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Abstract

Background: The clinical benefit of adjuvant chemotherapy for stage Il colorectal cancer (CRC) is controversial. This
study aimed to explore novel gene signature to predict outcome benefit of postoperative 5-Fu-based therapy in
stage Il CRC.

Methods: Gene-expression profiles of stage Il CRCs from two datasets with 5-Fu-based adjuvant chemotherapy
(training dataset, n=212; validation dataset, n = 85) were analyzed to identify the indicator. A systemic approach
by integrating gene-expression and protein-protein interaction (PPIl) network was implemented to develop the
predictive signature. Kaplan-Meier curves and Cox proportional hazards model were used to determine the
survival benefit of adjuvant chemotherapy. Experiments with shRNA knock-down were carried out to confirm
the signature identified in this study.

Results: In the training dataset, we identified 44 PPl sub-modules, by which we separate patients into two
clusters (1 and 2) having different chemotherapeutic benefit. A predictor of 11 PPl sub-modules (11-PPI-Mod)
was established to discriminate the two sub-groups, with an overall accuracy of 90.1%. This signature was
independently validated in an external validation dataset. Kaplan-Meier curves showed an improved outcome
for patients who received adjuvant chemotherapy in Cluster 1 sub-group, but even worse survival for those in
Cluster 2 sub-group. Similar results were found in both the training and the validation dataset. Multivariate Cox
regression revealed an interaction effect between 11-PPI-Mod signature and adjuvant therapy treatment in the
training dataset (RFS, p=0.007; OS, p=0.006) and the validation dataset (RFS, p=0.002). From the signature,
we found that PTGES gene was up-regulated in CRC cells which were more resistant to 5-Fu. Knock-down of
PTGES indicated a growth inhibition and up-regulation of apoptotic markers induced by 5-Fu in CRC cells.

Conclusions: Only a small proportion of stage Il CRC patients could benefit from adjuvant therapy. The 11-PPI-Mod as
a potential predictor could be helpful to distinguish this sub-group with favorable outcome.
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Background

Colorectal cancer (CRC) is one of the most common
malignancies, and is among the leading causes of
cancer-related death worldwide. The incidence and
mortality of CRC have been rising during the past two
decades in China. It was estimated that the newly
diagnosis of CRC is 376,300 and approximately 191,000
people died in China in 2015 [1]. Surgery is the founda-
tion of curative treatment for localized CRC, but
approximately 25% of patients with AJCC stage II (or
Dukes’ B) and nearly 45% of those with Stage III suffered
recurrence after surgical resection [2]. Postoperative
adjuvant chemotherapy was helpful to improve relapse
free survival (RFS) of stage III patients [3, 4]. However,
the benefit from adjuvant chemotherapy in Stage II CRC
patients without lymph node metastasis is controversial.
Routine clinical and pathological characteristics failed to
predict RFS in many Stage II patients who received
adjuvant chemotherapy [5]. The proper decision of
whether a patient with Stage II disease should
receive adjuvant chemotherapy would be important
for improving prognosis.

Recent years, a series of molecular or genetic markers
were identified as significant prognostic factors for CRC,
including Microsatellite instability (MSI), Loss of hetero-
zygosity (LOH), 18q deletion, KRAS mutations, and
BRAF mutations et al. [6, 7]. However, the usefulness of
these markers in predicting survival benefit of adjuvant
chemotherapy is unclear. The defective DNA mismatch
repair (AIMMR) feature was correlated with good prog-
nosis, and the patients with dMMR could not benefit
from 5-Fu based adjuvant chemotherapy in stage II-III
CRC:s [8, 9]. In the proficient mismatch repair (pMMR)
sub-group, the survival benefit of adjuvant chemother-
apy was only observed in patients with stage III disease,
but not in stage II sub-groups [9]. A multicentre
randomized trail QUASAR was assigned to explore the
survival benefit from adjuvant chemotherapy for patients
with CRC at low risk of recurrence [10]. The QUASAR
trial demonstrated that the 5-Fu based chemotherapy
could improve survival of patients with stage II CRC.
However, the 5-year absolute improvement of survival
for adjuvant chemotherapy was only 3.6% [10]. Hutchins
et al. analyzed the MMR status in the QUASAR trial,
and found that the MMR status provided only prognos-
tic value but not predictive significance for adjuvant
chemotherapy in stage II CRCs [11]. Thus, for patients
with stage II CRC of pMMR, novel predictive bio-
markers are required for predicting outcome benefit of
adjuvant chemotherapy.

