0.179

Aminomalonic Acid ↓ 0.252

Cadaverine ↑ 0.289

Cellotriose ↑ 0.042

Dihydroxyacetonephosphate ↑ 0.096 ↑ 0.195

Elaidic Acid ↑ 0.165

Glucopyranose ↑ 0.198

N-Acetyl Glutamyl Phosphate ↑ 0.362

Nonanoic Acid ↓ 0.264 ↓ 0.144

Phosphoric Acid ↑ 0.013

Pyrazine ↓ 0.179

Stearic Acid ↑ 0.357

Xylitol ↓ 0.233

↑ Elevated in ASS+ve cell lines, ↓ lowered in ASS+ve cell lines. p-values was calculated using a Mann-Whitney U-test
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negative cells in response to ADI-PEG20 treatment (p =
0.001), while the ASS positive cells and normal astro-
cytes remain unchanged in that direction (metabolite
signature). The first predictive component showed a dif-
ference associated with ADI-PEG20 treatment in astro-
cytes suggesting a general unspecific increase in
metabolite concentration in those cells after treatment
(not shown).

Pathway and network analysis
To identify pathways that are most significantly altered
between ASS negative and ASS positive cells, we per-
formed pathway analysis using the IPA software of all
the metabolite alterations detected using all three analyt-
ical methods. The analysis revealed the signalling and
metabolic pathways and biological processes that are
most significantly perturbed between these cells such as
transfer of ribonucleic acid charging, super pathway of
citrulline metabolism, arginine degradation VI, citrulline
biosynthesis, arginine degradation I, proline biosynthesis

II, urea cycle, glycine degradation, asparagine biosyn-
thesis 1 and glutamate receptor signalling. These hits
were consistent between all three datasets in the super-
natant. In summary, these results indicate an alteration
in citrulline and arginine metabolism between these two
populations. Similar patterns were observed in the cell
pellets with transfer ribonucleic acid charging being
amongst the top 10 hits. Interestingly, large shifts in
amino acid metabolism were observed in the extract,
particularly with the amino acids alanine and glycine.
The degradation of arginine in ASS negative cells to its
respective products is decreased and α-ketoglutarate
levels are concurrently increased, possibly due to lack of
ornithine amino transferase activity. In the greater con-
text of citrulline biosynthesis, the convergence of mul-
tiple pathways for citrulline production is observed.
Decreases in both alanine and glutamate with corre-
sponding increases in α-ketoglutarate and pyruvate sug-
gests that ASS negative cells are converting less pyruvate
to alanine which is one of the by-products of high

Fig. 2 Cross-validated scores, first predictive score (tcv[1]) based on the final OPLS models for the amino acid analysis from (a) the cell supernatant
and (b) corresponding loadings (p[1]cv[1]) from the cell supernatant and (c) cross-validated scores (tcv[1]) from the cell pellet and (d) corresponding
loadings (p[1]cv[1]) from the cell pellet. The score plots show an almost complete separation between ASS+ve cell lines (grey) and ASS-ve cell lines
(black). The loadings bar-plots show the metabolites responsible for the cell line separation. The metabolites marked in grey are elevated in the
ASS+ve cell lines and metabolites marked in black are elevated in the ASS1-ve cell lines. The metabolites marked with * are involved in the arginine
biosynthetic pathway, and elevated predominantly in ASS+ve cell lines
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glycolytic flux. There were clear changes in the meta-
bolic intermediates generated by the breakdown of glu-
tamine to fumarate in ASS negative versus ASS positive
cells. Hence increased flux in these reactions may be due
to increased levels of glutaminosis in ASS negative cells
with glutamine being used to fuel the TCA cycle. A
complete summary of the observed metabolite changes
can be found in Fig. 4 and in Tables 1 and 2.

