Liu et al. BMC Cancer (2017) 17:787
DOI 10.1186/5s12885-017-3777-4

Multi-region and single-cell sequencing

BMC Cancer

@ CrossMark

reveal variable genomic heterogeneity in

rectal cancer

Mingshan Liu'", Yang Liu'", Jiabo Di*", Zhe Su', Hong Yang? Beihai Jiang®, Zaozao Wang’, Meng Zhuang?,

Fan Bai"” and Xianggian Su”"

Abstract

Background: Colorectal cancer is a heterogeneous group of malignancies with complex molecular subtypes. While
colon cancer has been widely investigated, studies on rectal cancer are very limited. Here, we performed multi-region
whole-exome sequencing and single-cell whole-genome sequencing to examine the genomic intratumor heterogeneity

(ITH) of rectal tumors.

Methods: We sequenced nine tumor regions and 88 single cells from two rectal cancer patients with tumors of the
same molecular classification and characterized their mutation profiles and somatic copy number alterations (SCNAs) at

the multi-region and the single-cell levels.

Results: A variable extent of genomic heterogeneity was observed between the two patients, and the degree of ITH
increased when analyzed on the single-cell level. We found that major SCNAs were early events in cancer development
and inherited steadily. Single-cell sequencing revealed mutations and SCNAs which were hidden in bulk sequencing. In
summary, we studied the ITH of rectal cancer at regional and single-cell resolution and demonstrated that variable
heterogeneity existed in two patients. The mutational scenarios and SCNA profiles of two patients with treatment naive

from the same molecular subtype are quite different.

Conclusions: Our results suggest each tumor possesses its own architecture, which may result in different diagnosis,
prognosis, and drug responses. Remarkable [TH exists in the two patients we have studied, providing a preliminary

impression of ITH in rectal cancer.

Keywords: Rectal cancer, Single-cell whole-genome sequencing, Multi-region whole-exome sequencing, Somatic copy
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Background

Colorectal cancer is highly heterogeneous, and its patho-
genesis and molecular classification have been widely
investigated [1, 2]. In fact, colon and rectal cancers not
only have different clinicopathological features, but also
undergo different molecular paths of tumorigenesis [3].
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Tumor heterogeneity, a notable feature of cancer, has
recently been studied in breast cancer [4], esophageal
cancer [5], renal cancer [6, 7] and lung cancer [8, 9]
through multi-region sequencing of tumor masses. Intra-
tumor heterogeneity (ITH) and branched evolution were
commonly observed, and the complexity of the tumor
tissue composition was beyond expectation. However,
tumor heterogeneity of colorectal cancer, especially rectal
cancer, was less investigated.

ITH can be assessed by single-cell sequencing, as recent
progress in single-cell genome sequencing has allowed
quantitative characterization of both single nucleotide
variations (SNVs) and somatic copy number alterations
(SCNAs) in individual tumor cells. For instance, single-cell
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sequencing of individual circulating tumor cells (CTCs)
revealed reproducible SCNA patterns in CTCs from the
same patient and identified pertinent cancer mutations [10].
Single-cell sequencing of a large number of breast tumor
cells [11-13] revealed punctuated evolution of SCNAs
during tumor development. In addition, single-cell exome
sequencing analysis of a case of colon cancer revealed a
biclonal tumor origin and proved low-prevalence mutations
could also play a role in tumorigenesis [14]. Nevertheless,
the ITH of rectal cancer has not been well studied by
single-cell sequencing.

In the current study, we performed multi-region
whole-exome sequencing (WES) and single-cell whole-
genome sequencing (WGS) to evaluate the ITH of two
rectal tumors. The SCNAs and mutations were exquisitely
identified from multi-region to single-cell level. We found
that the extent of ITH in the two patients was variable,
and the degree of heterogeneity increased when analyzed
on the single-cell level.

