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Comparative gene co-expression network
analysis of epithelial to mesenchymal
transition reveals lung cancer progression
stages
Daifeng Wang1,2* , John D. Haley2,3 and Patricia Thompson2,3*

Abstract

Background: The epithelial to mesenchymal transition (EMT) plays a key role in lung cancer progression and drug
resistance. The dynamics and stability of gene expression patterns as cancer cells transition from E to M at a systems
level and relevance to patient outcomes are unknown.

Methods: Using comparative network and clustering analysis, we systematically analyzed time-series gene expression
data from lung cancer cell lines H358 and A549 that were induced to undergo EMT. We also predicted the putative
regulatory networks controlling EMT expression dynamics, especially for the EMT-dynamic genes and related these
patterns to patient outcomes using data from TCGA. Example EMT hub regulatory genes were validated using RNAi.

Results: We identified several novel genes distinct from the static states of E or M that exhibited temporal expression
patterns or ‘periods’ during the EMT process that were shared in different lung cancer cell lines. For example, cell cycle
and metabolic genes were found to be similarly down-regulated where immune-associated genes were up-regulated
after middle EMT stages. The presence of EMT-dynamic gene expression patterns supports the presence of differential
activation and repression timings at the transcriptional level for various pathways and functions during EMT that are
not detected in pure E or M cells. Importantly, the cell line identified EMT-dynamic genes were found to be present in
lung cancer patient tissues and associated with patient outcomes.

Conclusions: Our study suggests that in vitro identified EMT-dynamic genes capture elements of gene EMT expression
dynamics at the patient level. Measurement of EMT dynamic genes, as opposed to E or M only, is potentially useful in
future efforts aimed at classifying patient’s responses to treatments based on the EMT dynamics in the tissue.

Keywords: Lung cancer, Epithelial to mesenchymal transition, Gene regulatory network, Comparative network analysis,
EMT-dynamic signature genes, Cancer progression

Background
Lung cancer is the leading cause of cancer death in the
United States with low 5-year survival of 17.7% despite
earlier detection and advanced treatments [1]. Identify-
ing novel mediators of tumor progression and treatment
resistance for targeted intervention remains a major goal
for treatment development.

The ability of tumor cells to undergo epithelial to mes-
enchymal transition (EMT) is a common feature of lung
cancer cells that is associated with acquisition of ‘stem-
like’ features [2, 3]. EMT, and its reversal MET, are com-
plex dynamic processes whereby tumor cells undergo
staged epigenetic reprogramming leading to acquisition
of new traits and behaviors. While currently debated as
to the necessity of E→M in metastatic tumor cell dis-
semination, undebated is that M-type lung cancer cells
have stem-like features, exhibit enhanced drug resistance
and demonstrate greater ability to migrate – all clinically
significant biological changes that contribute to more
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aggressive/metastatic tumor behavior [4]. The complex-
ity of the E→M shift is reflected in dramatic systematic
changes in a dynamic fashion of developmental gene
regulatory networks [5, 6].
Previous studies have detailed differentially expressed

genes that distinguish the epithelial and mesenchymal
states in non-small cell lung carcinoma (NSCLC) and
serve to define signatures of EMT [5–9]. These EMT
genes have also been reported to predict acquired drug
resistance [10–15]. However, how the gene regulatory
mechanisms act on gene expression transitions from E
to M states, and the maintenance of these cell states, is
still not well defined.
Recently, detailed temporal gene expression changes

across multiple stages of EMT were measured, using
RNA-seq in the mutant KRAS lung adenocarcinoma
cancer cell lines H358 and A549 [6, 16, 17]. This pro-
vides a platform to analyze gene expression dynamic pat-
terns specifically for lung cancer EMT. Here, we
performed an integrated bioinformatics analysis for
time-series gene expression datasets for H358 and A549

EMT with the intent to discover gene expression
temporal dynamic patterns specific for EMT in lung
cancer.
We initially focused on a set of 76 genes previously re-

ported to be the most differentially expressed EMT
genes between E and M lung cancer states based on
their expression fold changes, [10]. Focusing on these 76
EMT genes (Fig. 1), however, we discovered distinct
EMT expression dynamic patterns when evaluated over
a time series. Thus, to systematically reveal the gene ex-
pression dynamic patterns in EMT, we constructed gene
co-expression networks, connecting genes if with high
correlated expression profiles during EMT, and clustered
the network into gene co-expression modules. Here we
show that the modular eigengenes represent specific
EMT expression temporal dynamic patterns on a tran-
script wide-scale. This enabled the identification of gene
regulatory networks most consistent with networks in-
volved in controlling the temporal EMT expression dy-
namic patterns; i.e., modular genes. Importantly these
genes were highly correlated with the temporal patterns

