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AZGP1 inhibits soft tissue sarcoma cells
invasion and migration
Jiayong Liu1, Haibo Han2, Zhengfu Fan1, Marc El Beaino3, Zhiwei Fang1, Shu Li1 and Jiafu Ji4,5*

Abstract

Background: One of the major challenges in soft tissue sarcomas is to identify factors that predict metastasis. AZGP1
is a potential biomarker of cancer progression, but its value in soft tissue sarcomas remains unknown. The aim of
this study is to determine the expression level of AZGP1 in soft tissue sarcomas, and to analyze its influence on
tumor progression.

Methods: AZGP1 immunohistochemistry (IHC) and RT-PCR were performed in 86 patients with soft tissue sarcomas.
The relationships between AZGP1 levels and clinicopathologic features were analyzed. In vitro experiments were
performed using fibrosarcoma (HT1080), rhabdomyosarcoma (RD) and synovial sarcoma (SW982) cell lines to
corroborate our findings. We used lentiviral over-expression and knockdown assays to examine how changes of
AZGP1 expressions might affect cellular migration and invasion.

Results: The quantitative RT-PCR results showed that AZGP1 expression was negatively correlated with metastasis
and overall survival in soft tissue sarcomas (p < 0.05). Immunohistochemical staining showed lower expression of
AZGP1 in patients with metastasis than in those without. Kaplan-Meier survival analysis showed that patients with
low expression of AZGP1 had shorter overall (p = 0.056) and metastasis-free survivals (p = 0.038). These findings
were corroborated by our in vitro experiments. Over-expression of AZGP1 significantly decreased RD cellular
migration and invasion by 64% and 78%, respectively. HT1080 cells migration was inhibited by 2-fold, whereas
their invasion was repressed by 7-fold after AZGP1 knockdown.

Conclusions: Our study reveals that reduced AZGP1 expression correlates with in vitro cellular migration and
invasion. In vivo, it is associated with higher metastatic risk and shorter survival in patients with soft tissue sarcomas.
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Background
About 40% of individuals with intermediate- or high-
grade soft-tissue sarcoma (STS) experience distant relapse,
which directly determines the prognosis and affects the
therapeutic strategy in these diseases [1, 2]. No gene has
been, however, consistently found to be associated with
metastasis or to influence prognosis in these tumors. Des-
pite being a major challenge, the identification of such
biomarker might be of both prognostic and therapeutic
value in STSs.

GEO (Gene Expression Omnibus) is a public reposi-
tory for high-throughput screening of potential candi-
date genes associated with tumorgenesis and metastasis.
Here, we analyzed the GDS2736 data consisting of 105
samples including 3 cases of lipoma, 3 cases of well dif-
ferentiated liposarcoma and 99 cases of other types of
sarcomas. We identified three candidate genes correlated
with sarcoma malignancy, including LOXL2, PARP1 and
AZGP1. We then measured the expression of these
genes in 81 cases of sarcoma samples by Q-PCR, and
analyzed the relationship between their expression and
tumor metastasis and overall survival. Of the three can-
didates, AZGP1 was found to be significantly associated
with metastasis and 4-year overall survival.
Zinc alpha2 glycoprotein (AZGP1) was initially found

to be associated with lipid degeneration in cachexia and
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obesity [3, 4]. Recent studies have demonstrated a
metastatic and prognostic role of this protein in several
malignancies, including prostate, breast, lung, colorec-
tum and liver carcinomas [5–12]. Nevertheless, no
studies have been undertaken to evaluate the value of
AZGP1 in STSs.
The aim of the current study was to measure, by RT-

PCR and IHC, the levels of AZGP1 in STS samples,
and to detect their association with prognosis and me-
tastasis in such diseases. We also investigated the ef-
fect(s) of AZGP1 under- or over-expression on cellular
invasion and migration of some STS cell lines to cor-
roborate our findings.

