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Abstract

Background: NRF2 is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway
due to genetic alterations in the KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2 like 2)-CUL3
(cullin 3) axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer
(HNSCQ). The main goal of this study was to identify specific genes regulated by the KEAP1-NRF2-CUL3 axis in HNSCC
patients, to assess the prognostic value of this gene signature in different cohorts, and to reveal potential biomarkers.

Methods: RNA-Seq V2 level 3 data from 279 tumor samples along with 37 adjacent normal samples from patients
enrolled in the The Cancer Genome Atlas (TCGA)-HNSCC study were used to identify upregulated genes using two
methods (altered KEAPT-NRF2-CUL3 versus normal, and altered KEAPT-NRF2-CUL3 versus wild-type). We then used a new
approach to identify the combined gene signature by integrating both datasets and subsequently tested this signature in
4 independent HNSCC datasets to assess its prognostic value. In addition, functional annotation using the DAVID v6.8
database and protein-protein interaction (PPI) analysis using the STRING v10 database were performed on the signature.

Results: A signature composed of a subset of 17 genes regulated by the KEAPT-NRF2-CUL3 axis was identified by
overlapping both the upregulated genes of altered versus normal (251 genes) and altered versus wild-type (25 genes)
datasets. We showed that increased expression was significantly associated with poor survival in 4 independent HNSCC
datasets, including the TCGA-HNSCC dataset. Furthermore, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes,
and PPl analysis revealed that most of the genes in this signature are associated with drug metabolism and glutathione
metabolic pathways.

Conclusions: Altogether, our study emphasizes the discovery of a gene signature regulated by the KEAP1-NRF2-CUL3
axis which is strongly associated with tumorigenesis and drug resistance in HNSCC. This 17-gene signature provides
potential biomarkers and therapeutic targets for HNSCC cases in which the NRF2 pathway is activated.
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Background

Head and neck squamous cell cancer (HNSCC) is the
sixth most prevalent form of cancer. It has a high inci-
dence worldwide, and 90% of cases are histologically
identified as squamous cell carcinomas [1, 2]. HNSCC is
a broad category of cancers that predominantly arise in
the oral cavity, oropharynx, hypopharynx, larynx, soft
tissues of the neck, salivary glands, skin, and mucosal
membranes [3, 4]. The most common causes are the
consumption of tobacco and alcohol, and human papil-
lomavirus infection [5].

NRF2 is the master transcription factor that regulates
the genes involved in antioxidant and detoxification
pathways. Under normal conditions, Kelch like-ECH-
associated protein 1 (KEAP1) negatively regulates the
NRF2 expression by cullin-3 (CUL3)-mediated ubiquiti-
nation and proteasomal degradation [6]. Under oxidative
stress, NRF2 is liberated from the tight control of the
KEAP1/CUL3 complex, is relocated to the nucleus
where it forms heterodimers with small Maf proteins,
and transactivates its downstream genes through binding
with antioxidant responsive elements (AREs) [7]. Gen-
etic alterations such as mutations (gain of function mu-
tations of NRF2 and loss of function mutations in
KEAP1 and CUL3), and copy-number changes (amplifi-
cation of NRF2 and deletion of KEAP1 and CUL3) leads
to oncogenesis and drug- and radio-resistance in differ-
ent types of cancers including HNSCC [8, 9]. Due to the
dysregulated NRF2 activity in different cancers, it is
emerging as a promising therapeutic target in drug dis-
covery [10, 11].

Stacy et al. [12] first reported the increased expression
of NRF2 in HNSCC patients and suggested that NRF2
might be a biomarker. Another report from Huang et al.
[13] found the increased expression of KEAP1 and
NRF2 in oral squamous cell carcinoma. However, in
their report, overall survival analysis of patients with in-
creased expression of KEAP1 and NRF2 did not reveal
significant differences. Recently, The Cancer Genome
Atlas (TCGA) has provided a wealth of information
about KEAP1-NRF2-CUL3 changes in HNSCC patients
[14]. Therefore, examining the molecular mechanisms
involved in these alterations by using publicly available
data may contribute to the development and design of
therapeutic targets for personalized/precision medicine
in subsets of patients. Several emerging studies including
our recent study on lung cancer have identified an
NRF2-regulated gene signature and potential biomarkers
for patient survival and NRF2 activity [15-18].