a b

Fig. 1 Previously identified EMT signature genes have distinct temporal expression dynamics during epithelial to mesenchymal transition in lung
cancer. a The heatmaps show the normalized gene expression levels of 76 known EMT genes across H358’s ten EMT stages (left, 0 h, 1 h, 2 h, 4 h, 6 h,
8 h, 16 h, 24 h, 72 h, 168 h) and A549’s eight EMT stages (right, 0 h, 6 h, 12 h, 24 h, 36 h, 48 h, 72, 96 h) [16, 17]. These EMT genes were predicted
according to their fold changes between epithelial and mesenchymal states only. Red: highly expressed. Green: lowly expressed. b PCA of 76 known
EMT genes using their gene expression data in H358 EMT. The dots are genes. The x-axis is the PC1 coefficient, and the y-axis is the PC2 coefficient.
The four gene groups have been clustered by K-means. The embedded boxplots display the gene expression level distributions across H358 EMT
stages for four groups. The cyan group represents genes with an increasing expression pattern at middle EMT stages (~72 h and continuing) that
includes the EMT associated EGFR resistance oncogene AXL [10]. The red group consists of EMT genes including TGFB1 having an increasing
expression pattern at ~ 16 h which decays after 168 h. The gene expression in the green group increases slowly from 16 h but dramatically
decreases after 168 h. The blue group includes genes that are decreasing in expression during EMT (from 24 h on)
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in both lung cancer cell lines suggesting that they repre-
sent a novel set of EMT-dynamic genes. Finally, we dem-
onstrate the presence of temporal EMT-dynamic genes
in lung cancer patient’s tumor tissues and show evidence
of a relationship to patient outcomes not previously ob-
served with the 76 EMT gene profile.

Methods
Time-series gene expression datasets during EMT in lung
cancer
To systematically identify gene expression dynamic pat-
terns common to NSCLC, we used time-series gene
expression data from two lung cancer cell lines (H358
and A549) undergoing TGFbeta-induced EMT in this
study. The data of H358 EMT includes a time-series of
RNA-seq gene expression dataset derived from an indu-
cible EMT model for which the H358 cells undergo
TGFbeta1-induced EMT, including 12 time points (0, 1,
2, 4, 6, 8, 18, 24, 72, ~168, ~500 and >4300 h) during
which EMT was monitored phenotypically [17]. The
data of A549 EMT includes a time-series of RNA-seq
gene expression dataset derived from an inducible EMT
model for which the A549 cells undergo TGFbeta1-
induced EMT, including 12 time points (0, 6, 12, 24, 36,
48, 72, 96 h) [16].

Gene co-expression networks, modules and clustering for
time-series gene expression data during EMT
We constructed the gene co-expression networks by
connecting all possible gene pairs by edges with edge
weights being the Pearson correlations of their time-
series gene expression profiles during EMT for H358
and A549 EMT datasets. The gene co-expression net-
works were clustered by WGCNA (weighted correlation
network analysis), R package [18] into the gene co-ex-
pression modules (minimum size = 100, scale-free fit-
ting > 0.8). The eigengenes of modules, i.e., the first
principal components of modular gene expression, were
calculated and provided by WGCNA as well. An eigen-
gene is a vector with its elements representing the ex-
pression levels at time points, and captures the most
likely temporal gene expression changes across time
points (dynamic pattern) of its co-expression module.

Enriched pathways and functions of gene co-expression
modules
To annotate the functions of gene co-expression modules,
we calculated the enriched pathways and functions includ-
ing KEGG pathways, REACTOME pathways and Gene
Ontology (GO) terms for the genes of each gene co-
expression modules using the web application, Database
for Annotation, Visualization and Integrated Discovery
(DAVID) [19], and R package, clusterProfiler [20].

Identification of gene regulatory networks controlling
gene co-expression modules
The gene regulatory network is represented as a two--
column edge list in which the first column is the tran-
scription factor (TF) and the second column in the
target gene. We used the TF-target list as a reference
gene regulatory network including all possible TFs and
their target genes from the public datasets [21]. These
TFs and targets were predicted using ChIP-seq experi-
ments; i.e., the TFs have high binding signals at the pro-
moter regions of their target genes. A TF is defined as the
potential TF regulating a module if it has significantly
numbers of modular target genes presenting in the refer-
ence regulatory network (hypergeometric test p < 0.05).

Identification of hub genes in gene regulatory networks
The hub scores of genes in a gene regulatory networks
are calculated as hub_score() function in R package,
igraph [22]. The high score means that the gene has high
influence over the network; i.e., the hub genes in the
network.

Gene knockdown experiments by RNAi
Lentiviral shRNAs (pRSI9-U6-(sh)-UbiC-TagRFP-Puro)
were used to infect HCC4006 NSCLC cells in epithelial
(E) and mesenchymal (M) cell states, with a minimum of
five hairpins per gene. DNA bar codes were sequenced
after nine cell doublings and normalized reads compared
between the E and M states, expressed as log2 ratios.

Gene expression normalization and identification of
differentially expressed genes between TCGA lung cancer
tissue samples and GTEx normal lung tissues
The gene expression data for 522 lung adenocarcinoma
patient tissues in The Cancer Genome Atlas project
(TCGA-LUAD) and 320 healthy lung tissues in
Genotype-Tissue Expression (GTEx) project were nor-
malized using R package, RUVseq [23]. The differential
expression analysis that calculated the logFC values for
all genes was completed using R package, edgeR [24].