Methods
Prior to this study, we downloaded the GEO database
from Pubmed for analysis of the relation between
AZGP1 and metastasis in sarcomas. Involving 105 STS
microarray analysis, GDS2736 indicated that AZGP1
expression in sarcomas with high metastatic potential
was significantly lower than that in lipoma and well-
differentiated liposarcoma (WDLPS) with no or rare
metastasis (Fig. 1a).

Patients and tissue specimens
Tumor samples from 86 patients with primary STS, who
underwent surgery between 2007 and 2014, were

obtained from the tissue bank of our institution and snap-
frozen in liquid nitrogen immediately after surgical resec-
tion until RNA extraction. Paraffin-embedded specimens
were used for IHC staining. To be included in our study,
cases should be histologically diagnosed as grade 2 or 3
according to the FNCLCC grading system, with no pre-
operative chemotherapy. Metastasis, overall (OS), 4-year,
metastasis-free (MFS), as well as disease-specific (DSS)
survivals, were monitored with a mean follow-up of
45 months (range 23–83 months). Sample acquisition was
approved by the Ethics Committee of the Hospital. Writ-
ten informed consent was obtained from all patients.

RNA extraction and quantitative RT-PCR
Quantitative RT-PCR was used to detect the expression
levels of AZGP1 mRNA in 81 cases of tumor tissues,
since 5 cases were excluded due to RNA extraction failure.
Total RNA was extracted from frozen tissues containing
> 80% STS cells by RNA Extraction Kit (QIAgen) accor-
ding to the manufacturer’s instructions. Quantity and
quality of RNA was confirmed by a NanoDrop 2000 Spec-
trophotometer (Thermo Fisher Scientific, Wilmington,
DE, USA). RNA purity was determined by an OD260/280
value between 1.8 and 2.0. For mRNA expression, cDNA
was obtained from 2 μg total RNA using Moloney murine
leukemia virus reverse transcriptase (M-MLV RT) (Invi-
trogen, Carlsbad, CA) with oligodT15 primers. GAPDH
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Fig. 1 Down-regulation of AZGP1 mRNA was associated with metastases in STS specimens. a AZGP1 expression obtained from Gene Expression
Omnibus (GEO) database of on Pubmed (GDS2736) was analyzed. b and c qPCR analysis of AZGP1 expression in 81 cases of STS specimens.
d Kaplan-Meier curves for the overall survival (OS) of patients were compared between groups with high and low levels of AZGP1. Horizon lines
in (b and c) indicate the median values for each group
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mRNA was used as an endogenous control to normalize
for AZGP1 mRNA expression. qRT-PCR was performed
using SYBR® Green PCR Master Mix (TOYOBO) on the
ABI 7500 Fast (Applied Biosystems). Data were calcu-
lated as relative quantification to GAPDH, based on
calculations of 2−△Ct where −△Ct = Ct (Target) – Ct
(Reference). Fold change was presented by the 2−△△Ct

method [13]. Sequences of all primers are listed on
Additional file 1: Table S1.

Immunohistochemistry
Immunohistochemical staining for AZGP1 was per-
formed in soft tissue sarcoma tissue microarray (TMA)
by a standard two-step method. Briefly, the TMA sec-
tions were dried overnight at 37 °C, deparaffinized in xy-
lene and rehydrated through a series of graded alcohol.
Endogenous peroxidase activity was blocked with 3%
hydrogen peroxide for 20 min. The slides were boiled in
10 mM sodium citrate buffer pH 6.0 by a pressure
cooker for 10 min. After washing three times with phos-
phate buffered saline (PBS; 0.01 mol/L; pH = 7.4), the
slides were incubated with 5% non-fat milk in PBS for
30 min to reduce nonspecific antibody binding. Subse-
quently, slides were incubated overnight at 4 °C with the
rabbit polyclonal antibody against human AZGP1
(Abcam; Cambridge, UK; 1:100 dilution). After rinsing,
the slides were incubated with goat anti-rabbit antibody
(Jackson ImmunoResearch Laboratories, West Grove, PA)
at a 1:100 dilution in PBS for 1 h at room temperature,
and stained with 3,3-diaminobenzidine tetrahydrochloride
(DAB). Finally, they were counterstained with Mayer’s
hematoxylin, dehydrated in graded alcohols followed by
xylene. Known immunostaining-positive specimens were
used as positive controls and slides immunoreacted with
PBS were used as the negative controls.