Given the importance of KEAP1-NRF2-CUL3 changes in
HNSCC, it is important to identify the biomarkers that de-
termine patient survival and NRF2 activity. A recent ana-
lysis on TCGA-HNSCC data revealed that patients with
disruption of the KEAP1/CUL3/RBX1 E3-ubiquitin ligase
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complex have significantly poorer survival than non-
disrupted counterparts [19]. However, their study specific-
ally focused on the data from patients with a disrupted
KEAP1/CUL3/RBX1 complex, but not the data from sam-
ples in which NRF2 was altered. In addition they utilized
302 patients data which contains provisional information in
their study and overall survival analysis was limited to one
cohort. In our study, we restricted the patients samples
number (7 = 279) which were reported in the TCGA publi-
cation [14] and excluded provisional data. Moreover, we
analyzed the TCGA-HNSCC [14] RNA-Seq data and iden-
tified a 17-gene signature that was highly expressed in sam-
ples with altered KEAP1-NRF2-CUL3 compared with both
normal and wild-type counterparts. Further, we showed
that genomic changes in KEAP1-NRF2-CUL3 were key ef-
fectors of the overexpression of genes dependent on the
NRF2 pathway. Furthermore, we identified known NRF2-
regulated genes involved in drug and glutathione metabol-
ism, along with 4 putative KEAP1-NRF2-CUL3-regulated
genes. Finally, we found that higher expression of this gene
signature was significantly associated with poorer survival
in 4 HNSCC cohorts.

Methods

Samples and transcriptomic profile datasets

We obtained RNA-Seq gene expression version2 (RNA-
SeqV2) level 3 data (Illumina Hiseq platform) from
HNSCC patients along with adjacent normal tissues from
the Broad GDAC Firehose website (http://gdac.broadinsti-
tute.org/). We carried out the analysis of RNA-Seq data of
279 tumor samples and 37 adjacent normal samples listed
in the TCGA network study [14]. All the alteration data for
KEAP1-NRF2-CUL3 (KEAPI1-mutation/deletion, NRF2-
mutation/amplification, and CUL3-muatation/deletion)
used in the present study was obtained from cBioportal [20,
21]. In addition to the TCGA-HNSCC RNA-Seq data, three
independent HNSCC cohorts microarray data— Saintigny
et al. (GSE26549) [22], Jung et al. (E-MTAB-1328) [23], and
Cohen et al. (GSE10300) [24] — were also used for overall
survival analysis. Our study meets the publication guide-
lines listed by the TCGA network.

RNA-Seq data analysis

The conventional method of differentially-expressed
gene (DEG) analysis involves the comparison of tumor
transcriptomic data with normal cell data. However, in
recent studies, due to the availability of large sets of
tumor samples and fewer adjacent normal datasets, re-
searchers have performed DEG analysis of TCGA data
by applying a new method in which the DEGs are identi-
fied by comparing altered or mutated tumor samples
(including a particular gene/set of genes) with wild-type
tumors (caused by factors other than alterations or mu-
tations) [15, 25, 26].
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Despite the fact that these two methods have been
used separately for DEG analysis, in this study, we ap-
plied a combinatorial approach to obtain DEGs from
HNSCC patients by using both conventional and new
methods. We then integrated the resulting upregulated
genes from both datasets to obtain overlapping genes.
This approach led to the robust identification of more
markedly upregulated genes specific to the samples with
altered KEAP1-NRF2-CUL3 than in both normal and
wild-type samples. Moreover, our method not only iden-
tified specific genes targeted by the KEAP1-NRF2-CUL3
axis but also minimized false-positive results.