Definition of personalized EMT period (PEP) for TCGA lung
cancer patients based on the expression of EMT-dynamic
genes
Given a TCGA patient and an EMT time-series gene ex-
pression data (H358 or A549), we first calculated the
Pearson correlation of his/her TCGA gene expression
levels and each EMT stage’s gene expression levels of
254 EMT-dynamic genes (Additional file 1: Table S3)
identified by our analysis, and then found the stage that
has the maximum correlation, which was defined as the
‘EMT-stage’ for this patient; i.e., personalized EMT
period (PEP).
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Principal component analysis (PCA) and survival analysis
of TCGA lung cancer patients based on the TCGA
expression of select genes
The PCA analysis was performed for 522 TCGA LUAD
patients and the TCGA expression of select genes in
TCGA using prcomp function in R. The select genes can
be 254 EMT-dynamic genes, 76 previously known EMT
genes, or all ~18,000 protein-coding genes. The first two
principal components, PC1 and PC2 were selected, and
the patients coefficients over PC1 and PC2 were the co-
ordinates on PCA plots in Fig. 5a. The Kaplan-Meier
survival analysis was performed, using R package,
survminer for three major PEP clusters (patient numbers
>10): 16 h, 72 h and 168 h. Their Hazard ratios were cal-
culated regarding the PEP cluster 0–8 h.

Results
Known EMT signature genes have specific temporal
expression dynamics during EMT
It is established that gene expression undergoes dynamic
changes as tumor cells undergo EMT and that this is
driven by alterations in the tumor gene regulatory mech-
anism in response to EMT promoting stimuli e.g.,
macrophage and platelet derived TGFbeta [25–27] or
HGF [28]. To identify gene expression dynamic patterns
common to NSCLC, we compared time-series gene
expression data from two lung cancer cell lines (H358
and A549) undergoing TGFbeta-induced EMT (see
Methods) [16, 17]. Using these lines, we identified com-
mon and represented temporally gene expression
dynamic patterns from two datasets, revealing specific
gene regulatory activities common between the different
cell lines during EMT.
EMT involves an epigenetic based reprogramming of

gene expression that occurs in over a 2 – 14 day time
period depending on the inducer, cell model and culture
conditions [29]. Previous work by comparing RNA
abundance between NSCLC cell lines in distinct E and
M states, led to the identification of 76 NSCLC EMT
signatures genes [10]. Using our data, we found that the
76 EMT signature genes indeed show specific expression
transition dynamics during EMT (Fig. 1). Further, using
principal component analysis (PCA) and our time series,
we identified four major groups of temporally-regulated
genes among the EMT signature gene set: 1) a mid EMT
stage (cyan) increasing at ~72 h and continuing over the
time series that includes the EMT associated EGFR
resistance oncogene AXL [10]; 2) genes increasing ex-
pression at ~ 16 h that decays after 168 h (red group); 3)
a group of genes that increase slowly from 16 h but dra-
matically decrease after 168 h (green) and 4) a group of
genes that includes genes that are declining in expres-
sion during EMT starting at 24 h (blue). These PCA-
derived dynamic patterns of gene expression suggest that

EMT state genes are differentially regulated in a coordi-
nated fashion, forming co-regulated gene regulatory net-
works as cells progress from E to M.

Gene co-expression network analysis reveals specific gene
expression dynamic patterns of pathways and functions
during EMT in lung cancer
Important to the discovery of gene effects on EMT, it is
important to consider the gene regulatory networks
controlling EMT signature genes, which act in turn to
co-regulate other genes. Thus, we sought to identify all
possible EMT expression dynamic patterns on a gen-
ome wide-scale to enhance discovery of novel gene
regulatory network effects driving EMT in NSCLC at
the system level. The presence of genes exhibiting simi-
lar dynamic expression profiles suggests that they are
undergoing a coordinated regulation. i.e., the gene
regulatory factors, including transcriptions factors,
form a gene regulatory network that drive gene expres-
sion dynamics during EMT.
Studying individual gene expression is prone to noise

making it more difficult to reliably identify expression
dynamics and gene regulatory network effects at the sys-
tem level. Thus, in this paper, we sought to study sys-
tematic gene expression dynamic patterns during EMT
using a comparative gene co-expression network analysis
across two mutant KRAS adenocarcinoma NSCLC cell
lines undergoing TGFbeta-induced EMT, H358 and
A549. The genes that have correlated expression profiles
(i.e., co-expression) are those that are more likely co-re-
gulated by similar regulatory mechanisms. This co-ex-
pression relationship was employed to identify
functional groupings in EMT. Thus, we first identified
the co-expressed genes during EMT by clustering gene
co-expression networks into gene co-expression
modules. Specifically, for each EMT cell line dataset
(H358 or A549), we constructed the gene co-expression
network in which genes are connected by edges with
weights derived from the correlations of their expression
profiles during EMT. Next the gene co-expression net-
works were clustered into gene co-expression modules
using weighted correlation network analysis (WGCNA;
described in the Methods section).
Using this strategy, we identified 55 gene co-