Methods

Sample collection and single cell preparation

We obtained two fresh primary rectal tumors from
patients who underwent primary tumor resection at
the Department of Gastrointestinal Surgery IV, Peking
University Cancer Hospital & Institute. None of them
received radiotherapy or chemotherapy before surgery.
The clinicopathological characteristics of the two patients
are listed in Additional file 1: Table S1. Sections were
collected from different regions of tumors immediately
after surgical removal. To obtain single-cell suspensions,
each region was washed, minced with sterile blades into
small pieces, and dissociated by incubation in DMEM
containing collagenase type IA (50 pg/mL; Sigma-Aldrich
Co. LLC, US), hyaluronidase (20 pg/pL; Sigma-Aldrich
Co. LLC, US), and antibiotics/antimyotics for 1 h at 37 °C.
After digestion, cells were filtered through a 70 um cell
strainer (BD Falcon™, US), and erythrocytes were removed
by treatment with NH,CI/EDTA. Cells were then cryopre-
served in liquid nitrogen. Peripheral blood from each
patient was collected and stored at —20 °C.

The fluorescent activated cell sorting (FACS) and single-cell
isolation

To isolate single tumor cells, cryopreserved cells were
thawed and stained with combinations of the following
reagents: anti-EpCAM Alexa Fluor® 488 (eBioscience, US),
and lineage-specific antibodies, including anti-CD45-PE
(BD Pharmingen™, US), anti-CD235a-PE (BD Pharmingen™,
US), anti-CD140b-PE (BD Pharmingen™, US), and anti-
CD31-PE (BD Pharmingen™, US). To discriminate viable
cells, 7-Amino-Actinomycin D (7-AAD, BD Pharmingen™,
US) was labeled 5-10 min before sorting. Single tumor cells
were sorted based on 7-AAD lineage EpCAM™E" by BD
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FACS Aria III (BD Biosciences, US). Individual tumor
cells were verified under the fluorescence microscopy
(Nikon Eclipse Ti, Japan) and separated by mouth pipetting.
Isolated single cells were then lysed.

Whole-exome library preparation and sequencing

We used the QIAamp Micro DNA kit (QIAGEN, US) to
extract genomic DNA from the single-cell suspension
derived from sections and matched blood, and the con-
centrations were measured by Qubit 2.0 fluorometer
(Invitrogen, US). Total gDNA (~600 ng) was sheared
into fragments (~180-280 bp) by the Covaris system
(Covaris, US). Libraries were generated using the Agilent
SureSelect Human All Exon V6 kit (Agilent Technologies,
US) following the manufacturer’s recommendations, and
index codes were added to each sample. The products
were sequenced with Illumina Hiseq4000 2 x 150-bp PE
reads at ~100x depth.

Whole-genome library preparation and sequencing

After lysis, single cells were amplified by the multiple an-
nealing and looping-based amplification cycles (MALBAC)
method [15]. The cells passed the quantitative PCR (qPCR)
quality control [10] were used for next-generation sequen-
cing (Bio-Rad, US). DNA (~600 ng) from each single cell
and gDNA (~500 ng) from tumor tissue was sheared into
~300 bp fragments by the Covaris system (Covaris, US),
and the indexed libraries were prepared with the NEBNext
Ultra DNA Library Prep Kit for Illumina (New England
Biolabs, US). The products were then sequenced with
[lumina HiseqXTen 2 x 150-bp PE reads at ~0.3x depth.

Analysis of WES data

The reads were aligned to the human reference genome
(hgl9, USCC) with the Burrows-Wheeler Aligner [16].
The aligned BAM files were sorted and merged with
Samtools 0.1.19 [17]. First, we applied two software, the
Genome Analysis Toolkit (GATK 1.6) [18] and mul-
tiSNV [19], to identify mutations in multi-region WES.
The INDELs and SNVs were identified with GATK 1.6
[18] based on dbSNP 135 (www.ncbi.nlm.nih.gov/projects/
SNP/), and the duplicates were removed with Picard-tools
1.76 (http://Picard.Sourceforge.net). The functional effect
of variants was annotated using SNPEFF3.0 [20]. Then, the
SNVs and INDELs (insertion and deletion) were filtered
out based on previous criteria [21] using the Catalog of
Somatic Mutations in Cancer (COSMIC) database v61.
We manually filtered out tumor mutations with base
quality of lower than 30 and distance between two
mutations of lower than 15 bp. Germline mutations
were removed by comparing the tumor data to matched
blood data. Next, we input the aligned BAM files into
multiSNV [19] to call the SNVs. Germline SNPs were
removed by comparing the tumor data to matched
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blood data. After that, low quality SNPs were filtered
and the functional effect of variants was annotated using
SNPEFF3.0 [20]. Shared SNVs of each region by the two
software were used for subsequent analysis. Additionally,
to reduce the false negative rate, we had manually assessed
the SNVs which had low allelic frequency in samples.
Some SNVs existed in two or more samples of one
patient, but were detected by either software in only one
sample. Then we would screened manually in these SNVs,
of which if variant allelic frequency (VAF) in samples was
more than 0.2 we would put them back into our SNV list.
Eventually, we added the INDELSs identified by GATK into
the shared SNV list to get the final mutations for further
analysis.