We segregated the 279 HNSCC tumor samples into two
groups: 54 altered KEAP1-NRF2-CUL3 samples (referred
to below as ‘altered’) and 225 wild-type samples. Before per-
forming transcriptomic data analysis, the TCGA barcodes
of patient data were cross-checked to avoid technical er-
rors. First, we carried out DEG analysis in the 54 altered
versus 37 normal samples followed by 54 altered versus 225
wild-type samples using the R/Bioconductor package [27] —
edgeR [28]. To crosscheck how our combinatorial approach
effectively found specific genes targeted by the KEAPI-
NRF2-CUL3 axis, we also subjected the 225 wild-type and
37 normal samples to DEG analysis. Briefly, the raw counts
of RNA-SeqV2 level 3 data were filtered by removing the
genes containing zero values. We then considered the genes
with >100 counts per million in at least two samples for
normalization using the trimmed mean of M-values
method, followed by the estimation of dispersions using
generalized linear models. Up- and down-regulated genes
for altered versus normal and altered versus wild-type sam-
ples were identified separately by applying a Benjamini-
Hochberg (BH) false-discovery rate (FDR) p <0.01 with a
log-fold change (logFC)>1.5 and <-1.5. Finally, we used
the overlapping upregulated genes obtained from both
datasets using ‘Venny 2.1' (http://bioinfogp.cnb.csic.es/
tools/venny/index.html) for further analysis. Hierarchical
clustering of overlapping upregulated genes was performed
using the ‘Heatmapper’ web tool [29]. Box plots of the over-
lapping upregulated genes that represent the log (counts
per million) expression values were generated using R-
package ‘ggplot2’ [30]. The overall workflow of the study
design is presented in Fig. 1.

Functional annotation and protein-protein interaction
(PPI) network analysis

Functional annotation (Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis)
of overlapping upregulated genes was performed using
the updated version of the Database for Annotation,
Visualization and Integrated Discovery (DAVID) v6.8
web tool [31]. PPI network analysis was performed using
the STRING v10 database [32].
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Fig. 1 Overview of transcriptomic analysis of TCGA-HNSCC RNA-Seq

data. DEG, differentially-expressed genes
- J

Identification of NRF2-binding sites by in silico analysis
To identify the NRF2 binding sites within the promoter
regions of the putative KEAP1-NRF2-CUL3-regulated
genes, we used the transcription factor-binding site find-
ing tool LASAGNA-Search 2.0 [33] with cutoff p-values <
0.001. The search was limited to the -5 kb upstream pro-
moter region relative to the transcription start site.

Survival analysis

Cox proportional hazard regression was performed using
the online survival analysis and biomarker validation tool
SurvExpress [34]. We considered the data from a total of
502 patients in 4 independent HNSCC cohorts available
in the SurvExpress database: the TCGA-HNSCC cohort
(n =283) with other three HNSCC cohorts — Saintigny et
al. (GSE26549) (n =86) [22], Jung et al. (E-MTAB-1328)
(7 =89) [23], and Cohen et al. (GSE10300) (z = 44) [24] —
for survival analysis. In the case of microarray-based sur-
vival data, we considered the average values for genes
whose expression was associated with multiple probe sets
such as duplicates or alternatives. SurvExpress separated
the patient samples into two groups, high - and low-risk,
based on average expression of the 17 genes signature
values, and performed statistical analysis of survival prob-
ability of the two groups using the log-rank method. Sur-
vExpress used the log-rank test to generate Kaplan-Meir
plots based on the ‘Survival’ package of the R platform,
which is integrated into its website. Log-rank test p-values
< 0.05 were considered to be statistically significant.