expression modules for the H358 cell line undergoing
EMT (Additional file 1: Table S1). Figure 2a shows the
eigengenes of these modules and illustrates the repre-
sented robust and systematic expression dynamic pat-
terns of modular genes. We can see that the eigengenes
display four major distinct expression dynamic patterns
across different EMT stages (defined as time) and in-
cludes those that are: 1) down-regulated after 8 h; 2)
up-regulated from 8 h to 16 h; 3) up-regulated from
72 h; and 4) up-regulated at very late stages, after 168 h.
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The presence of these different eigengene expression dy-
namic patterns suggests that specific underlying gene
regulatory networks are being engaged during EMT; i.e.,
the expression changes at certain transition stages,
especially 8-16 h.
To gain biological insight on EMT processes from

these patterns, we analyzed the enriched pathways and
functions among the genes of each module (Fig. 2b). We
found for example that all the modules enriched with
cell cycle related pathways and functions (i.e., “cell cycle
modules”) were down-regulated after 8 h. This suggests
that the cell cycle pathways tend to be down-regulated
after 8 h during EMT in H358. We also found that the
metabolic modules (i.e., the modules enriched with the
genes involving in metabolic processes), in general, fol-
low the eigengenes down-regulated at 8 h. Exceptions
included the eigengenes of modules enriched with
“glycerophospholipid metabolic process (p < 0.0001)”,
“cholesterol metabolic process (p < 0.0001)” and “glyoxy-
late metabolic process (p < 0.0001)”, which were up-reg-
ulated at 72 h. These latter observations suggest that
these specific metabolic pathways are potentially up-
regulated during the late stages of EMT.
Because of recent interest in tumor immune regulating

molecules and recent success with immunotherapies for
some advanced lung cancer patients [30], we are inter-
ested in the expression dynamic patterns related to im-
mune pathway related molecules during the EMT

process. In our cell model system, we found that tumor
cell immunological modules (i.e., enriched by immuno-
logical pathways) have eigengenes that are most
commonly upregulated at late stages. The only exception
was the “Leukocyte transendothelial migration module”.
For example, modules enriched with “B cell receptor
signaling pathway”, “Interferon signaling”, and “NOD-
like receptor signaling pathway” were found to be up-
regulated between 8 and 16 h, but the eigengene of the
module enriched with “Platelet activation” is up-
regulated at 72 h. These patterns suggest that immuno-
logical pathways are generally up-regulated during EMT
and are most pronounced at late stages of EMT. The full
list of enriched pathways and functions including KEGG,
REACTOME and GO terms is included in the supple-
mental table.
Supporting our interpretation that the observed ex-

pression dynamics were EMT specific, we observed
highly similar expression dynamic patterns from the
analysis of eigengenes of the lung cancer cell line A549
EMT gene co-expression modules (54 modules in total,
Additional file 1: Table S2) to that of H358. The cell
cycle modules and most metabolic modules were simi-
larly down-regulated from 12 h and immunological
modules were up-regulated at late stages after 12 h
(Supplemental Figures). Thus, using gene co-expression
network analysis, we identified specific gene expression
dynamic patterns during EMT on a genome scale and

a b

Fig. 2 The eigengenes and enriched pathways of gene co-expression modules in H358 EMT. a The heatmap shows the eigengene expression levels
across H358 EMT stages for 55 gene co-expression modules. Red: high expression level; Green: low expression level. These eigengenes represent the
gene expression dynamic patterns at the system level in H358 EMT. The gene co-expression modules are identified using WGCNA [18]. b The enriched
KEGG pathways of gene co-expression modules, which are found by clusterProfiler [20]. The rows are the enriched pathways, and the columns are
modules. The dot size is proportional to the modular gene fraction involved in the pathway (i.e., number of pathway genes in the module over
number of total pathway genes). The darkness of color is proportional to the enrichment score (adjusted p value)
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the transcriptional timing for enriched pathways and
functions among co-expressed genes during experimen-
tally induced EMT were shared across two different lung
cancer cell lines.

Identification of EMT-dynamic genes in lung cancer
Here, we have observed that the genes that are highly
correlated with modular eigengenes (e.g., large gene co-
efficients while projecting genes to eigengenes) follow
strong and specific EMT gene expression dynamic pat-
terns. Figure 3a displays the gene-eigengene correlation
heatmap, where heatmap values represent the Pearson
correlations coefficients between genes and modular
eigengenes. For each module, there exists a number of
genes having high modular memberships (large positive
coefficients), which means that the enriched pathways
and functions involve multiple genes. Also, each gene
has high memberships in multiple modules; i.e., it has
high correlations with multiple eigengenes. This suggests
that any individual gene can participate in multiple path-
ways and functions during EMT. Notable, 36 of 55 H358
modules and 49 of 54 A549 modules have high correla-
tions with at least one previously identified EMT signa-
ture genes (r > 0.9). We refer to these modules as EMT
modules, suggesting that their eigengenes capture the
specific EMT gene expression dynamic patterns. These
results collectively demonstrate that EMT-specific dy-
namic expression patterns differ from the large fold-
changes derived from transcriptomic studies of purer E
and M type cells as two distinct states.

