
RESEARCH ARTICLE Open Access

Variations of circulating cardiac biomarkers
during and after anthracycline-containing
chemotherapy in breast cancer patients
Pierre Frères1,2, Nassim Bouznad3, Laurence Servais3, Claire Josse2, Stéphane Wenric2, Aurélie Poncin1,2,
Jérôme Thiry2, Marie Moonen4, Cécile Oury3, Patrizio Lancellotti3,4, Vincent Bours2 and Guy Jerusalem1*

Abstract

Background: Over time, the chance of cure after the diagnosis of breast cancer has been increasing, as a
consequence of earlier diagnosis, improved diagnostic procedures and more effective treatment options. However,
oncologists are concerned by the risk of long term treatment side effects, including congestive heart failure (CHF).

Methods: In this study, we evaluated innovative circulating cardiac biomarkers during and after anthracycline-based
neoadjuvant chemotherapy (NAC) in breast cancer patients. Levels of cardiac-specific troponins T (cTnT), N-terminal
natriuretic peptides (NT-proBNP), soluble ST2 (sST2) and 10 circulating microRNAs (miRNAs) were measured.

Results: Under chemotherapy, we observed an elevation of cTnT and NT-proBNP levels, but also the upregulation
of sST2 and of 4 CHF-related miRNAs (miR-126-3p, miR-199a-3p, miR-423-5p, miR-34a-5p). The elevations of cTnT,
NT-proBNP, sST2 and CHF-related miRNAs were poorly correlated, suggesting that these molecules could provide
different information.

Conclusions: Circulating miRNA and sST2 are potential biomarkers of the chemotherapy-related cardiac
dysfunction (CRCD). Nevertheless, further studies and long-term follow-up are needed in order to evaluate if these
new markers may help to predict CRCD and to identify the patients at risk to later develop CHF.
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Background
The cancer burden is a worldwide major public health
problem. Fortunately, the outcome, including the cancer
death rate, can be improved by earlier diagnosis and
better treatment [1].
Because more patients are cured, the attention is now

focusing on quality of life and long-term outcome of
cancer survivors. Cardiovascular disease is the leading
cause of late mortality among survivors of childhood
and adolescent cancer. The risk of cardiovascular death
is higher than the actual risk of cancer recurrence in
many adult cancer patients in complete remission. Can-
cer survivors have a ten-fold higher mortality than the
general population, with a fifteen-fold increased risk of

developing a congestive heart failure (CHF) and a ten-
fold increased risk of coronary artery disease [2, 3].
These patients also have a higher risk of atherosclerosis,
hypertension, pericardial disease, valvular heart disease
and dyslipidemia [4, 5]. The higher cardiovascular death
rate in cancer survivors is secondary to a combination of
cancer treatment-related risk effects (ionizing irradiation,
cytotoxic and targeted agents), familiar risk factors and
health behavior. Consequently, cancer survivors need
appropriate surveillance in order to early detect long-
term side effects of cancer therapy, allowing appropriate
treatment before the toxicity becomes irreversible [4, 5].
In this respect, easily accessible circulating biomarkers

could be seen as highly valuable diagnostic tools for early
detection of cardiotoxicity related to cancer treatments.
The cardiac-specific isoenzymes of troponins T and I

(cTnT, cTnI) are released into the blood when cardio-
myocytes are damaged. Troponin levels rapidly increase
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after chemotherapy and might predict late cardiac events
[6]. However, troponins release is related to lysis of myo-
cardial cells, which may be initially absent in case of type
II heart damage chemotherapy. In addition, their half-
life is relatively short (2 h) [7], requiring the collection
of multiple blood samples during the treatment, which is
hardly feasible during outpatient’s treatments.
N-terminal brain natriuretic peptides (NT-proBNP)

are released by left ventricular cardiomyocytes in
response to wall stress. This biomarker has well-
established clinical utility in CHF. NT-proBNP elevation
during chemotherapy in breast cancer patients has been
related to asymptomatic decline in left ventricular ejec-
tion fraction (LVEF) [8–11]. Nevertheless, studies evalu-
ating the predictive role of NT-proBNP in the detection
of chemotherapy-related cardiac dysfunction (CRCD)
gave conflicting results and the threshold of positive
tests has not been determined yet [12, 13].
Soluble ST2 (sST2), a member of the interleukin-1