Gene-expression profiles were widely used in prognos-
tic signature development for CRC [2, 12-15]. Whereas,
minimal concordance in overlapping of gene lists identi-
fied in these studies was observed. The human protein-
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protein interaction (PPI) network is a complex biological
network composed of a lot of known or unknown
pathways, and has been proposed to be informative in
the identification of cancer biomarkers when being inte-
grated with gene-expression profiles [16—-19]. Compared
with gene signature, function related PPI network might
provide higher predictive accuracy and more reproduci-
bility between different cohorts [17]. In addition, sub-
modules (sub-networks) derived from PPI network can
identify the tightly shared common biological themes,
which will provide insight into new therapeutic strategies.

In this study, the gene-expression profiles of stage II
CRCs of pMMR were analyzed by integration of PPI
network from the Human Protein Reference Database
(HPRD) [20]. A set of effective PPI sub-modules was
identified for predicting the outcome benefit of 5-Fu
based adjuvant chemotherapy. This signature was
further validated in an independent dataset, and
confirmed with CRC cell lines experimentally.

Methods

Patients and characteristics

A total of 297 patients with stage II (or Duke’s stage B)
colorectal cancer were analyzed in this study. The train-
ing dataset (n=212) was collected from the Gene
Expression Omnibus (GEO) dataset GSE39582 [15], with
the following criteria: a) American Joint Committee on
Cancer (AJCC) stage II; b) tumors were characterized as
PMMR; c) with follow-up information. There were 127
males and 85 females, and with a median age of 69 years
old (range from 25 to 94 years old). Of these, 50 patients
received Fluorouracil (5-Fu) based adjuvant chemother-
apy after surgery resection, 162 patients received surgical
treatment alone. The median followed-up time of this
dataset is 4.7/5.3 years from the surgery date for RFS
and overall survival (OS) respectively. The six molecular
subtypes of CRCs identified by Marisa et al. was involved
in the training dataset [15].

The validation dataset was a subset of the GEO dataset
GSE14333 [21], including 85 patients with Duke’s Stage
B colorectal cancer and follow-up information. The
median age of these patients was 70 years old, with a
range from 30 to 92 years old. There were 45 males and
40 females in this dataset, 13 patients received standard
5-Fu based adjuvant chemotherapy, and 72 ones
received surgical treatment alone. The median RFS time
of this dataset is 3.3 years from surgery date.

Modularity analysis of protein-protein interaction network

PPI network was downloaded from the HPRD (Release 9)
[22]. The whole PPI network was processed and analyzed
using the R package of “igraph”. In details, replicated
connections between two proteins were reduced to one
unique interaction, the loops (connections between a
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protein and itself) were removed. The adjacency matrix of
the network was used to calculate the general topological
overlap matrix (GTOM) with 2-step common neighbors as
previously described [23]. Unsupervised hierarchical
clustering analysis was carried out using the 1-GTOM as
distance matrix and complete linkage. Clusters (sub-mod-
ules) of the hierarchical dendrogram were detected by R
package “dynamicTreeCut” [24], with parameters of max
tree height of 0.6, minimum module size of 5 proteins, and
deep split method.

Gene expression data processing and GSVA profile
transformation

Gene expression data (“cel” files of Affymetrix Human
Genome U133 Plus 2.0 microarrays) of the selected
samples were downloaded from GEO database. The gene
expression profiles were normalized using the “RMA”
method. “PMA” callings were detected by R package
“affy” for the training and validation dataset respectively.
Probes that were characterized as “Present” in more than
20% tumor samples were retained, resulting in 28,810
and 26,324 probes for the training and validation dataset
respectively. Probe annotation was performed by the
“hgul33plus2.db” package from Bioconductor, resulting
in 13,274 unique Entrez gene ids for the training dataset,
and 12,721 genes for the validation dataset. The 12,209
genes overlapped between the training dataset and
validation dataset were employed in the subsequent
analysis. A flowchart about data processing was shown
in Additional file 1: Figure S1.

The PPI sub-modules were mapped onto the gene
expression files based on Entrez gene ids. The Gene Set
Variation Analysis (GSVA) [25] was employed to detec-
tion the variation value of the PPI sub-modules in each
dataset, using the R package “GSVA” [25].

Feature selection, predictive modeling, and independent
validation for adjuvant chemotherapy related sub-groups
Cox’s proportional hazards model was used to test the
interaction effect between adjuvant chemotherapy status
and the PPI sub-modules on RFS of patients. The
Benjamini and Hochbergs [26] FDR<0.05 for the
interaction effect (chemotherapy & PPI sub-module
group) was considered significant. The significant sub-
modules were used to identify sub-groups of samples
by unsupervised hierarchical clustering, with the
distance of 1-Pearson’s correlation coefficient, and the
complete linkage.