To genes with highest memberships, we selected the top
50 of genes with high memberships for each EMT mod-
ule, and defined them as an extended set of novel EMT-
dynamic genes. In total, we found that 254 genes display
high memberships for both H358 and A549 EMT mod-
ules (Supplemental table). Thus, they show consistent
EMT expression dynamics between the H358 and A549
undergoing EMT and are referred to as novel EMT-
dynamic signature genes (Additional file 1: Table S3).
Interestingly, they have no overlaps with the 76 previously
identified EMT genes derived from large fold-change be-
tween E and M stages. This implies that the genes having
large fold-changes between EMT endpoints may not be
necessary to EMT-specific expression dynamics. More-
over, these EMT-dynamic genes also show gene expres-
sion transition dynamics during lung cancer EMT
(Additional file 2: Figure S1). We further checked the
enriched functions and pathways among the 254 EMT-
dynamic genes. In Fig. 3b for example, EMT-defined
genes, E2F targets and CHEK2 co-expressed genes are
enriched. Moreover, many enriched functions and path-
ways are related to cell cycle, suggesting that the cell cycle
genes exhibit strong expression dynamic patterns in lung
cancer EMT. The relevance of this observation in terms of
disease behavior however is not known.

Computational prediction of gene regulatory networks
driving the gene expression dynamics of pathways and
functions during EMT
The various gene regulatory factors, including transcrip-
tion factors, control the gene expression dynamics

a b

Fig. 3 The gene coefficients over module eigenegenes, enriched functions and pathways of EMT-dynamic genes. a The heatmap shows the
correlation matrix between ~18,000 genes and the eigengenes of 55 modules in H358 EMT. b The barplot shows the enriched pathways and
functions (y-axis) of 254 EMT-dynamic genes. The x-axis is the number of EMT-dynamic genes for the enriched pathway/function. The colors
correspond to the –log10(enrichment p value)
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during EMT to coordinate biological phenotypes rather
than acting randomly; i.e., they form a gene regulatory
network. Thus, we sought to identify potential gene
regulatory networks that drive specific EMT expression
dynamics using computational approaches (Methods).
The assumption here is that the genes that cluster to-
gether in a co-expression module are more likely to be
co-regulated by similar gene regulatory mechanisms
than those that are not cluster. As such, transcription
factors that have significant numbers of their target
genes in a given module are the most likely co-
regulating gene involved in the control of the EMT
expression dynamic patterns of that module.
To explore this assumption, we used a transcription

factors-target list as a reference gene regulatory network.
This included all possible transcription factors and their
target genes from public datasets such as ENCODE [31].
These transcription factors and targets were predicted
using ChIP-seq experiments; i.e., the transcription fac-
tors have high binding signals at the promoter regions of
their target genes. Given a module, we define the poten-
tial transcription factors regulating the module based on
significant numbers of their target genes in the module
using transcription factors-target relationship from the

reference gene regulatory network (hypergeometric test
p < 0.05; see Methods). In particular, the transcription
factors having either positively or negatively correlated
gene expression profiles with the module eigengene dur-
ing EMT are predicted as potential transcription factors
regulating the modular genes along with the modular
pathways and functions. Two specific examples are
described: TF regulators of cell cycle gene changes in
EMT and TF regulators of immune modules in EMT.
The EMT-dynamic genes show a strong relationship

to cell cycle functions and pathways by gene set enrich-
ment analysis (GSEA) (Fig. 3b). We found that essen-
tially all cell cycle modules show a down-regulated
expression pattern after 8 h (Fig. 4a). Using this informa-
tion, we predicted a gene regulatory network consisting
of TFs with significant numbers of targets in cell cycle
modules, which also correlated with eigengenes of cell
cycle modules (Fig. 4b). A number of the identified TFs
appear to regulate each other; i.e., they work together to
control the cell cycle in EMT in these cell lines. For
example, we identified TF RAD21 as the top hub regula-
tor in the network that was positively correlated with
cell cycle expression dynamics in EMT (with highest
hub score = 1, See Methods). In addition, the EMT-