Results

Overview of genetic alterations in the KEAP1-NRF2-CUL3axis
In HNSCC, changes in the KEAP1-NRF2-CUL3 axis oc-
curred in ~20% of patients; of these, KEAP1 alterations
accounted for 4.6%, NRF2 for 11.8%, and CUL3 for
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5.7%. However, few samples overlapped (Fig. 2a). In
order to better understand the KEAP1-NRF2-CUL3 mu-
tational landscape in HNSCC, we used the cBioportal
cancer genomics website [20, 21] to examine the types
of mutation and their positions in the domain structure
of proteins. All 13 KEAP1 and 18 NRF2 mutations were
missense mutations, while 70% of the CUL3 mutations
(7/10) were missense, 20% (2/10) were nonsense, and
10% (1/10) were splice mutations (Fig. 2b).

KEAP1 consists of 605 amino-acids with 3 domains in
which 6 mutations were reported in the BTB (broad-com-
plex, tramtrack, and bric-a-brac) domain, 1 in the IVR
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Fig. 2 Overview of genetic changes in KEAP1-NRF2-CUL3 in TCGA-
HNSCC patients. a Pie chart showing individual percentages of genetic
alterations in the KEAP1-NRF2-CUL3 complex. b Bar chart showing the
types and percentages of mutations of the KEAP1-NRF2-CUL3 complex.
¢ cBioportal-predicted mutation maps (lollipop plots) showing the
positions of mutations on the functional domains of KEAP1, NRF2, and
CUL3 proteins. The colored lollipops show the positions of the
mutations as identified by whole-exon sequencing
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(intervening region), 1 in the C-terminal, 1 in the N-
terminal region, and another 4 were in the Kelch domain,
which is essential for the binding of NRF2. In the case of
NRF2 structure, the majority of mutations (16) occurred
in the crucial KEAP1-binding domain Neh2, and another
2 were found in each of the Neh7 and Neh3 domains.
CUL3 contained 4 mutations in the N-terminal domain, 5
in the C-terminal domain, and 1 in the cullin repeat 3 do-
main (Fig. 2c). Overall, two samples contained both
KEAP1 and NRF2 mutations, while one sample contained
both NRF2 and CUL3 mutations. KEAP1 and CUL3 mu-
tations were mutually exclusive.

Identification of genes regulated by the KEAP1-NRF2-
CUL3 axis in HNSCC

In order to identify the genes regulated by the KEAPI-
NRF2-CUL3 axis in HNSCC, we focused on the identifica-
tion of differentially expressed genes by analyzing the RNA-
Seq expression profiles in 54 altered versus 37 normal, and
54 altered versus 225 wild-type samples. A total of 215 up-
regulated genes and 9 downregulated genes were found in
the altered versus normal analysis (Additional file 1: Table
S1), and 25 upregulated genes and 13 downregulated genes
in the altered versus wild-type analysis (Additional file 2:
Table S2) with logFC >1.5 (p <0.01 with BH-FDR adjust-
ment). Since the ultimate effect of KEAP1-NRF2-CUL3
axis gene alterations leads to overexpression of NRF2 and
its downstream genes, we focused on the upregulated genes
for further analysis. By integrating both datasets using
Venny web tool (http://bioinfogp.cnb.csic.es/tools/venny/
index.html), we obtained 17 overlapping upregulated genes
(Fig. 3a). We carried out literature survey to verify whether
the downregulated genes obtained from both methods con-
tains previously reported NRF2 regulated genes or not.
Notably, we didn’t observe any previously reported NRF2
target genes among all downregulated genes.

We also carried out DEG analysis in 225 wild-type ver-
sus 37 normal samples to assess the specificity of the 17
genes regulated by the KEAP1-NRF2-CUL3 axis. Strik-
ingly, none of the 17 genes were found in the list of
upregulated genes in the wild-type versus normal samples
with logFC>15 (p<0.01 with BH-FDR adjustment;
Additional file 3: Table S3). Thus, our analysis clearly
showed that these 17 genes were significantly overex-
pressed in altered KEAP1-NRF2-CUL3 samples compared
with their normal and wild-type counterparts (Fig. 3b, c).
We then designated these 17 genes as the signature of
gene expression regulated by the KEAP1-NRF2-CULS3 axis
based on their specificity and higher expression (Table 1).
Among these 17 genes, 13 - AKR1B10, AKRI1C],
AKR1C2, AKRIC3, G6PD, GCLC, GCLM, GSTM3,
OSGIN1, SRXN1, TXNRDI1, SLC7A11 [11, 35, 36], and
SPP1 [37]- are well-known NRF2-regulated genes, listed
and reviewed in a wide variety of studies.
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NRF2 binds with the ARE sequences of 3 putative genes
identified in the 17-gene signature