The sub-modules with the most importance and
optimal predictive performance for the identified sub-
groups were defined by the Random Forest feature
selection algorithm using R package “varSelRF” [27],
with the following parameters: 5000 trees in the first for-
est, 3000 trees in the iterative forests, and excluding 20%
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of variables at each iteration. The final solution was se-
lected with the smallest number of PPI sub-modules
whose “Out-of-Bag” (OOB) error rate is within standard
error of the minimum error rate of all iterative forests
[27]. For the PPI-sub-module predictor, the trained class
probability was utilized for receiver operating character-
istic (ROC) curve analysis. The areas under the ROC
curves (AUC) with 95% confidence interval (CI) were
calculated by the R package “pROC” [28]. Finally, the
optimal PPI sub-module prediction model was validated
in the validation dataset.

Network visualization and biological annotation of selected
PPl sub-modules

The R package “igraph” was used for network visualization.
The biological and functional annotations of the 11 sub-
modules were analyzed by the online tool DAVID [29, 30],
using the Gene Ontology (GO) and the KEGG
database. The Benjamini’s adjusted p-value <0.05 was
considered as significant.

Cell culture and treatment

All CRC cells were purchased from the American Type
Culture Collection (ATCC) and the cell bank of Chinese
Academy of Sciences. Cells were cultured in DMEM/F12
and RPMI-1640 medium with 10% Fetal Bovine Serum
(FBS), and incubated at 37 °C with 5% CO,. Cell viability
assay: cells were seeded in 96-well plates and treated with
5-Fu at 500 pM, 100 uM, 20 pM, 4 pM, 800 nM, 160 nM,
32 nM and 0 (6 wells/treatment) for 72 h. Cell viability was
detected with Cell Counting Kit-8 (Dojindo, Kumamoto,
Japan; Cat #CKO04), the absorbance at 450 nm was recorded
by iMark microplate reader (Bio-Rad, CA, USA). Lentivirus
production and viral transduction were described as previ-
ously [31]: lentivirus was packaged by transfecting 3 pg
lentiviral vector mixed with 2.7 pg helper plasmid pCMV-
dR8.91 and 0.3 pg envelope plasmid (VSV-QG) to 293 T cells
by XtremeGene HP (Roche, Basel, Switzerland; Cat #
6366236001). Cells with about 35% confluent were infected
with virus and 10 pg/ml polybrene. After 24 h, cells were
selected with fresh media containing puromycin at 2 pg/ml
for 48 h. Cells were harvested and divided into two parts: a)
treated with DMSO at a final concentration of 0.1% and
5-Fu at 5 puM for 16 h, and then harvested for Western
blotting; b) for cell proliferation assay at 0, 24, 48, 72 h
respectively. Lentiviral based short hairpin RNA (shRNA)
constructs were purchased from Genechem Co. Ltd.
(Shanghai, China): PTGES-shRNA-1, clone ID 44673,
target sequence GGGCTTCGTCTACTCCTTT; PTGES-
shRNA-2, clone ID 44674, target sequence ACGACATG
GAGACCATCTA; Scramble, clone ID CONO077, target se-
quence TTCTCCGAACGTGTCACGT.
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RNA extraction and RT-qPCR

Total RNA from CRC cell lines was isolated using
RNeasy mini Kit (Qiagen, Duesseldorf, Germany; Cat #
74104), and then quantified by NanoDrop 2000
(Thermo, MA, USA). 100 ng of total RNA was subjected
to RT-qPCR analysis with the iTaq Universal SYBR One-
Step Kit (Bio-Rad, CA, USA; Cat #1725150) on the
CFX-Connect Real-Time PCR Detection System (Biorad,
CA, USA) following the manufacturer’s instructions.
The primers are as follows: PTGES, forward sequence,
ACCCTTTTGTCGCCTGGAT, reverse sequence,
GTAGGTCACGGAGCGGATG; GAPDH (endogenous
control), forward sequence, ACCCAGAAGACTGTG
GATGG, reverse sequence, TTCAGCTCAGGGAT
GACCTT. Average cycle threshold (Ct) of the triplicate
experiments for each sample was used for the subse-
quent analysis. The gene expression was calculated using
the 2722t method [32], where ACt = Ctiarget gene— Ctendo-
genous? and AACt = AC:tindividual sample — AC:treference sample-

Western blotting

Cells were lysed with cell lysis buffer (CST, MA, USA; Cat
#9803) in the presence of protease inhibitors. 40 pg of
total protein were electrophoresed on 12% SDS-PAGE
and electrophoretically transferred onto a PVDF mem-
brane, blocked with 5% skim milk at room temperature
(RT) for one hour. Membranes were later probed with dif-
ferent primary antibodies overnight at 4 °C. The mem-
branes were washed for 5 min three times in TBS with
0.1% Tween-20 and then incubated with horseradish
peroxidase-conjugated mouse (Cat #1706516, Biorad, CA,
USA) or rabbit (Cat #1706515, Biorad, CA, USA) second-
ary antibodies at RT for one hour. The membranes were
washed three times for 5 min in TBS with 0.1% Tween-20,
and then visualized with the Lumi-Light Western Blotting
Substrate (Roche, Basel, Switzerland; Cat #12015200001)
on the 5200 chemiluminescence imager (Tanon, Shanghai,
China). The following primary antibodies were purchased:
mouse anti-PTGES (Santa Cruz, CA, USA; Cat #sc-
166,309), rabbit anti-Cleaved Caspase-3 (CST, MA, USA;
Cat #9661), mouse anti-Cleaved PARP-1 (Santa Cruz, CA,
USA; Cat #sc-56,196), mouse anti-GAPDH (ZSGB-BIO,
Beijing, China; Cat #TA-08).