a

c

b

Fig. 4 The gene expression dynamics and regulatory networks for cell cycle modules in H358 EMT. a The heatmap shows the eigengene expression
level across H358 EMT stages for all 7 cell cycle modules. Red: high expression level; Blue: low expression level. b The predicted gene regulatory
network controlling the cell cycle modules. Nodes are the transcription factors (TFs). The TFs in the network have significantly large numbers of target
genes in the cell cycle modules (p < 0.05). The orange TFs have highly positive correlated expression with cell cycle eigengenes (Pearson correlation
coefficient > 0.7), and the light-blue TFs have negatively correlation (Pearson correlation coefficient < −0.7). c The gene expression fold changes by
RNAi depletion in M cells relative to E cells. The dashed line highlights the 1-fold of down-regulation
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dynamic genes are enriched with CHEK2 co-expressed
genes (Fig. 3b). While cell cycle shows a specific gene
expression dynamic activity in EMT, interestingly EMT
derived mesenchymal cells show sensitivity to pharma-
cological polo-like kinase inhibitors [32] and to shRNA
inhibition of cell cycle checkpoints (Fig. 4c). We
explored the impact of cell cycle modulation on E and
M cells using two RNAi barcode experiments, each
using 5 - 6 individual hairpins and associated barcodes
per target. Following lentiviral infection with shRNA
constructs targeting CHEK2, RAD21 and control targets
(RBL2, DHFR, ACTA1), E and M cells were measured
for DNA barcode depletion after nine cell doublings.
When knockdown is deleterious to cell viability barcode
sequences are depleted. Both experiments show that
RAD21 and CHEK2 knockdown significantly depletes
M cells relative to E cells (Fig. 4c), while knockdown of
the control genes RBL2, DHFR and ACTA1 showed
little effect.
Another example is the immunological module. As

shown in Additional file 3: Figure S2, a gene co-
expression module during H358 EMT is enriched with
immunological pathway genes including interferon
signaling, immune-regulatory interactions and cytokine
signaling. The eigengene of this module represents the
immunological EMT expression dynamic pattern, and
shows an expression pattern upregulating after 8 h, espe-
cially from 72 h (Additional file 3: Figure S2A). Also, we
found that several key transcription factors (TFs)
involved in regulating immunological function genes
including STAT3 (r = 0.93), ELK3 (r = 0.86) and IRF4
(r = 0.81) positively correlate with the module eigen-
gene. In addition to these TFs, oncogenic and DNA
damage transcription factors like JUND (r = 0.62),
DDIT3 (r = 0.82) and FOS (r = 0.87) exhibited positive
correlations with the eigengene of immunological
module. However, the oncogene repressor, SIN3A was
strongly inversely correlated (r = −0.81) with the module
eigengene, suggesting that some oncogenes are upreg-
ulated at late stages of EMT due to the downregula-
tion of SIN3A, which triggers the transcriptional
activation of immunological pathways. In addition,
TFs involved in regulating chromosomal structure
such as SMC3 (r = -0.83) and POLR2A (r = -0.87)
were also negatively correlated with the eigengene of
immunological module. This suggests that the tumor
immune modulating genes may potentially interact
with chromosomal structures at late stages of EMT. Further
and interesting, putative TFs co-regulating immunological
gene expression dynamics during EMT form a structured
gene regulatory network (Additional file 3: Figure S2B); i.e.,
the positively correlated TFs tend to regulate each other as
well in a more connected sub-network (orange) than the
negatively correlated ones.

Revealing EMT periods of TCGA lung cancer patients
using EMT-dynamic genes
Given the sharing of features between two cell lines, we
next sought to assess if the EMT-dynamic genes identi-
fied using the time-series gene expression data of
EMT-induced cell lines, H358 and A549, studied in cul-
ture were of any relevance to disease in patients. To
assess this, we utilized gene expression data from The
Cancer Genome Atlas (TCGA) project and Genotype-
Tissue Expression (GTEx) projects, which provide
publicly available genome-wide gene expression data for
lung cancer tissues from 522 Lung Adenocarcinoma
(LUAD) patients and normal tissues from 320 healthy
individuals [33, 34]. First, we calculated the degrees of
differential expression between TCGA and GTEx tissues
for all genes; i.e., log (Fold Change) or log (FC) values
(see Methods), and found that the EMT-dynamic genes
have significantly larger log(FC) values than other genes
(t-test p < 0.005). This analysis first established that the
EMT-dynamic genes are significantly differentially
expressed in lung cancer patient tissues. In addition, we
also found that the EMT-dynamic genes correlate with
the tumor purity. We used the tumor purity measure-
ments for TCGA LUAD samples in [35], and correlated
them with gene expression levels (FPKM values) across
samples. It is interesting that the 254 EMT-dynamic
genes have significantly higher correlations than other
genes (t-test p < 7e-6 and ks-test p < 1e-8).
Next, we were interested in whether EMT-dynamic