Since the ultimate effect of KEAP1-NRF2-CUL3 gene
alterations results in the overexpression of NRF2 and
its target genes, it was not surprising that the major-
ity of genes in our results were well-characterized
NREF2-regulated genes. In addition, we found 4 puta-
tive KEAP1-NRF2-CUL3-regulated genes, NTRK2
(neurotrophic receptor tyrosine kinase 2), RAB6B,
TRIM16L, and UCHL1 and investigated whether
they were also regulated by NRF2. Interestingly, fur-
ther in silico analysis using the ‘LASAGNA-Search
2.0’ [33] bioinformatics tool identified NRF2-ARE se-
quences within the -5 kb upstream promoter regions
of the human RAB6B, UCHL1 and TRIMI16L genes
(Fig. 4a,b,c; Additional file 4: Table S4). However, we
did not find an ARE sequence in the promoter

region of the NTRK2 gene. Together, our results
suggest that NRF2 directly binds with the promoter
regions of 16 of the genes in the signature and trig-
gers their overexpression; NTRK2 is the exception.

Functional annotation of the gene expression signature
regulated by the KEAP1-NRF2-CUL3 axis

Functional annotation analysis from GO and KEGG
pathway predictions using both DAVID and STRING
v10 revealed that the 17 genes were significantly
enriched (p<0.001) in the biological processes
daunorubicin metabolic process, doxorubicin meta-
bolic process, oxidation-reduction process, cellular
response to jasmonic acid stimulus, progesterone
metabolic process, response to oxidative stress, and
steroid metabolic process. In KEGG pathway ana-
lysis, we found significant enrichment (p <0.005) in
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Table 1 List of 17 upregulated KEAP1-NRF2-CUL3 axis genes
identified in HNSCC

Gene symbol Description

AKR1B10 Aldo-keto reductase family 1 member B10
AKR1C1 Aldo-keto reductase family T member C1
AKR1C2 Aldo-keto reductase family 1 member C2
AKR1C3 Aldo-keto reductase family 1 member C3
G6PD Glucose-6-phosphate dehydrogenase
GCLC Glutamate-cysteine ligase catalytic subunit
GCLM Glutamate-cysteine ligase modifier subunit
GSTM3 Glutathione S-transferase mu 3

NTRK2 Neurotrophic receptor tyrosine kinase 2
OSGIN1 Oxidative stress induced growth inhibitor 1
RAB6B RAB6B, member RAS oncogene family
SLC7A Solute carrier family 7 member 11

SPP1 Secreted phosphoprotein 1

SRXN1 Sulfiredoxin 1

TRIM16L Tripartite motif containing 16-like

TXNRD1 Thioredoxin reductase 1

UCHL1 Ubiquitin C-terminal hydrolase L1

the three pathways glutathione metabolism, steroid
hormone biosynthesis, and metabolism of xenobiotics
by cytochrome P450 (Table 2).