receptor family, is a more recently discovered biomarker
of cardiovascular stress. Two studies have demonstrated
that high levels of sST2 may be a strong predictor of car-
diovascular death in CHF patients [14, 15]. Furthermore,
sST2 has a higher discrimination power than NT-
proBNP in CHF patients [16], and in community-based
populations free of cardiovascular disease [17].
MicroRNAs (miRNAs) are approximately 22-nucleotide

long RNAs that regulate gene expression by binding to
and consequently silencing target messenger RNAs. They
are involved in multiple biological processes including cell
proliferation, differentiation and apoptosis. All cell types
release miRNAs in peripheral blood under both normal
and pathological conditions. Therefore, circulating miR-
NAs are promising biomarkers for the early and minimally
invasive diagnosis of cancer and its treatment-related
cellular toxicity [18–24].
The use of anthracyclines in the treatment of breast

cancer is limited by dose-dependent cardiotoxicity,
which eventually may lead to CHF. The aim of the
present study is to evaluate the variations of innovative
biomarkers during and after anthracycline-containing
chemotherapy. Plasma levels of cTnT, NT-proBNP, sST2
and 10 selected miRNAs were measured in a total of 45
breast cancer patients receiving anthracyclines as part of
their neoadjuvant chemotherapy (NAC). The neoadju-
vant setting was selected because patients were
treatment-naïve, so that markers levels were not modi-
fied by other therapies such as surgery or radiotherapy.

Methods
Population
Ethics approval was obtained from the local Institutional
Review Board and the Ethic Committee (Ethical Com-
mittee of the Faculty of Medicine of the University of

Liège). This prospective study was performed in compli-
ance with the Declaration of Helsinki. Patients with
treatment-naive primary breast cancer (n = 45, median
age = 49 years, range = 26–78 years) were recruited pro-
spectively at CHU of Liège (Liège, Belgium) from 7/2011
to 9/2014. All patients signed a written informed con-
sent form. Biomarker results were not communicated to
the treating physicians and consequently did not lead to
any change in treatment. Patients and tumor characteris-
tics are summarized in Table 1.

Chemotherapy treatment
All patients received NAC consisting in the sequential
use of 4 courses of alkylating (cyclophosphamide) and
anthracycline-based (epirubicin) chemotherapy followed
by 9 to 12 weeks of tubulin-binding agent (paclitaxel)
based chemotherapy. Seventeen patients suffering from
HER2 amplified breast cancer received, in addition,
targeted therapy (trastuzumab or lapatinib) administered
concomitantly with tubulin-binding agents.

Plasma collection
Blood samples were drawn at baseline before NAC (NA1),
after 2 cycles of anthracycline-containing chemotherapy
(NA2), at the end of the chemotherapy 8 days before sur-
gery (D8) and 3 months after the surgery (3 M), as shown
in Fig. 1. Plasma was collected in 9 ml EDTA tubes, was
prepared within 1 h by retaining supernatant after double
centrifugation at 4 °C (10 min at 815 g and 10 min at
2500 g) and was stored at − 80 °C.

Plasma concentration of cardiac-specific troponins T,
N-terminal brain natriuretic peptides and soluble ST2
cTnT and NT-proBNP were assessed in plasma with
highly sensitive third-generation quantitative test (elec-
trochemoluminescence method ECLIA, Roche Diagnos-
tics, Belgium), as recommended by the manufacturer.
Detection limit was 14 μg/L for cTnT and 400 ng/mL
for NT-proBNP.
The concentrations of sST2 in the plasma were mea-

sured using a IL-1 R4/ST2 enzyme-linked immunosorb-
ent assay (R&D Systems, United Kingdom), with a mean
minimal detectable dose of 5.1 pg/ml. The inter- and
intra-assay variation was 6% and 5%, respectively.

Selection, extraction and qRT-PCR of microRNAs
Based on previous publications, potentially interesting
miRNAs in the context of the CRCD were selected.
Three groups of miRNAs were determined: i) Acute
myocardial infarction (AMI)-related miRNAs, including
miR-1, miR-133a, miR-133b and miR-499-5p [25]; ii)
CHF-related miRNAs, including miR-208a, miR-208b,
miR-126-3p, miR-199a-3p and miR-423-5p [26–28]; and
iii) miR-34a-5p, which is highly upregulated after
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anthracycline treatment [23] and correlated with cardiac
aging and function [29].
Essential MIQE (Minimum Information for Publica-

tion of Quantitative Real-Time PCR Experiments) guide-
lines were followed during specimen preparation [30].