Western blotting
Total protein from cells was extracted in RIPA lysis buf-
fer and quantified using BCA assay. 20 μg protein from
each sample was separated by 10% SDS polyacrylamide
gel electrophoresis and electroblotted onto polyvinyli-
dene difluoride (PVDF) membranes (Millipore, Bedford,
MA). The membranes were blocked in 5% non-fat milk
for 1 h, washed three times with Tris-buffered saline
containing 1% Tween 20 (TBST) at room temperature
and then incubated overnight at 4 °C with the rabbit
polyclonal antibody against human AZGP1 (Abcam;
Cambridge, UK; 1:2000 dilution). After washing with
TBST, membranes were incubated with secondary anti-
bodies at room temperature for 1 h (goat anti-rabbit IgG,
1:10,000 dilution, Jackson ImmunoResearch Laboratories).
Following washing with TBST, immunoreactivity was
visualized by enhanced chemiluminescence reagents
(Millipore). GAPDH served as internal reference.

Cell culture
Three human STS cell lines (RD ATCC® Number: HTB-
166™, SW982 ATCC® Number: HTB-93™ and HT1080
ATCC® Number: CCL-121™) were purchased from
American Type Culture Collection. RD and HT1080
cells were cultured in RPMI-1640 medium (Gibco, CA,
USA) containing 10% fetal bovine serum (FBS; Gibco) at
37 °C with a humidified 5% CO2 atmosphere. SW982
cells were cultured in Leibovitz’s L-15 medium (Gibco,
CA, USA) containing 10% FBS.

Vector construction
All constructs were made by standard DNA recombin-
ation techniques. The human AZGP1 (NM_001185.3)
sequences were amplified by PCR from cDNA using
primers listed in Additional file 1: Table S1, and subse-
quently cloned into lentiviral shuttle vector plenti6 (Invi-
trogen). For AZGP1 knockdown constructs, two short
hairpin RNA (shRNA) sequences, including shRNA150
(target sequence: 5’-GGCTCACTCAATGACCTCCAG-
3′), shRNA368 (target sequence: 5’-GTGAGATCGA
GAATAACAGAA-3′) and scramble control sequence of
5’-GCTTCGCGCCGTAGTCTTA-3′ were designed and
cloned into lentiviral shuttle plenti6-U6 vector.

Cell transfection
Lentiviral constructs were transfected into human HEK
293 T cells (ATCC® Number: CRL-11268™) with the
ViraPower Packaging Mix (Invitrogen) to generate lenti-
virus. For infection, RD cells were seeded into 6-well
plates at a density of 5 × 104 cells/well, and infected with
AZGP1 over-expression lentivirus or empty lentivirus as
control. HT1080 cells were infected with shRNA lentivirus
or scramble lentivirus as control. Antibiotic-resistance
cells were selected by 5 μg ml−1 blasticidin (Invitrogen)
and used for subsequent experiment.

Wound healing assay
Cell spreading was analyzed using the wound healing
assay. RD cell layers at 90% density in 24-well plates
were scratched with a sterile 200 μL pipette tip and then
washed with PBS. After 48 h, spreading cells were ob-
served under the microphotography. Assays were re-
peated three times for each clone.

Transwell migration and invasion assay
Cell migration or invasion assay was performed in a 24-
well Boyden chamber with or without Matrigel as de-
scribed elsewhere [14]. The cells on the lower surface of
the membrane were stained with crystal violet after fix-
ation with 2% methanol for 5 min. Photographs of four
randomly selected fields were taken to indicate cells that
migrated to the other side of the membrane, and cell
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numbers were counted under a microscope at 200×
magnification. Each test was performed in triplicate.