Other statistical methods

The associations between the 11-PPI-Mod sub-groups
and other clinical variables (age, gender, tumor location,
et al.) were estimated by Pearson’s Chi-squared test with
Yates’ continuity correction. The univariate analysis for
different clinical variables, or multivariate analysis for
assessing interaction effect between adjuvant chemother-
apy and other clinical parameters were performed using
Cox’s proportional hazards model. The Kaplan-Meier
curve and the log-rank test were employed to compare
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the RFS and OS of patients in different groups. The
significance of RT-qPCR data was calculated by unpaired
Student’s t-test. All of these statistical methods were
two-sides, and performed by R software.

Results
A workflow for thist study is depicted in Fig. 1.

Identification of protein-protein interaction sub-modules
by GTOM

A protein-protein interaction network composed of 9501
proteins (nodes) and 36,963 interactions (edges) was
extracted from the HPRD (Fig. 2a). To identify the PPI
sub-modules with tightly co-regulated proteins, a general
topological overlap matrix (GTOM) of the 9501 proteins
was calculated based on 2-step common neighbors in the
PPI network. Unsupervised hierarchical clustering and
followed branch detection analysis revealed that 5580 out
of 9501 proteins were divided into 740 distinct sub-
modules (Fig. 2b). The remained 3921 proteins did not
reach the criteria (GTOM dissimilarity <0.6, or sub-
module protein number > 5) of the unsupervised hierarch-
ical clustering analysis, and were excluded in the subse-
quent analysis. Among the identified 740 sub-modules,
the median of protein/gene number was 7, with a range
from 5 to 48.

Of the 740 PPI sub-modules, 734 had been mapped
onto the gene expression profiles of the training and
validation datasets. Gene Set Variation Analysis (GSVA)
was employed to transform the single-gene-based gene
expression profile to PPI-sub-module-based GSVA profile,
with 734 rows (sub-modules) and 212/85 columns (sam-
ple numbers in training/validation dataset). The GSVA
profiles were generated, and applied in the subsequent
modeling and prediction analysis.

Stratification of CRC sub-groups by expression profiles of
PPl sub-modules

In the training dataset of stage II CRC of pMMR (n =
212), among the diverse clinical or genetic variables,
only pathological T stage showed prognostic values for
RFS (Additional file 1: Table S1, P =0.019). For OS, age
(P<0.01) and the “C3” molecular subtype (P=0.019)
achieved statistical significance by Cox analysis (Add-
itional file 1: Table S2). Meanwhile, the patients who re-
ceived adjuvant chemotherapy showed no benefit based
on either RFS (Additional file 1: Table S1, P=0.28) or
OS (Additional file 1: Table S2, P =0.64), compared to
those with surgical treatment alone. We also tested the
interaction effect between adjuvant chemotherapy and
other clinical variables, but none of these showed a sig-
nificant result for RFS (Additional file 1: Table S1). Only
KRAS status achieved statistical significance for OS
(Additional file 1: Table S2, P = 0.016).
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Fig. 1 An overview of the workflow in this study. In details, a set of promising protein-protein interaction sub-modules were identified from the HPRD
database. The gene-based expression profile was transformed into PPl-module-based profiles by the GSVA algorithm. Using Cox regression model and
Random forest algorithm, we established a prediction model named 11-PPI-Mod in the training dataset. This signature was also validated in another
independent validation dataset. In addition, in vitro experiments were performed to validate one of the predictive genes in terms of chemoresistance

In order to identify sub-group of patients who may
benefit from adjuvant chemotherapy, the PPI sub-
modules were preselected by Cox model in analyzing the
interaction effect between treatment and the GSVA
profiles. As a result, 44 sub-modules were associated
with different RFS benefit from adjuvant chemotherapy
(interaction effect, FDR <0.05). With an unsupervised
clustering program, patients were clustered into two
major sub-groups (Fig. 2c), with 135 patients in Cluster
1 and 77 patients in Cluster 2. The two clusters were
correlated with six molecular subtypes (Chi-square test,
P<0.001) and patients age (Chi-square test, P=0.05),
but not correlated with gender, tumor location, BRAF
/KRAS / TP53 mutation status or adjuvant chemother-
apy treatment (Chi-square test, P > 0.05) (Fig. 2c).