Discussion
GBM is a fatal primary brain tumour for which there is no
cure. Although numerous targeted therapeutic strategies
have shown promise in pre-clinical models, none of these
have successfully translated to the clinical setting.
We previously identified a new treatment option for a

subset of primary GBM based on their inability to
synthesize arginine, a semi-essential amino acid. We fur-
ther showed that this inability was due to the transcrip-
tional down-regulation of ASS1, the rate limiting step of
arginine biosynthesis. This defect rendered GBM amen-
able to arginine deprivation therapy using the arginine
degrading enzyme ADI-PEG20 [27]. Since ADI-PEG20
depletes blood arginine, this therapeutic strategy there-
fore potentially overcomes the limitations imposed by
the blood brain barrier. An understanding of how ADI-
PEG20 effects arginine levels in the CSF would help to
advance our knowledge of how arginine deprivation
affects the central nervous system and we plan to
include such analysis in future clinical trials in GBM
patients. Nevertheless, we have preliminary data showing
regression of an intracranial GBM tumour in a xenograft
mouse model after weekly intramuscular injections of
ADI-PEG20 (manuscript in preparation).

Arginine is synthesized by the sequential action of two
urea cycle enzymes, ASS1 and ASL. ASS1 converts cit-
rulline and aspartate into argininosuccinate, with citrul-
line being derived from ornithine and recycled arginine
and aspartate from the tricarboxylic acid (TCA) cycle.
ASL then cleaves argininosuccinate into arginine and
fumarate which can enter the TCA cycle. These enzymes
thus participate in both the urea and TCA cycle. A defi-
ciency in either gene will therefore lead to an accumula-
tion of upstream metabolites i.e. citrulline and aspartate
and a deficiency of downstream metabolites i.e. arginine
and fumarate. Fumarate is an important intermediate in
the TCA cycle for the generation of energy and arginine
is a substrate for the generation of many metabolites
that have key roles in numerous metabolic pathways
which include cell signalling (NO, agamate), survival
(NO) and proliferation (polyamines, proline). A defi-
ciency in ASS1 would therefore have additional conse-
quences on other pathways that rely on the substrates
generated by ASS1 which may manifest an altered meta-
bolic phenotype.
Since metabolomics allows for the global assessment

of cellular states, this study was carried out to determine
if ASS negative and ASS positive GBM have distinct
basal metabolic phenotypes that could be exploited for
their non-invasive detection in vivo and reveal new
therapeutic strategies for the treatment of these GBM
phenotypes. GBM is an extremely vascular and infiltra-
tive tumour and complete surgical resection is often not
possible. Since ADI-PEG20 has been shown to have
anti-angiogenic effects, treating susceptible patients with
ADI-PEG20 prior to surgery may help to reduce tumour
growth and allow for more successful resection. It is

Fig. 3 Cross-validated OPLS-DA scores, second predictive component (tcv[2]), for the GC-TOFMS data of cell supernatants of normal astrocytes
(Astro; white bars), ASS-ve cells (SNB19; black bars) and ASS+ve cells (U87; grey bars). ADI-PEG20 treated samples are denoted by stars. The plot
clearly shows that the ASS-ve samples are significantly affected by treatment (p < 0,001) while normal cells and ASS1 + ve cells remain
largely unaffected

Mörén et al. BMC Cancer  (2018) 18:167 Page 12 of 16



important to note that the GBM cells used in this study
were primary GBM cell lines (not having progressed
from a lower grade counterpart) and not mutated for
IDH1. IDH1 mutations are more common in low grade
gliomas and in secondary GBM and predict longer sur-
vival [45]. However, 10% of primary GBM do present
with this mutation, a feature that is known to influence
the metabolome [46].
OPLS analysis of both the 1D and 2D GC-TOFMS

data revealed clear systemic differences between these
two populations of GBM cells. As hypothesized, an
analysis of metabolites contributing to this difference
identified an upregulation of those involved in the argin-
ine biosynthetic pathway in ASS positive cells compared
to their negative counterparts. Interestingly, these cells
also exhibited an upregulation of numerous other
metabolites which may be consistent with the fact that
arginine is a substrate for many metabolites such as pro-
line and creatine. This upregulation in metabolite levels
was observed predominantly in the supernatant and not
in the cell pellet where the distribution of elevated
versus decreased metabolites was much more equivalent.
In addition to mannose, galactose and glucose several
other metabolites are decreased in the cell pellet in the
ASS positive cell lines. Pyruvic acid, citrate and α -keto-
glutaric acid, metabolites included in the initial steps of
the citric acid cycle, are decreased in ASS positive cell
lines.