Statistical analysis
We calculated OS, 4-year, MFS and DSS using Kaplan-
Meier analysis. We defined OS as the period between
the date of the definitive surgery and the date of death,
the 4-year survival as the period between the date of the
definitive surgery and 4 years after, MFS as the interval
between the date of the definitive surgery and the ap-
pearance of metastasis, and DSS as the date between the
date of the definitive surgery and the time of death
resulting from the disease itself. The effect of AZGP1
expression on Kaplan Meier survival curves was evalu-
ated by the Log Rank test.
Mann Whitney and Kruskal Wallis tests were used to

detect any association between AZGP1 mRNA expres-
sion and various pathological features (gender, age,
TNM classification, recurrence, metastasis, and 4-year
survival) between 2 or more groups, respectively.
Univariate analysis between pathological features (age,

gender, AZGP1 expression, tumor size and histological
grade) and metastasis or disease-specific survival was de-
termined using Pearson’s correlation analysis. Multivari-
ate analysis between the same variables was evaluated by
the Cox regression model. Unpaired student’s T-test was
performed to evaluate cell migration/invasion after gene
modulation. All analyses were performed with SPSS®

software 23.0 program for Windows® (SPSS Inc., Chicago,
IL, USA). The statistical significance between groups was
set at a p-value < 0.05.

Results
Patients with low AZGP1 expression had more metastasis
and less 4-year survival
qRT-PCR results showed that levels of AZGP1 in pa-
tients with metastasis were 4 times lower than in those
without (Fig. 1b and Table 1, median value 0.132 vs.
0.456, p = 0.0113). The levels of AZGP1 in patients with
low 4 years’ survival were 2 times lower than in those
who lived more than 4 years (Fig. 1c and Table 1, me-
dian value 0.148 vs. 0.336, p = 0.038).

Patients with low expression of AZGP1 had shorter
overall survival
According to the median value of AZGP1 expression
(0.2014) in STS samples, patients were divided into low
and high expression groups. Kaplan-Meier survival ana-
lysis showed that patients with low AZGP1 expression
had significantly shorter overall survival (OS) than those
with high expression (Fig. 1d, 75th percentile was 16 vs.
30 months, p < 0.05).

AZGP1 expression was related to metastasis and disease-
specific mortality
To further analyze the relationship between AZGP1
level and metastasis or survival of STS patients, we
performed IHC staining analysis in TMA with 86
cases of STS tissue samples (Fig. 2a). Patients were
divided into low (negative and weak expression) and
high expression groups (median and strong expres-
sion). Pearson’s correlation analysis showed that
AZGP1 expression negatively correlates with STS me-
tastasis and disease-specific mortality (Fig. 2b; r =
−0.218, p = 0.044; r = −0.148, p = 0.034, respectively).
Consistent with our findings, univariate analysis
showed a higher average hazard ratio (HR) for metas-
tasis and disease-specific mortality (Table 2; HR =
3.731, p < 0.05; HR = 2.481, p < 0.05, respectively) in
patients with low AZGP1 expression. The results sug-
gest that patients with low expression of AZGP1 are
more prone to metastasis and disease-specific death.
Kaplan-Meier survival analysis suggested that pa-

tients with low AZGP1 expression exhibited signifi-
cantly shorter OS and MFS than those with high
expression (Fig. 2c and d, 75th percentile was 15 vs.
30 months for OS, p = 0.046; 6 vs. 18 months for
MFS, p = 0.038). Multivariate survival analysis using
Cox’s regression model, however, failed to identify
AZGP1 expression as an independent prognostic fac-
tor (data not shown). Consistent with our qRT-PCR
results, these data also suggested that low expression
of AZGP1 protein were correlated with metastasis
and short survival.