The 17-gene signature is significantly associated with
poor survival in TCGA-HNSCC patients

To evaluate the prognostic value of the 17-gene signature
in patient survival, we first analyzed overall survival in the
TCGA-HNSCC cohort available in the SurvExpress web
tool. A total of 283 patient samples were divided into

a
RAB6B Promoter
-3451 -1581 -630  -221 73 4+
| | | | I |
ARE-5 ARE-4 ARE-3 ARE-2 ARE-1 TSS

UCHL1 Promoter

-4868 -951  -652 +1
| | |
ARE-3 ARE-2  ARE-1 TSS
TRIM16L Promoter
-1000 -500 -394 137
| | | |
ARE-2 ARE-1 TSS

Fig. 4 In silico analysis of NRF2 binding sites. Schematic representation
shows positions of in silico predicted NRF2 binding sites (AREs) in the
promoter regions of human (a), RABEB, (b), UCHL1, (c), TRIM16L genes
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high-risk (n = 141) and low-risk groups (n = 142) based on
their expression pattern (Fig. 5a). The survival probability
estimates in the two risk groups were visualized as
Kaplan-Meier plots. Strikingly, overall survival analysis re-
vealed that the patients in the high-risk group had poorer
survival (HR =2.28; CI=1.56-3.32; p=1.221e-05) than
the low-risk group (Fig. 5b). Thus, our analysis strongly
suggests that genes regulated by the KEAP1-NRF2-CUL3
axis are powerful predictors of a poor prognosis in
HNSCC patients. In addition, we also carried out the
multivariate analysis with the limited variables present in
Survexpress database. Consistent with the above results,
patients with high-risk scores for clinical variables such as
tumor grades G2 and G3, pathological stages T1 and T2,
and pathological disease stages II and III were significantly
associated with poor survival whereas the results were
insignificant in other variables (Additional file 5: Table
S5). Kaplan-Meier survival plots with log-rank test results
for the significant clinical variables are shown in
Additional file 6: Figure S1.

Association of 17-gene signature with disease-free survival
(DFS), metastasis-free survival (MFS), and recurrence in
HNSCC patients

After analyzing the prognostic value of the 17-gene sig-
nature in the TCGA cohort, we evaluated its prognostic
value in another 3 HNSCC cohorts containing DEFS,
MFS, and recurrence data. Among these, Saintigny et al.
(GSE26549) [22] contains DFS data, while Jung et al. (E-
MTAB-1328) [23] contains MFS data. The third cohort,
Cohen et al. (GSE10300) [24], contains recurrence data.
Interestingly, our DFS analysis using the Saintigny et al.
(GSE26549) [22] cohort showed that patients in the
high-risk group with increased expression of the 17-gene
signature had poorer survival (HR =2.28; CI = 1.56-3.32;
p =1221e-05) than the low-risk group (Fig. 6a). Like-
wise, we found a markedly shorter MFS (HR =2.83, CI
=1.47-5.48; p = 0.001) in the high-risk group of the Jung
et al. (E-MTAB-1328) [23] cohort (Fig. 6b). In the Cohen
et al. (GSE10300) [24] cohort, we found lower
recurrence-free survival (HR = 4.15; CI = 1.14-15.05; p <
0.01) in the high-risk group with thel7-gene signature
than in the low-risk group (Fig. 6¢). Thus, log-rank ana-
lysis revealed that the 17-gene signature was associated
with a significantly increased risk of recurrence in
HNSCC. The multivariate analysis results for the above
cohorts were listed in Additional file 5: Table S5.

Discussion

The TCGA network provides valuable information about
genetic changes in key genes involved in the oxidative-
stress pathway, such as KEAP1, NRF2, and CUL3, in
HNSCC patients. These particular data permit re-
searchers to identify potential biomarkers, druggable
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Table 2. GO and KEGG pathway analysis of 17 KEAP1-NRF2-CUL3 axis regulated genes in HNSCC
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Term p-value Genes

GO_Biological Proceess (GO_BP)
GO:0044597~daunorubicin metabolic process 3.22E-08 AKR1C3, AKR1C2, AKR1B10, AKR1C1
GO:0044598~doxorubicin metabolic process 3.22E-08 AKR1C3, AKR1C2, AKR1B10, AKR1C1
GO:0055114~oxidation-reduction process 3.29E-07 AKR1C3, AKR1C2, G6PD, AKR1B10,