gene expression in TCGA lung cancer patient tissue also
exhibits evidence of EMT dynamics derived from cell
line data. Specifically, we wanted to determine if the ex-
pression of EMT-dynamic genes identified in a time
series study in vitro was present in lung cancer tissue
samples across patients as evidence of similar temporal
effects in lung tumor EMT evolution in the patient set-
ting. Thus, for each TCGA patient, we correlated her/his
TCGA gene expression data with each of the in vitro
derived EMT transition period specific gene expression
data for the 254 EMT-dynamic genes, and found the
EMT transition period specific gene expression with
maximum correlation (see Methods). We then classified
each patient tissue sample to an EMT-dynamic gene
defined as a ‘patients EMT transition period’ or PEP. As
shown in Fig. 5a, the scatter plot shows the PCA coeffi-
cients of 522 TCGA patients with adenocarcinoma of
the lung (LUAD) on the first two principal components
of their TCGA gene expression levels of EMT-dynamic
genes (FPKM values, See Methods). Both cell lines are
adenocarcinoma type NSCLC. Patients with the same
H358 PEP (same color) are clustered together. Moreover,
and interestingly, PEP clusters corresponding to adjacent
EMT periods in culture appear next to each other on
PCA plot; i.e., at the patient level we observed that the
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PEP clusters, in general follow, temporal EMT progres-
sion patterns from 0 to 8 h, 16-24 h, 72 h, 168 h to
>500 h that were identified in cell lines induced to
undergo EMT. We did not observe this EMT progres-
sion pattern using the 76 previously identified EMT
genes or all ~18,000 protein-coding genes (Fig. 5a). Also,
the silhouette values of TCGA patients by 254 EMT-dy-
namic genes are significantly larger than the 76 previ-
ously identified EMT genes or all ~18,000 protein-
coding genes. This suggests that the PEPs by our 254
EMT-dynamic genes cluster more significantly together
and reveal the EMT developmental periods present in
LUAD patients not observed using dichotomized E and
M gene groups.
To explore clinical relevance, we assessed the relation-

ship between PEPs and patient outcome. Survival plots
(Fig. 5c) show that the survival rates of TCGA patients
differ significantly when classified by PEPs (p < 0.016).
The survival analysis includes three major PEP clusters
for TCGA patients are present: h16, h72 and h168, and
uses the PEP cluster h0-8 as reference to calculate the
Hazard ratios. In addition to the significant classifica-
tion, the order of three major PEP clusters also generally
follows the EMT progression and lung cancer develop-
ment; i.e., the patients in the PEP cluster h168, h72 and
h16 have the lowest, middle and highest survival month
distributions, respectively. However, when we use the
previously identified 76 EMT signature genes or all
~18,000 protein coding genes to define the PEP for
TCGA patients, this pattern is not present, and the

patients are not significantly classified by the PEP either
(p = 0.55 for 76 EMT signature genes; p = 0.2 for ~18,000
protein coding genes). Moreover, the identification of
TCGA patients PEPs using our identified 254 EMT-dy-
namic genes is independent from the patient stage infor-
mation provided by TCGA. Thus, this suggests that the
in vitro identified EMT-dynamic genes capture aspects
of the gene expression dynamics of EMT at the patient
level, and the PEPs can be potentially used as additional
feature at diagnosis to classify the patient outcome.

Discussion
Gene signatures discriminating epithelial and mesenchy-
mal cancer cell states have been very successful in cat-
egorizing cell lines and micro dissected or laser captured
tumor tissues [36]. However, the ability to translate these
signatures to clinical relevance as prognostic or predict-
ive biomarkers or to guide target discovery for drug
development has been less successful. Here we asked
whether detailed time course data could be used to iden-
tify gene changes during EMT as a dynamic process and
whether dynamic changes in gene expression during
EMT in the in vitro setting can be extended to under-
stand EMT states in vivo in patient populations.
To test this, we systematically analyzed the temporal

gene expression dynamic patterns during the EMT in
NSCLC using data derived from lung cancer cell lines
induced to undergo EMT using data collected at mul-
tiple time points during the slow transition of cells going
from E to M. Previously, we and others have shown that

a cb

Fig. 5 EMT-dynamic genes reveal EMT periods of TCGA lung cancer patients. a The PCA plots show the PC1 and PC2 coefficients of 522 TCGA LUAD
patients using their TCGA gene expression data for three gene sets: 254 EMT-dynamic genes (left), 76 previously identified ETM genes (top right) and
all ~18,000 genes (top bottom). The dots are patients. The colors denote the patients personalized EMT periods (PEPs) in H358 (Methods): green (h0-8),
brown (h16-24), purple (h72), magenta (h168) and yellow (>h500). b To evaluate how well TCGA LUAD patients are clustered on Panel A using three
gene sets, the boxplots show the silhouette value distributions. The 254 EMT-dynamic genes have significantly higher silhouette values than others.
c The personalized EMT periods (PEPs) of 522 TCGA LUAD patients significantly classify the patient survival rates by the Kaplan–Meier analysis. Three
major PEP groups are h16 (red), h168 (green) and h72 (blue). The reference group of hazard ratios consists of the patients whose PEPs is h0-8
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the EMT gene expression patterns are generally con-
served between two EMT-induced lung adenocarcinoma
KRAS mutant cell lines, H358 and A549 [6, 16, 17].
Here, we discovered an extended set of novel EMT sig-
nature genes that have high correlation to time-series
expression profiles with temporal patterns during EMT
in both cell lines. These have been designated as EMT-
dynamic genes of NSCLC. Further, we show that these
novel EMT-dynamic genes that appear to represent dis-
tinct stages in the process of EMT are differentially
expressed in lung cancer patients using TCGA lung can-
cer patient tissue sample data. Further, classifying pa-
tients using a personalized EMT period (PEP) that
represents the maximum correlated EMT stage, we
found that the PEPs of patients generally follow an EMT
temporal trajectory observed in cell culture. The evi-
dence of distinct cell culture defined temporal stages of
EMT in patients along with evidence that different pa-
tient groups match different temporal states with effects
on outcome was somewhat surprising. This strongly
supports the idea that gene expression dynamics pat-
terns for EMT stages observed in cell culture are present
in patients and that the relationship is not a simple E or
M state. Most surprising was the finding of the tempor-
ally defined stages of EMT in the patient population
using cross-sectional analysis suggesting that the tem-
poral patterns observed in cell culture are occurring in
human disease. While the clinical relevance of our find-
ings remains to be determined, these data strongly sug-
gest that patient groups differ significantly in relation to
EMT status; a finding that if confirmed might explain
heterogeneity in treatment sensitivity and guide drug de-
velopment strategies aimed at capitalizing on knowing
the tumor EMT stage at time of treatment. Promising is
the observation that temporal studies that are easily con-
ducted in cell culture may be of utility in modeling dis-
ease response and behavior in patients.
Here, we have constructed gene co-expression networks