Circulating miRNAs were purified from 100 μl of
plasma with the miRNeasy mini kit (Qiagen, Germany)
according to the manufacturer’s instructions. The stand-
ard protocol was adapted on the basis of Kroh’s recom-
mendations [31]. MS2 (Roche, Belgium) was added to
the samples as a carrier, cel-miR-39 and cel-miR-238
were added as spike-ins. RNA was eluted in 50 μl of
RNase-free water at the end of the procedure.
Reverse transcription was performed using the miR-

CURY LNA™ Universal RT microRNA PCR, polyadeny-
lation and cDNA synthesis kit (Exiqon, Denmark).
Quantitative PCR was performed according to the man-
ufacturer’s instructions on custom panels with the 10
selected miRNAs (Pick-&-Mix microRNA PCR Panels,
Exiqon). Controls included the reference genes described
in the text, inter-plate calibrators in triplicate (Sp3) and
negative controls.
All PCR reactions were performed on a LightCycler

480 Real-Time PCR System (Roche, Belgium). miRNAs
were considered for analysis with a quantification cycle
(Cq) value < 36.

Data analysis
Analyses were conducted using the 2-ΔCq method (ΔCq
= Cqsample – Cqreference gene) for each sample to obtain a
normalized expression value of the miRNAs [32]. Data
were then normalized using the ΔCq method as recom-
mended by Mestdagh et al. [33]. The mean Cq of the 3
most stable miRNAs across NAC-treated patients (miR-
484, miR-652 and miR-148b according GeNorm analysis
of previous published data) [23] was used as reference
genes in addition to the cel-miR-39 spike-in.
Statistical analyses were performed with the GraphPad

Prism software, version 6.00 (GraphPad Software, USA)
(www.graphpad.com/scientific-software/prism/). The nor-
mal distribution of values was evaluated with the D’Agos-
tino-Pearson omnibus and Shapiro-Wilk tests. To
compare marker levels, Student’s t-test (two-tailed) and
non-parametric two-sided Wilcoxon or Mann-Whitney U
tests were used. Correlations between continuous vari-
ables were assessed with the Spearman test. Statistical sig-
nificance was established as p < 0.05 (*), p < 0.01 (**), p <
0.001 (***) or p < 0.0001 (****).

Results
Neoadjuvant chemotherapy induces high plasma level
expression of cardiac-specific troponins T, N-terminal
brain natriuretic peptides and soluble ST2
cTnT were initially undetectable in most patients, with a
median level under the detection limit at baseline (NA1
time point). Their levels were then increased with a 1.3-
fold at NA2 (p < 0.0001), a 2-fold at D8 (p < 0.0001) and
a 1.2-fold at 3 M (p < 0.01). An elevation in cTnT levels

Table 1 Characteristics of patients and tumors (NA = not assessed,
IDC = invasive ductal carcinoma, ILC = invasive lobular carcinoma)

Characteristics Primary breast cancer
patients (n = 45)

Median age (range) (y) 49 (26–78)

Estrogen receptor [n (%)] 29 (64)

Progesterone receptor [n (%)] 26 (58)

HER2 [n (%)] 17 (38)

Ki67 (median ± SD) (%) 30 ± 24

Initial T staging [n (%)]

NA 0

1 4 (9)

2 23 (51)

3 7 (16)

4 11 (24)

Lymph node involvement [n (%)] 33 (73)

Tumor node metastasis (TNM) stage [n (%)]

NA 0

1 0

2 26 (58)

3 19 (42)

Scarff-Bloom-Richardson grading system [n (%)]

NA 0

1 0

2 19 (42)

3 26 (58)

Histologic subtype [n (%)]

NA 0

IDC 42 (93)

ILC 3 (7)

Others 0

Lymphovascular invasion [n (%)] 9 (20)

Cardiovascular risk factors [n (%)]

Smoking 12 (27)

Type 2 diabetes 4 (9)

High blood pressure 9 (20)

Obesity 7 (16)

Dyslipidemia 21 (47)

Chronic kidney disease 2 (4)

Left ventricular ejection fraction (median ± SD) (%)

Before chemotherapy 64 ± 11

After chemotherapy 60 ± 29
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was demonstrated in 42% of patients at NA2, 73% at D8
and 47% at 3 M (Fig. 2, Table 2).
NT-proBNP were found to be 1.4-fold elevated at NA2,

1.8-fold elevated at D8 and 1.6-fold elevated at 3 M (p <
0.01 for each time point). The concentrations of NT-
proBNP were increased in 58% of patients at NA2 and
60% of patients at D8 and 3 M (Fig. 2, Table 2).
sST2 levels were increased by 1.4-fold in 64% of

patients at NA2 (p < 0.001), by 1.6-fold in 87% of pa-
tients at D8 (p < 0.0001) and by 1.3-fold in 69% of
patients at 3 M (p < 0.001) (Fig. 2, Table 2).