OSGINT, TXNRD1, AKR1C1, SRXN1

GO:0071395~cellular response to jasmonic acid stimulus 446E-06 AKR1C3, AKR1C2, AKR1C1
GO:0042448~progesterone metabolic process 2.67E-05 AKR1C3, AKR1C2, AKR1C1
GO:0006979~response to oxidative stress 1.18E-04 GCLC, GCLM, SRXN1, SLC7A11
GO:0008202~steroid metabolic process 6.58E-04 AKR1C3, AKR1C2, AKR1B10

KEGG Pathway
hsa00480:Glutathione metabolism 5.9956E-05 GSTM3, G6PD, GCLC, GCLM
hsa00140:Steroid hormone biosynthesis 0.00362777 AKR1C3, AKR1C2, AKR1C1
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Fig. 5 Correlation of 17-gene signature with poor survival in TCGA-
HNSCC patients. a Box plots of the expression differences of the 17-gene
signature in low (green) and high (red) risk groups of TCGA-HNSCC
patients. X-axis, gene expression value of each gene; above the box plot,
p-values of the expression difference between risk groups. b Kaplan-Meier
survival plots showing that high expression of the 17-gene signature is
associated with poor survival in TCGA-HNSCC patients. Red, high-risk
group; green, low-risk group; top right corner inset, numbers of high- and
low-risk samples, numbers of censored samples marked with + and
concordance index (Cl) of each risk group; X-axis, time (months); Y-axis,
overall survival probability; HR, hazard ratio; Cl, confidence interval

mutations, and therapeutic targets for personalized
medicine. In this study, using a new approach that con-
sisted of two RNA-Seq DEG analysis methods, we iden-
tified a common set of 17 genes regulated by the
KEAPI1-NRF2-CUL3 axis that constitute an expression
signature in TCGA-HNSCC patients. We further tested
this signature in 4 independent clinical cohorts including
the TCGA-HNSCC cohort. Kaplan-Meier survival plots
generated for all 4 cohorts showed that higher expres-
sion of this gene signature is significantly correlated with
poor survival outcomes.

The DFS data of Saintigny et al. (GSE26549) [22] sug-
gested that patients with an increased 17-gene signature
had poor benefit from chemotherapy because of aggressive
expression of genes downstream of NRF2 that are involved
in chemoresistance. Our GO and KEGG analysis of the 17-
gene signature strongly supported the above conclusion.
The top two enriched GO biological process terms were
‘daunorubicin metabolic process’ and ‘doxorubicin meta-
bolic process, clearly indicating that the genes involved in
these processes, such as AKR (aldo-keto reductase) 1C3,
AKR1C2, AKRI1B10, and AKRIC1, are crucial drug-
metabolizing enzymes whose overexpression is strongly as-
sociated with drug resistance in many cancers [38, 39]
(Table 2). Aldo-keto reductases are well-characterized
NRF2-regulated genes which contain consensus ARE se-
quences in their promoter regions for the binding and
transactivation of NRF2 [39-41]. A recent lung cancer
study emphasized that a panel of aldo-keto reductase family
genes are markedly upregulated in patients harboring som-
atic alterations in the NRF2 pathway and considered to be
biomarkers of NRF2 hyperactivation in lung cancer [17].
Consistent with their study, we showed that aldo-keto re-
ductases were not only highly expressed in lung cancer but
also in HNSCC patients with a dysregulated NRF2 pathway
and could be used as biomarkers.
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More interestingly, the top hit in the KEGG pathway
analysis of the 17-gene signature identified an important
pathway involved in oxido-reductase activity known as
‘glutathione metabolism’(Table 2). The genes listed in this
pathway, such as GSTM3, G6PD, GCLC, and GCLM, play
major roles in redox balance in normal cells. The redox
imbalance in cancer cells because of the overexpression of
these genes mainly leads to tumor growth and drug resist-
ance [42]. Thus, our study revealed that NRF2 drives the
expression of genes involved in glutathione metabolism,
so the development of NRF2 inhibitors could be a means
of altering tumor growth and drug resistance in HNSCC.
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A very interesting recent study on the inhibition of NRF2,
glutathione (GSH), and thioredoxin (Trx) in head and
neck cancer (HNC) strongly supports our prediction that
combined inhibition of the GSH, Trx, and NRF2 pathways
could be an effective strategy to overcome therapeutic re-
sistance in HNC [43].