Using pathway analysis to assess the biological signifi-
cance of altered pathways between these two cell popula-
tions, it was clear that ASS negative cells have significantly
altered arginine and citrulline metabolism in addition to
large differences in amino acid metabolism.
This study provides methodological proof of concept

for how metabolomics can be used in combination with
other omics methodologies, in this case epigenetics, to
generate a more detailed molecular characterization of
GBM in terms of detecting and verifying specific
molecular subgroups and suggest metabolic markers or
rather marker patterns for the diagnosis and treatment
of these GBM subgroups. It is a logical assumption that
alterations in the genome or epigenome with effect on
the phenotype would be reflected in the metabolome,
which makes the characterization of the metabolome
highly useful in order to filter out the relevant changes
to the genome. In addition, altered metabolites or meta-
bolic patterns are potentially markers for non-invasive
diagnosis of new tumour subgroups, e.g. by magnetic
resonance spectroscopy (MRS), and affected metabolic
pathways can be used to reveal novel treatment targets
for these. Our results show significant metabolite pattern
changes between ASS positive and ASS negative cell
lines and in relation to the specific treatment effect of
arginine deprivation to ASS negative cells accentuate the
strength of using metabolomics as a method to support
and verify alterations in the epigenome. This highlights

Fig. 4 A summary of metabolite changes (1D GC/TOFMS data) between ASS+ve and ASS-ve cells in relation to biochemical mechanisms; metabolites
in the Arginine biosynthesis pathway are coloured grey. The arrows describe the concentration change for the individual metabolites where ↑ indicate
a metabolite higher in concentration in ASS+ve cells (lower in ASS-ve) and ↓ indicate a metabolite lower in concentration in ASS+ve cells (higher in
ASS-ve). Open arrow represents cell supernatant and grey arrow cell pellet
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the possibility to develop and evaluate more efficient
diagnostics and treatments within specific tumour types
guided by more detailed molecular evidence as com-
pared to the current standard, something that would not
have been feasible without using the strategy of using
metabolomics as a complement to one or more omics
descriptions. An important part of this work is the bio-
informatics approach based on chemometric or multi-
variate techniques which allowed us to extract
metabolite patterns differentiating ASS positive and ASS
negative cells as well as for the specific treatment effect
in ASS negative cells. These metabolite patterns could
potentially be refined into novel diagnostic markers, so
called latent biomarkers, utilizing the strength in the
correlation between co-varying metabolites as opposed
to the traditional way of only considering single markers
for diagnosis. From our results we could verify the dif-
ferences between ASS positive and ASS negative cell
lines related to the arginine biosynthesis pathway. How-
ever, our extracted metabolite pattern also included
other significantly changing metabolites, something that
could be of value both diagnostically as well as for
pondering treatment options also for ASS positive tu-
mours or other options for ASS negative tumours target-
ing other pathways. From a diagnosis point of view an
interesting avenue to explore is the development of a
non-invasive diagnosis of molecular tumour subgroups,
in this case ASS positive and ASS negative GBM, by the
use of MRS or similar techniques. If successful this
would be a valuable contribution to the clinical practice.
Interestingly, our differentiating metabolite pattern
contained a number of metabolites detectable by MR
spectroscopy in brain tumours (Tables 1 and 2), includ-
ing glucose [47], glutamate [48], glutamine [49] and
glycine [50]. Thus, it would be of high interest to investi-
gate the diagnostic potential of such a metabolite pattern
in vivo in an animal model, something that we aim to do
in the near future. Another interesting prospect for the
proposed methodology would be to do a more compre-
hensive screening of the GBM epigenome in combin-
ation with metabolomics analysis to construct a detailed
map of the molecular subgroups of GBM that can be
used to navigate towards improved diagnosis and
development of tailored treatments based on molecular
evidence.

Conclusion
In conclusion we were able to verify our hypothesis that
the metabolome contains systematic information
discriminating between ASS1 positive and negative
GBM cell lines and that there is a potential of identifying
metabolite biomarkers for the non-invasive detection of
these subtypes in addition to unveiling novel treatment
targets. The study provides proof of concept for how

metabolomics data combined with chemometric bio-
informatics can be used to detect metabolite pattern
changes, i.e. latent biomarkers, associated with
alterations in the genome. Thus, providing a tool for
detection of tumour subgroups based on specific
molecular evidence.
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