Cardiac heart failure-related microRNAs plasma levels
significantly increase after neoadjuvant chemotherapy
None of the AMI-related miRNAs (miR-1, miR-133a,
miR-133b, miR-499-5p) were significantly deregulated
during and after the NAC.
Significant increases were found regarding the levels of

CHF-related miRNAs. The concentrations of miR-126-
3p were elevated by 1.3-fold in 76% of patients at NA2
(p < 0.0001) and in 71% of patients at 3 M. This miRNA
was not significantly deregulated at D8 (p > 0.05). miR-
199a-3p levels were found elevated by 1.2-fold in 64% of
patients at NA2 (p < 0.01) but were not modified at D8
and 3 M time points. miR-423-5p levels were increased
by 1.6-fold in 78% of patients at NA2 (p < 0.0001), by
1.5-fold in 78% of patients at D8 (p < 0.0001) and by 1.3-
fold in 73% of patients at 3 M (p < 0.01). On the other
side, miR-208a and miR-208b levels were not deregu-
lated during the NAC (Fig. 3, Table 2).
Finally, miR-34a-5p was confirmed to be sensitive to

anthracycline-based chemotherapy with a 24.3-fold in-
crease at NA2 in 98% of patients. miR-34a-5p levels
were also increased by 9-fold at D8 and 4.1-fold at 3 M,
in 89% of patients. The increase of miR-34a-5p was
highly significant at each time point (p < 0.0001) (Fig. 3,
Table 2).

Correlations between cardiac biomarkers and miRNAs
Relationships between changes in the plasma levels of
the biomarkers were evaluated (see Additional file 1 for
the statistical analyses). The elevation of cTnT was

significantly correlated with that of NT-proBNP (p <
0.01, r = 0.46) and sST2 (p < 0.001, r = 0.48) at D8. No
correlation was found between the elevation of NT-
proBNP and sST2. The only correlation observed be-
tween miRNAs and the other biomarkers concerns the
increase of cTnT and miR-199a-3p at D8 (p < 0.05, r =
0.31), and the rise of sST2 that is inversely correlated
with that of miR-423-5p at 3 M (p < 0.05, r = − 0.29).

Correlations between biomarkers variations and clinical
data
All patients had normal LVEF before starting chemo-
therapy. A significant decline in LVEF, defined as
≥10% decline from baseline to ≤55% [34], has been
noted in 7 patients (16% of the cohort), on average
20 months after the initial ultrasound. Of these 7
patients, 6 had HER2-positive breast cancer and
degraded their LVEF during or after anti-HER2 treat-
ment. One of these patients finally developed a CHF,
with an LVEF evaluated at 33%, while she was still
under adjuvant anti-HER2 treatment.
Biomarkers variations were compared between the 2

groups of patients (normal vs. decreased LVEF). No sig-
nificant differences for cTnT, NT-proBNP and sST2
were found. However, the patient who developed a CHF
had higher-than-average values for these 3 markers, par-
ticularly at the end of chemotherapy for sST2 (D-8 time
point, 3.64 vs. 1.53 pg/mL, SD = 0.84) and 3 month after
surgery for NT-proBNP (3 M time point, 6.54 vs.
1.55 ng/mL, SD = 1.14). For miRNAs, the elevation of
miR-423-5p directly after anthracyclines (NA2 time
point) was significantly greater in patients with
decreased LVEF (p = 0.045, 1.28-fold, Fig. 4). The patient
who developed a CRCD also had a higher elevation of
miR-423-5p than the mean of other patients (2.39 vs.
1.54-fold, SD = 0.65).