Table 1 Univariate correlation between AZGP1 mRNA
expression and pathological features in STS patients

Variable Case no. AZGP1 expression
(RQ: 2-△Ct)

P-valuea

Median

Gender Male 51 0.2271 0.3790

Female 30 0.1890

Age (year) ≤ 60 51 0.2322 0.3679

> 60 30 0.1400

TNM II 35 0.1905 0.7081

III 46 0.2069

Recurrence Absent 51 0.2000 0.8125

Present 30 0.2000

Metastasis Absent 44 0.4560 0.0113

Present 37 0.1320

Survival (year) < 4 61 0.1480 0.0377

≥ 4 20 0.3355
aMann–Whitney test for two groups; Kruskal-Wallis test for more than
two groups
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AZGP1 expression in STS cells
We then analyzed AZGP1 expression in three STS
cell lines (RD, SW982 and HT1080) by qRT-PCR and
Western blot. The results showed that AZGP1 mRNA
and protein levels in RD cells were lower than those
in HT1080 and SW982 cells (Fig. 3a and b).

AZGP1 inhibited cell spreading, migration and invasion in
RD cells
In order to document the effects of AZGP1 on cell
movement, we tested the cellular spreading capability by
the wound healing assay, and the cell migration and in-
vasion ability by Transwell assay after ectopic expression
of AZGP1 in RD cells. As shown in Fig. 3c and d, the
expression of AZGP1 was up-regulated significantly after
RD cells infection with AZGP1 lentivirus. Following the
increase in AZGP1 levels, RD cell spreading decreased
compared to that of control cells (Fig. 3e). The migra-
tion and invasion of cells over-expressing AZGP1 were
also decreased by 62% and 81% respectively, compared

with control cells (Fig. 3f–h). These results suggested
that AZGP1 over-expression had an inhibitory effect on
cell spreading, migration and invasion in RD cells.

AZGP1 inhibition promoted migration and invasion in
HT1080 cells
We inhibited the expression of AZGP1 using small hair-
pin RNA (shRNA) in HT1080 cells. As shown in Fig. 4a
and b, the expression of AZGP1 mRNA and protein was
decreased by 55% for sh150 and 80% for sh368 compared
with the control (scramble oligo). As demonstrated by
Transwell assay (Fig. 4c), the number of migrated cells
was increased by 3.1 fold (Fig. 4d), and the number of in-
vasive cells was enhanced by 5.2 times (Fig. 4e) after
knockdown of AZGP1 expression in HT1080 cells by
sh368 lentivirus. These findings were in accordance with
those inaugurated from the RD cells experiments, and
suggested that AZGP1 inhibition promoted cell migration
and invasion.
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Fig. 2 Down-regulation of AZGP1 protein was associated with metastases and short survival in STS specimens. a AZGP1 expression levels in STS
specimens were determined by IHC staining. b Pearson’s correlation analysis of AZGP1 expression levels and metastasis and disease-specific death.
c and d Kaplan-Meier curves for the overall survival (OS) and metastasis-free survivals (MFS) of patients were compared between groups with high and
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Table 2 Univariate analysis between metastasis or death and pathological features in STS patients

Variables Metastasis P Value Death P Value

HR 95%CI HR 95%CI

Age 1.339 0.545–3.289 0.524 0.725 0.289–1.821 0.494

(≥ 60 yr. vs. < 60 yr)

Gender 0.711 0.287–1.762 0.461 0.902 0.362–2.248 0.825

(Male vs. Female)

Tumor size 2.000 0.786–5.088 0.146 3.286 1.202–8.982 0.020

(> 5 cm vs. ≤ 5 cm)

Histological grade 3.750 1.493–9.420 0.005 1.086 1.362–8.712 0.009

(G3 vs. G2)

AZGP1 expression 3.731 1.770–10.204 0.035 2.481 1.022–6.024 0.044

(low vs. high)
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Discussion
Our in vivo and in vitro results suggest that AZGP1 has a
prognostic and a metastatic value in STSs. It has been re-
ported that patients with prostate or lung cancer with low
AZGP1 levels had worse survival compared to those with