Construction of predictor for the sub-groups identified in
stage Il CRC

The random forest algorithm revealed that the 44 PPI
sub-modules exhibited a significant importance for pre-
dicting the two sub-groups, compared with the simu-
lated results (Additional file 1: Figure S2A). Among the
iterative random forests, the minimum OOB error rate
is 0.085 + 0.019 (mean + sd). Within this error rate range,

the combination of 11 PPI sub-modules (OOB error
rate = 0.099 + 0.021) reached the criteria of the smallest
feature number and was finally selected for constructing
the prediction model (Additional file 1: Figure S2B). This
model was referred to as a 11-PPI-Mod predictor, of
which the area under the predictive ROC curve was 0.96
(95% CI: 0.94—-0.98) (Fig. 3a). Using predicted probability
>0.5 as the cut-off, 140 patients were predicted as Clus-
ter 1, and 72 patients as Cluster 2, with an overall accur-
acy of 90.1% (191/212, Fig. 3b). In the 11-PPI-Mod
predictor, three sub-modules were up-regulated in Clus-
ter 1, and eight sub-modules were up-regulated in Clus-
ter 2 (Fig. 3c).

The 11-PPI-Mod predictor constructed in the training
dataset was further applied on the validation dataset (n
= 85). Of the 85 patients, 51 of them were classified as
Cluster 1, and the rest of 34 patients were grouped into
Cluster 2 (Fig. 3d). The predicted sub-groups were not
associated with age, gender, tumor location, or adjuvant
chemotherapy group (Chi-square test, P > 0.1) (Fig. 3d).

Outcome benefit of adjuvant chemotherapy stratified by
11-PPl-mod predictor

In the training dataset, the survival benefits from
adjuvant chemotherapy were diverse in different sub-
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showed even worse RFS than those without it (P = 0.004)
(Fig. 4, the upper panel). For OS, those who received
adjuvant chemotherapy showed no distinct prognosis
considering the entire cohort (P=0.64). Patients who
received adjuvant chemotherapy in Cluster 1 demon-
strated better outcome (P =0.037), but patients who
received adjuvant chemotherapy in Cluster 2 showed a
worse outcome (P=0.041) (Fig. 4, the middle panel).
Multivariate Cox regression revealed a significant inter-
action effect between 11-PPI-Mod sub-groups and adjuvant

chemotherapy treatment based on both RFS (Additional
file 1: Table S1, P =0.007) and OS (Additional file 1: Table
S2, P =0.006).

In the validation dataset, univariate Cox analysis indi-
cated that none of the clinical variables or the 11-PPI-
Mod predictor could predict RFS (P> 0.05) (Additional
file 1: Table S3). However, the 11-PPI-Mod sub-groups
showed a predictive value for RFS benefit of adjuvant
therapy. There was no significant difference on RFS be-
tween patients with or without adjuvant chemotherapy



Cao et al. BMC Cancer (2017) 17:844

Page 8 of 13

All Stage Il patients Patients in Cluster 1 Patients in Cluster 2
< o 4 = . o
- - g o B M
8 z = N‘“.‘. z = ! "+ + -+ > g_|;"‘l-ﬁ
® 3 i 2 3 1
s S & -t g 31 8 S "o
oK S - s L oo
e e | o i |
E .g © —— non-Adj.Ther. .g © —— non-Adj.Ther. ; © —— non-Adj.Ther. !
c 5 « + =+ Adj.Ther. 5 « + =+ Adj.Ther. 5 o + =+ Adj.Ther. (R
a n o Pvalue = 0.27 ? o 7| Pvalue= 0.16 » o Pvalue = 0.0036
= o | o | o |
e T T T e T T T e T T T
0 5 10 15 0 5 10 15 0 5 10 15
Survival time (years) Survival time (years) Survival time (years)
b
g ) o o
5 ¢ z 3 z 3
o ) o
© © © +
23 2 ¢ £ s § 21 LA
< 3 = 3 = 3 = L
E z ° — non-Adj.Ther. z ° —— non-Adj.Ther. z ° —— non-Adj.Ther. 1
n— 5 o + =+ Adj.Ther. 5 « =+ Adj.Ther. 5 o + =+ Adj.Ther. N
© ? o 7| Pvalue= 064 @ S 7| Pvalue= 0.037 (2 Pvalue = 0.041 +
= o | o | o |
< T T T e T T T e T T T
0 5 10 15 0 5 10 15 0 5 10 15
Survival time (years) Survival time (years) Survival time (years)
il
g o © 4mimo. o
© B —— non-Adj.Ther. - -\.-. —— non-Adj.Ther. —— non-Adj.Ther.
"5 z 24 - « = Adj.Ther. z 24 ! - Adj.Ther. z 24 +=- Adj.Ther.
3 3 3
e 3 5. EEER ERER
oL = 8 g7
sE 3 3 g 31 T 3
© 2 2 3
© a3 A a3
© o | o | o |
> e T T T T e T T T T e T T T T
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Survival time (years) Survival time (years) Survival time (years)
Fig. 4 Survival analysis of adjuvant chemotherapy in stage Il CRC patients. The upper and middle panels show RFS and OS in the training dataset
respectively. The bottom panel shows RFS in the validation dataset. The entire cohort of stage Il patients (the left column), Cluster 1 sub-group (the middle
column) and Cluster 2 sub-group (the right column) stratified by 11-PPI-Mod predictor are analyzed respectively. The RFS/OS of patients who received
adjuvant chemotherapy are compared to those of patients without adjuvant therapy. The p value is calculated by log-rank test. Abbreviations: Adj.Ther,
with adjuvant chemotherapy; non-Adj.Ther, without adjuvant chemotherapy
J