HER2-targeted therapies do not modify cardiac
biomarkers plasma levels
In our cohort, 17 patients with HER2-positive breast
cancer received HER2-targeted therapy during the neo-
adjuvant setting (trastuzumab or lapatinib). HER2-

Fig. 1 Blood samples were drawn at baseline before neoadjuvant chemotherapy (NA1), after 2 cycles of anthracycline-containing chemotherapy
(NA2), at the end of the chemotherapy 8 days before surgery (D8) and 3 months after the surgery (3 M)
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targeted therapies are associated with a modest risk of
reversible cardiotoxicity, which is typically observed as
an asymptomatic decrease in left ventricular function
[35]. We did not observe any difference in biomarker

modifications in these patients as compared with HER2-
negative patients (see Additional file 1).

Discussion
cTnT and NT-proBNP are both important biomarkers in
heart diseases. Our study finds a significant increase in
these biomarkers at the end of the NAC for breast can-
cer, and potentially identifies a group of patients at risk
of CRCD.
Compared with cTnT and NT-proBNP, sST2 levels

increase in a higher percentage of patients directly after
anthracyclines-based chemotherapy (NA2 time point).
As sST2 is strongly associated with CHF severity and
outcome [14, 15], its blood concentration during chemo-
therapy may be an important predictor of long-term
CRCD. Nonetheless, sST2 lacks tissue specificity and its
levels could be elevated in case of breast cancer [36, 37].
In fact, Lu et al. previously reported elevated sST2 levels
in the serum of breast cancer patients, with a decrease
after tumor surgery [36]. All our patients experienced a
complete - or at least a partial - pathologic response to
the NAC, and were free of disease after 3 months. If
tumor cells indeed secreted plasma sST2, we would
expect a progressive decrease in its levels as the tumor
responds or after the surgery. On the contrary, plasma
levels of sST2 remain significantly higher, compared with
baseline, after the chemotherapy and even 3 months
after breast surgery (D8 and 3 M time points, Fig. 2).
Apoptotic cancer cells could also have released plasma
sST2. If this was the case, we should detect a correlation
between sST2 upregulation and tumor response to
chemotherapy, but such a correlation was not found.
Based on these results, we think that sST2 elevation is a
consequence of the chemotherapy rather than a reflec-
tion of the tumor presence and/or response.
Among selected miRNAs, we demonstrated the

increase of 3 miRNAs related to the diagnosis and prog-
nosis of CHF: miR-126-3p, miR-199a-3p, miR-423-5p.
Vascular endothelium-enriched miR-126 has been asso-
ciated with coronary artery disease and CHF. Reduced
levels were observed in the acute phase [26, 28, 38],
followed by normalization after clinical improvement
[26, 28]. CRCD does not necessarily imply tissue
ischemia [18] and an increase, rather than a decrease, of
miR-126-3p concentrations was found after the chemo-
therapy. As miR-126-3p is enriched in endothelial cells
and promotes blood vessels formation [39], its upregula-
tion could be a response to cellular stress and anti-
angiogenic activity of the chemotherapy [40]. In the
same way, miR-199a-3p levels also decreased in acute
heart failure [41], while our results have shown an eleva-
tion after chemotherapy. miR-199a-3p is largely
expressed in cardiomyocytes and its myocardial levels
are upregulated in hypertrophic hearts [42], which is

Fig. 2 Cardiac-specific troponins T (cTnT), N-terminal natriuretic brain
peptides (NT-proBNP) and soluble ST2 (sST2) relative levels (mean
fold change) during the neoadjuvant chemotherapy in 45 breast
cancer patients. Comparisons between the initial and subsequent
time points were calculated using the Wilcoxon tests
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sometimes observed in CRCD [18]. After myocardial
infarction in mice, miR-199a promotes cardiomyocytes
regeneration and recovery of cardiac functional parame-
ters [43]. Cardiomyocytes could therefore release miR-
199a-3p under the effect of the chemotherapy to play a
cardio-protective role, though this hypothesis requires
further explorations. Plasma levels of miR-423-5p were
highly increased immediately after anthracyclines (NA2
time point), especially in patients with decreased LVEF
(Fig. 4). Two recent studies have unveiled that miR-423-
5p was enriched in the blood of patients suffering from
CHF, with a high diagnosis power and a significant
correlation with CHF prognostic markers [27, 44]. In
another study, circulating miR-423-5p levels were able
to predict long-term mortality of CHF patients [45].
Based on these reports and our findings, we believe that
the diagnostic, prognostic and predictive roles of miR-
423-5p in CRCD should be further explored.
Circulating miR-34a-5p was also studied for multiple