high levels [13, 15]. Similarly, absent or weak expression
of AZGP1 was found to be associated with recurrence and
metastasis of prostate cancer patients [10, 12, 16]. In their
recent tissue microarray analysis on 11,152 samples,
Burdelski et al. showed that the prognostic value of
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AZGP1 was comparable to the strongest established
prognostic biomarkers in prostate cancers [12]. To
our knowledge, our study is the first to assess AZGP1
expression levels in STS patients. Consistent with the
available literature in other cancer subtypes, both
qRT-PCR and IHC analyses demonstrated that STS
patients with metastasis or shorter overall survival
had lower AZGP1 levels. Additionally, univariate ana-
lysis indicated that reduced AZGP1 expression was a
risk factor for metastasis and disease-specific death.
AZGP1 over-expression experiments significantly de-
creased STS cell lines migration and invasion, corrob-
orating our in vivo results. Such finding has a high
clinical impact, since no gene or factor has been con-
sistently found to predict prognosis in these diseases.
Although we didn’t evaluate the expression of AZGP1
in normal tissues, data from GSD1282 supported our
results. We analyzed the expression level of AZGP1
in fetal kidney control samples (FK) and clear cell
sarcoma of the kidney (CCSK). Compared with FK
tissues, the expression of AZGP1 in CCSK tissues
was remarkably decreased (median expression, 231.4
vs. 86.2, p = 0.02). Together, these results suggest that
AZGP1 is a potential prognostic marker for STS.
Since multivariate analysis failed to detect such a re-
lationship, further investigations with larger sample
size are needed to validate our findings.
AZGP1 had been known as a protein involved in the

control of fat degradation and energy expenditure [4, 17].
It remains unclear, however, how it participates in the
process of cancer development and progression. In re-
cent years, there were more evidence of a close relation-
ship between lipid metabolism and tumor progression.
Increased lipogenesis has been reported to be associated
with poor prognosis in breast, prostate, and colon cancer
[18–20]. As for sarcomas, Patel et al. found that lipid
droplets accumulate in human malignant peripheral nerve
sheath tumor (MPNST) cell lines and primary human tu-
mors. Inhibition of fatty acid synthesis, which is overex-
pressed in MPNST cells lines, can effectively reduce
MPNST survival and delay tumor growth in vivo [21].
Therefore, decreased AZGP1 expression, which was found
to be more prevalent in metastatic patients in our study,
may increase the process of lipogenesis and affect progno-
sis of STS patients.
Due to the high homology between AZGP1 and MHC

class I sequence and structure, AZGP1 might be in-
volved in tumor proliferation and invasion by different
mechanisms. By binding hydrolases, it activates apop-
tosis and suppresses tumor invasion [22]. It also inhibits
tumor cell proliferation by down-regulating cyclin-
dependent kinase 1, leading to G2/M phase arrest [23].
AZGP1 might also inhibit tumor invasion by suppressing
TGF-β-mediated epithelial-to-mesenchymal transition,

which plays a critical role in cancer progression [24, 25].
Chang et al. reported that AZGP1 may inhibit tumor
growth and metastasis by blocking the mTOR path-
way [14, 26]. In addition, AZGP1 expression was
linked with PTEN deletion and might regulate the
phosphatidylinositol-3 kinase (PI3K/AKT) pathway,
which can trigger a cascade of responses to drive cell
proliferation and tumor progression [27]. Apart from
the aforementioned properties, there is accumulating
evidence to suggest that AZGP1 modulates cell at-
tachment and spreading [28]. Likewise, our results
show that AZGP1 over-expression inhibits RD cell
spreading, migration and invasion, while its inhibition
decreased HT1080 cell migration and invasion. The
exact mechanism for AZGP1-mediated antineoplastic
properties in STSs remains however uncertain, and,
hence, requires further investigations.

Conclusions
In summary, our study demonstrated that low AZGP1
expression was associated with higher invasive and
metastatic cellular potentials in soft-tissue sarcomas.
AZGP1 might constitute a potential prognostic bio-
marker and therapeutic target in such diseases. Further
studies are needed to validate this finding.

Additional file

Additional file 1: Table S1. Primers sequence. The primer names and
sequence for Q-PCR analysis of ZAG and recombinant plasmid construct
were listed in the table. (DOC 34 kb)
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