within entire cohort (log-rank test, P =0.37). However,
the adjuvant chemotherapy treatment was associated
with improved RFS in Cluster 1 sub-group (P =0.02),
but a trend of decreased RES in Cluster 2 sub-group (P
=0.07), compared with the surgery treatment alone
(Fig. 4, the bottom panel). Multivariate Cox model indi-
cated a significant interaction effect between adjuvant
chemotherapy treatment and the sub-groups predicted
by 11-PPI-Mod (Additional file 1: Table S3, P = 0.002).

The biological significance of the 11-PPI-mod predictor

There were 86 genes in the 11 selected PPI sub-
modules (Additional file 1: Table S4). 50 genes from
six sub-modules were directly connected into six sub-
networks according to protein-protein interactions

(Fig. 5a). In other five sub-modules, most of the pro-
teins were not connected directly (Fig. 5a), the high
modularity of these proteins probably results from the
tight co-regulation with their common neighbors.
Moreover, gene set enrichment analysis showed that
the 11 sub-modules were related to diverse GO terms
and KEGG pathways (Fig. 5b). For instance, Mod102
was significantly correlated with DNA replication and
DNA repair. Mod44 was enriched in cytoskeleton
organization and regulation of cell morphogenesis.
Mod107 was referred to bHLH transcription factor
binding and embryonic development. Mod109 was
mostly related with Wnt signaling pathway and
Hedgehog signaling pathway, and Mod431 was
enriched in prostaglandin receptor activity.
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PTGES from 11-PPl-mod is associated with chemoresistance
in CRC cells

Among the 86 genes in the 11-PPI-Mod predictor,
PTGES gene was further investigated in CRC cells. The
mRNA levels of PTGES were significantly higher in
HCT-116 (Fold Change=4.99, P=0.04) and HCT-8
(Fold Change = 3.71, P = 0.01) than that of Colo-205 cells
(Fig. 5¢). Meanwhile, Colo-205 (IC50 = 0.46 uM, 95% CI:
0.33-0.63) was more sensitive to chemotherapeutic
agent Fluorouracil (5-Fu) than HCT-116 cells (ICso=
494 uM, 95% CI: 3.4-7.18) and HCT-8 cells (IC50=
35.39 uM, 95% CI: 21.37-58.61) (Fig. 5d). Knock-down
expression of PTGES by shRNA resulted in significant
growth inhibition of HCT-116 cells (Fig. 5e). Further-
more, compared to the scrambled control, knock-down

of PTGES showed dominant elevation in apoptosis
markers of cleaved Caspase-3 and PARP induced by
5-Fu (Fig. 5f).