In addition to the GO and KEGG analyses, we used the
STRING v10 database to construct a PPI network of the
17-gene signature along with the KEAP1, NRF2, and
CUL3 genes to reveal the complex associations between
these genes. The enrichment results based on functional
association between these genes revealed that the majority
were closely associated with each other through a coordi-
nated interactive network (Fig. 7). Thus, PPI network ana-
lysis suggested that the cross-talk of KEAP1, NRF2, and
CUL3 with the 17-gene signature coordinately drives
tumor progression and therapeutic resistance in HNSCC.

Apart from known NRF2-regulated genes, we found 4 pu-
tative KEAP1-NRF2-CUL3 axis-regulated genes: NTRK2,
RAB6B, TRIM16L, and UCHL1. NTRK?2, also known as
tropomyosin receptor kinase B, is a neurotrophin-binding
protein that phosphorylates members of the MAPK path-
way. This receptor plays a major role in cell differentiation,
specifically neuronal proliferation, differentiation, and sur-
vival, through its kinase signaling cascade [44]. Emerging
evidence suggests that NTRK2 plays an important role in
different cancers. For instance, it has been reported to be
highly expressed in non-small cell lung cancer A549 cells
[45] and is associated with a worse outcome in patients with
Wilms’ tumor [46].

Although NRF2-ARE sequences were not found in the
NTRK2 promoter region, we looked into why NTRK2
was highly upregulated in altered samples. Surprisingly,
a recent report revealed that NTRK2 inhibits KEAP1 ex-
pression in breast cancer cells and is involved in cancer
proliferation, survival, and metastasis [47]. Thus, the
overexpression of NTRK2 in altered samples clearly sug-
gests that NTRK2 inhibits the expression of KEAP1, ini-
tiates the hyperactivation of genes downstream of NRF2,
and is involved in HNSCC tumorigenesis. Another puta-
tive KEAP1-NRF2-CUL3 gene, UCHL1 (ubiquitin C-
terminal hydrolase L1), has also been implicated in dif-
ferent types of human cancer such as breast [48, 49],
melanoma [50], ovarian [51], colorectal [52], osteosar-
coma [53], and gastric [54, 55] cancers, and multiple
myeloma [56]. Most of the cancer studies on UCHL1
have revealed that overexpression and promoter methy-
lation of UCHLI are key reasons for UCHL1-mediated
metastasis. Due to the adverse effect of overexpression
of UCHLYI, it is considered to be a biomarker and a
therapeutic target in many cancers. The exact functions
of the other two putative KEAP1-NRF2-CUL3axis-regu-
lated genes, RAB6B and TRIM16L, are unknown in can-
cer cells and therefore are under investigation in our lab.
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Fig. 7 Protein-protein interaction network analysis of the 17-gene signature predicting the functional correlation of the KEAP1-NRF2-CUL3 axis
with genes involved in drug metabolism and glutathione metabolic pathways in HNSCC

Altogether, the above evidence suggests an oncogenic
role of the 17-gene signature in many cancers.

Conclusions

In conclusion, we have identified a comprehensive gene
signature of the KEAP1-NRF2-CUL3 axis, increased ex-
pression of which predicts poor survival in HNSCC.
Moreover, the components of this 17-gene signature can
be used as potential biomarkers to identify genetic alter-
ations of the NRF2 pathway in HNSCC. Furthermore,
the development of combined inhibitors for this 17-gene
signature, along with NRF2, could pave the way for the
development of personalized/precision medicine to sup-
press NRF2-mediated tumor growth and drug resistance.
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