reasons. Boon et al. demonstrated that miR-34a was

involved in the alteration of cardiac contractile function
after AMI, by inducing telomere attrition [29]. Desai et
al. evaluated miR-34a expression in myocardial tissues of
mouse exposed to increasing doses of doxorubicin. Un-
like troponins, upregulation of miR-34a was an early
event inside the cardiac tissue and did not involve prior
necrosis of cardiomyocytes [20]. Our study indicates a
strong increase in miR-34a plasma levels immediately
after anthracycline-based chemotherapy, followed by a
gradual decrease. The tumor suppressor p53 is known to
promote both growth arrest and apoptosis upon DNA
damage [46]. miR-34a is directly induced by p53 to exert
anti-tumor functions [47]. This might explain the miR-
34a upregulation observed after anthracyclines, which
cause DNA breaks and p53 activation [48]. The subse-
quent tubulin-binding agent based chemotherapy does
not act via DNA breaks but by the disruption of micro-
tubule function. Plasma miR-34a increase could there-
fore be specific of anthracyclines chemotherapy,
explaining the gradual decrease of miR-34a levels after

Table 2 Percentage of significant increase in markers levels at each time point of the chemotherapy treatment

Time points cTnT NT-proBNP sST2 miR-126-3p miR-199a-3p miR-423-5p miR-34a-5p

NA2 42% 58% 64% 76% 64% 78% 98%

D8 73% 60% 87% – – 78% 89%

3 M 47% 60% 69% 71% – 73% 89%

Fig. 3 The relative level of microRNAs (mean fold change) during the neoadjuvant chemotherapy (NAC) in breast cancer patients. Plasma levels
of microRNAs were determined by RT-qPCR in the plasma of 45 NAC-treated patients. Comparisons between the initial and subsequent time
points were calculated using the Wilcoxon tests
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this part of the treatment. The concentration of miR-
34a-5p may help for the identification of patients at risk
of developing CRCD, however, the threshold of a posi-
tive test is still unknown. One problem may be the
significant elevation in a high percentage of patients
although most of them will not develop any cardiotoxi-
city. Furthermore, miR-34a is broadly expressed in nor-
mal tissues and this miRNA may thus lack specificity.
The increase of miR-34a levels after anthracyclines was
not correlated with the increase of troponins. This
observation is in contradiction with our previous study
that was performed on a smaller number of patients
[23], probably because of the limited statistical power.
Globally, the elevation of the other markers (cTnT, NT-
proBNP, sST2) was poorly correlated with that of CHF-
related miRNAs, which could imply that these molecules
provide distinct information about CRCD.
Interpretation of our results is limited for several rea-

sons. Firstly, the small number of patients, with only one
who developed a clinical CRCD, does not allow defini-
tive conclusions to be drawn. In addition, majority of
patients experienced an asymptomatic decline in LVEF
in the context of anti-HER2 therapy, and we know that
the cardiotoxicity mechanism is different from that of
anthracyclines [18]. As cardiomyopathy is a late side
effect of the chemotherapy, a long-term follow-up is
required. The biomarkers we identified (sST2, miR-126-
3p, miR-199a-3p, miR-423-5p and miR-34a-5p) should
therefore be studied in a larger prospective trial with
regular and prolonged cardiac monitoring. These bio-
markers may be useful either as a predictive marker of
cardiotoxicity at the time of treatment or as a new tool

for the early identification of late side effects before the
patients have clinical symptoms. Importantly, appropri-
ate treatment of CRCD may prevent irreversible conse-
quences if initiated early.

Conclusion
We identified sST2, miR-126-3p, miR-199a-3p, miR-
423-5p and miR-34a-5p as innovative biomarkers for
potential early and sensitive detection of the
cardiomyopathy associated with anthracycline-based
breast cancer chemotherapy.

Additional file

Additional file 1: Statistical analyses. (A) Correlations Spearman tests
between the fold change of cTnT, NT-proBNP, sST2, miR-126-3p, miR-
199a-3p, miR-423-5p and miR-34a-5p at different time point of the
neoadjuvant chemotherapy in 45 breast cancer patients. (B) Comparison
between the increase of the markers at the end of the chemotherapy
(NA1 vs. D8 and NA1 vs. 3 M) in patients treated (n = 17) or not (n = 28)
with HER2 targeted therapy, using Mann-Whitney tests. (XLSX 50 kb)
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