Discussion

Nearly 25-30% of patients with stage II (or Dukes’ B)
CRC would relapse after surgical resection [2]. However,
the clinical benefit of post-surgical adjuvant chemother-
apy for Stage II CRC is controversial. It was reported
that the absolute risk reduction for recurrence of
adjuvant chemotherapy with 5-fluorouracil (5-FU) in
stage II patients is only 3—5% in 5 years [5], resulting in
a great challenge in determining whether a patient with
stage II CRC should receive adjuvant chemotherapy. It is
necessary to explore novel predictive signatures to
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Fig. 5 Biological significance of genes in the 11-PPI-Mod predictor. a Network visualization of the 11-PPI-Mod predictor. Each node is a single
gene/protein, and each line indicates an interaction between two genes/proteins. The size of nodes represents interaction degree, and the color
indicates different sub-modules (see legends). b Gene set enrichment analysis of each PPI sub-module of 11-PPI-Mod predictor. The —-Log;o-
transformed adjusted p values (x-axis) of significant GO terms or KEGG pathways (y-axis) are shown, across different PPl sub-modules (columns). ¢
Gene expression of PTGES in three CRC cell lines by gRT-PCR. Relative expression (fold change) of PTGES was calculated with GAPDH as reference
gene, and normalized to that of Colo-205 cells. Data represents means and standard deviations (SD, error bars) from three independent
experiments, with triplicate amplifications for each experiment. The P value was calculated by unpaired Student’s t-test (two sided). ** HCT-116 or
HCT-8 vs Colo-205, p < 0.05. d Dose-response of Fluorouracil (5-Fu) on the growth effect of three CRC cell lines. Cells were treated with DMSO or
different concentration of 5-Fu for 72 h. The viable cell number was determined by MTT assay. Data is plotted as mean +/— SD of 3 independent
experiments with sextuplets for each experiment. e Growth curves of HCT-116 cells. Relative cell number (y-axis) is normalized to 0 h. Mean with
standard deviation (SD, error bars) for each time point is shown. Data represents results from three independent experiments with triplicates.
Western-blotting indicates the Knocked down expression of PTGES. f Effect of PTGES on apoptosis of HCT-116 cells. Cells infected with lentiviruses
encoding PTGES-targeting or scrambled shRNAs were treated with 5-Fu (5 uM) or DMSO for 16 h. Cell lysates were subjected to Western-blotting

analysis for two apoptosis markers

identify patients who most likely benefit from adjuvant
chemotherapy. In the present study, we developed a pre-
dictive model named 11-PPI-Mod by integrating the
HPRD PPI network and the gene expression profiles of
stage II CRCs. Patients classified as Cluster 1 sub-group
might get a better outcome after adjuvant chemotherapy.
In contrast, in Cluster 2, patient with adjuvant chemo-
therapy would receive no benefit, or even worse out-
come. In the training dataset, although the improvement
of RFS by chemotherapy did not achieve statistical
significance in Cluster 1 subgroup, a significantly
reduced outcome was observed in the Cluster 2 sub-
group (Fig. 4, upper panel). Similarly, a reversed trend of
outcome between Cluster 1 and Cluster 2 was found in
the validation dataset (Fig. 4, bottom panel). The
reversed outcome trend indicated a potential interaction
effect between 11-PPI-Mod subgroups and treatment,
which was also confirmed by the Cox analysis (Additional
file 1: Table S1-3). Furthermore, we showed that a gene
identified by the 11-PPI-Mod is correlated with chemore-
sistance in CRC cells.

There are several genetic or clinical risk factors for
stage II CRC, including MMR status (or MSI), T4 stage,
poor tumor differentiation, intestinal obstruction,
detected lymph node <10 [5]. The dMMR tumors indi-
cate a lack of efficacy of 5-Fu based adjuvant therapy,
while the outcome benefit of chemotherapy is unclear in
stage II pMMR tumors [9]. However, other risk factors
showed no predictive value for adjuvant chemotherapy.
In this study, we focus on the pMMR tumors in the
training dataset to develop the predictive signature for
adjuvant chemotherapy. Because of the lack of MMR
status in the validation dataset, we validated the
signature using the whole dataset of stage II patients.
Generally, only a small proportion of all CRC tumors
are characterized as dMMR [9, 33], which may have
little effect on the predictive value of our signature. The
results from the training and validation datasets suggested

that our signature were effective in patient stratification
for chemotherapy regardless of MMR status.

Hutchins et al. reported that Kras mutation was a
prognostic marker for poor RFS, but could not predict
benefit from chemotherapy in stage II CRC [11]. We
found that Kras gene mutation carried out a significant
interaction effect with chemotherapy treatment based on
OS. Patients with wild type Kras were more likely to
benefit from chemotherapy, compared with those
harboring Kras mutation (Additional file 1: Figure S3).
The chemo-derived benefit in patients with wild type
Kras was restricted in Cluster 1 but not in Cluster 2,
based on stratification of patients by our 11-PPI-Mod
signature. Meanwhile, the benefit of chemotherapy was
not significant anymore in Cluster 1 with Kras mutation.
Thus, a combination of Kras status and 11-PPI-Mod
signature would be more precise in predicting the bene-
fit of adjuvant chemotherapy in stage II CRC (Additional
file 1: Figure S3).

Previous studies have reported several gene-expression
signatures associated with the prognosis of stage II CRC
patients [2, 5, 12-14]. These studies usually identified
prognostic genes to group patients into high/low risk
subgroups, and the individuals at high-risk group were
therefore proposed to receive more benefit from chemo-
therapy [2, 13, 14]. One limitation of this strategy is that
most of the identified genes would reflect the prognostic
significance, but little is related to drug response/resist-
ance. Our approach focused on the interaction effect
between gene variables and therapeutic status on the
patient outcome. This method would identify both the
prognostic genes and the drug sensitivity/resistance mol-
ecules. Despite the fact that the 11-PPI-Mod predictor
showed no prognostic significance within all patients,
Cluster 1 is associated with poor outcome in patients
without chemotherapy (Additional file 1: Figure S4). In
the chemotherapy arm, Cluster 2 inversely showed
worse RFS and OS than Cluster 1 (Additional file 1:
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Figure S4), suggesting that the genes up-regulated in
Cluster 2 might relate to drug-resistance.