based on the gene-gene Pearson correlations during EMT,
which captured the linear relationships. Given that the
time points during EMT do not have equal intervals, the
genes likely have non-linear co-expression relationships
during EMT. Thus, the future work will integrate the
non-linear and even causal relationships into our gene
network analysis. In addition, the transformation of gene
expression from the cell line to the tissue may not be lin-
ear, so in future, we can apply advanced machine learning
methods such as tSNE [37] to better capture and translate
the non-linear gene expression relationships from cell
culture studies to patient tissue studies.
The gene expression dynamics during EMT is complex

and controlled by gene regulatory networks. The gene
regulatory networks consist of a variety of factors across
multiple scales such as transcription factors,

microRNAs, metabolites, etc. In this paper, we identified
the gene regulatory networks based largely on transcrip-
tion factor genes. Another important future work is to
integrate multi-omics data as available including meta-
bolomics and proteomics to systemically discover the
gene regulatory networks and especially, find the drug-
gable molecules and pharmacological approaches, based
on their network positions to selectively target the epi-
thelial to mesenchymal transition stages in lung cancer
patients. With increasing large-scale multi-omics cancer
data, our computational analysis in this paper can be
used as a general-purpose tool to reveal the multi-omics
biomarkers of epithelial to mesenchymal transition for
additional cancer types.

Conclusion
The specific gene regulatory networks control the epi-
thelial to mesenchymal transition (EMT), a key process
driving the lung cancer progression and drug resistance.
We systematically identified a set of novel EMT-
dynamic signature genes with specific expression
dynamic patterns during the EMT process, using com-
parative gene co-expression network analysis for in-vitro
time-series gene expression data of lung cancer cell lines
H358 and A549 induced to undergo EMT. These genes
dynamic patterns support the presence of differential
activation and repression timings at the transcriptional
level for various pathways and functions during EMT.
We also validated the EMT activities of the hub regula-
tory genes of EMT-dynamic genes using RNAi. More-
over, we translated EMT-dynamic genes to TCGA
patient data to reveal their clinical relevance, and found
their ‘developmental period’ information for EMT that is
present in lung cancer tissue derived from patients and
positive association with patient outcomes supporting
the potential in vivo significance of EMT-dynamic genes.
Our work suggests that they capture the gene expression
dynamics of EMT at the patient level, and can be used
as additional prognostic or predictive biomarkers at
diagnosis to classify the lung cancer patient outcome.
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Additional file 1: Table S1. Genes and gene co-expression modules by
WGCNA in H358 EMT. Table S2. Genes and gene co-expression modules by
WGCNA in A549 EMT. Table S3. 254 EMT-dynamic genes (XLSX 612 kb)

Additional file 2: Figure S1. Novel EMT-dynamic genes have distinct
temporal expression dynamics during epithelial to mesenchymal transition
in lung cancer. PCA of 254 EMT-dynamic genes using their gene expression
data in H358 EMT. The dots are genes. The x-axis is the PC1 coefficient, and
the y-axis is the PC2 coefficient. The four gene groups have been clustered
by K-means. The embedded boxplots display the gene expression level
distributions across H358 EMT stages for four groups. The blue group
represents genes with an increasing expression pattern at middle EMT
stages (~72 h and continuing). The green group has an increasing ex-
pression pattern at ~ 16 h which decays after 168 h. The gene
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are decreasing in expression during EMT (from 8 h on). (PDF 233 kb)

Additional file 3: Figure S2. The gene expression dynamics and
regulatory networks for the immunological module in H358 EMT. (A)
The heatmap shows the module’s eigengene expression level across
H358 EMT stages. Red: high expression level; Blue: low expression level.
(B) The predicted gene regulatory network controlling the cell cycle
modules. Nodes are the transcription factors (TFs). The TFs in the
network have significantly large numbers of target genes in the
immunological module (p < 0.05). The orange TFs have highly positive
correlated expression with the immunological eigengene (Pearson
correlation coefficient > 0.7), and the light-blue TFs have negatively
correlation (Pearson correlation coefficient < −0.7). (PDF 244 kb)
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