Many of the biological processes or pathways identified
in the present study correlate with chemotherapeutic
sensitivity in cancer cells. DNA replication and cellular
proliferation (annotated by Mod102) related protein Ki-67
and cyclin D1 could predict benefit from adjuvant chemo-
therapy in colon cancer [34, 35]. Mod109 represented
Wnt/beta-catenin pathway, which was involved in resist-
ance to chemotherapy in osteosarcoma [36] and hepato-
cellular carcinoma [37]. Meanwhile, the TCF3 sub-module
(Mod107) was enriched in transcriptional regulators of
epidermal and embryonic stem cells [38], consistent with
that stem-like properties were associated with decreased
benefit from chemotherapy in colorectal cancer [39, 40].
These data collectively suggest that a variety of genes in
the identified sub-modules may reflect the chemoresis-
tance of cancer cells, and might be novel therapeutic
targets for improving patient outcome.

In this study, a PPI module (Mod431) of prostaglandin
(PG) receptor activity was significantly correlated with
limited chemotherapy benefit for stage II colorectal
cancer. Prostaglandins (PGs) are essential mediators of
the inflammatory process and may play critical roles in
proliferation, apoptosis, invasiveness, angiogenesis and
inflammatory response during carcinogenesis [41-44].
Prostaglandin E synthase family has three members
(PTGES, PTGES2, PTGES3), which catalyze the oxidore-
duction of prostaglandin endoperoxide H2 (PGH2) to
prostaglandin E2 (PGE2) [45]. Over expression of the
three family members were found in glioma [45]. The
protein levels of PTGES and PTGES2 were correlated
with poor prognosis in CRC patients [46]. Intratumoral
hypoxia microenvironment could induce PTGES expres-
sion through a HIF-lalpha-dependent manner [47]. It
has been reported that hypoxia contributes to chemore-
sistance in various cancers, including CRC [48-50].
However, whether or not PTGES plays a role in
chemoresistance has been unknown yet. We presumed
that the dysregulation of PTGES (or PG receptor path-
way) would serve as a novel mechanism for chemoresis-
tance in CRC. Depending on our result, the activation of
PG pathways is predictive for chemoresistance in stage
IT CRC patients. Our experimental results demonstrated
that knock-down of PTGES resulted in proliferation
inhibition and enhanced apoptosis in response to 5-Fu
in CRC cells. These data suggest that the PG pathway
and related key molecules would serve as potential pre-
dictive biomarkers for adjuvant chemotherapy, and
PTGES might be a novel target for sensitizing CRC to
chemo-agents.

PPI network has been reported to be informative in
developing cancer biomarkers when being integrated with
gene-expression profiles [16-19]. A  network-based
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approach may identified much more robust signatures,
compared with the gene-based methodology [17]. The
HPRD PPI network is constructed by a lot of experimen-
tally validated protein interactions, which reflect known or
unknown biological pathways [22]. Using a network-base
approach, we identified a set of significant PPI sub-modules
that were correlated with survival benefit of adjuvant
chemotherapy in stage II CRC. These sub-modules might
be related to either well-known or novel biological mecha-
nisms in colorectal cancer. Indeed, some of the sub-
modules were associated with chemotherapeutic sensitivity
in cancer cells (Mod102, Mod107 and Mod109). Although
we did not identified genes with specificity in CRC, these
sub-modules may play a role in chemoresistance in CRC.
For instance, we have validated the PTGES gene for its
potential novel role in chemoresistance in CRC cells. Over-
all, the network-based approach successfully identified a ro-
bust predictive signature, which was tightly correlated with
biological functions.

Conclusions

Our study based on retrospective data identified a 11-PPI-
Mod predictor, which showed a promising predictive value
for survival benefit of adjuvant chemotherapy in stage II
CRCs. The relatively small number of patients in the adju-
vant chemotherapy group may limit the predictive
efficiency. A prospective large-cohort study is suggested
to validate the 11-PPI-Mod signature. Furthermore, the
high-risk PPI modules/genes identified in this study might
be novel therapeutic targets to increase chemo-sensitivity
and improve outcome of patients.

Additional files

Additional file 1: Tables S1-S4. indicate additional results of Cox
regression analysis and genes involved in the 11-PPI-mod. Figures S1-S4.
show additional information of data processing, feature selection and
Kaplan-Meier analysis. (DOC 1262 kb)
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