Phylogenetic trees were constructed by MEGA5 with
maximum likelihood method [22], and potential driver
mutations were labelled on branches with Adobe Illustrator.
The purities and SCNA profiles of multiple tumor regions
from one patient were estimated with the Sequenza R
package 2.1.1 [23].

The SCNA profiles of the tumor regions

The libraries of tumor regions and match blood con-
structed with gDNA were performed WGS. The clean data
was aligned to human reference genome (hgl9, UCSC)
with the Burrows-Wheeler Aligner [16]. After that, we
sorted and merged each sample with Samtools 0.1.19 [17].
To visualize the SCNA profiles of WGS, we sorted the
whole genome into 500Kb bins (on average), and then
used matched blood as control to remove noises. Finally,
the depth of each bin of tumor regions was plotted along
the order of the chromosomes.

The single-cell SCNA profiling

The single-cell SCNA profiles were identified using
previously described methods [10, 15]. The reads were
aligned to human reference genome (hgl9, UCSC) with
the Burrows-Wheeler Aligner [16] and then sorted and
merged with Samtools 0.1.19 [17]. The whole genome
was sorted into 500Kb bins (on average), and the depth
of each bin was determined by the hidden Markov
model normalized with the method control [10].

Single-cell WGS analyses

The median of the absolute values of all pairwise differences
(MAPD) was used to assess the quality of the single-cell
data [24]. The MAPD scores of the 88 cells were less than
0.25, and all of them passed the quality control. The
clustered heat map of the large-scale copy number profiles
was generated by the Euclidean distance and ward.D
method and visualized by the heatmap.2 function in the
gplots package. The principle component analysis (PCA)
was performed with the prcomp function in the stats
package. Partition around medoids (PAM) clustering
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was performed using the pamk function in the fpc package.
The consensus copy number profiles of multiple regions
were inferred from single tumor cells based on the median
value of each bin.

Identification of subclonal SCNAs

The subclonal SCNAs of single cells were identified by
PCA using the FactoMineR package based on the depth
of each bin (each patient had 6037 bins at 500Kb) and
were visualized with the gplots package. We integrated
the bins of single tumor cells from each patient into one
matrix and filtered out the bins with all elements equal
to zero. Each included bin had at least three elements
greater than zero. Then, we set the variance of each bin
to greater than 0.5 to obtain subclonal SCNAs with high
disparities. There were 116 and 1637 bins containing
subclonal SCNAs collected from PC1 to PC6 for patients
1 and 2, respectively. After that, we manually selected
subclonal SCNAs larger than 1.5 Mb (63 and 806 bins for
patients 1 and 2, respectively), and visualized the results
with clustered heat maps.

Single-cell mutation validation

The mutations identified in the multi-region WES were
validated in single cells by Sanger sequencing (Ruibiotech,
China) using 20 ng of the MALBAC products as DNA
templates. The PCR was performed with OneTaq Hot
Start Quick-Load 2x Master Mix (New England Biolabs,
US). The thermal profile was 94 °C for 60 s; 35 cycles of
94 °C for 25 s, 58 °C for 30 s, and 68 °C 40 s; and 68 °C for
5 mins. The primers used are listed in Additional file 1:
Table S2.

We used ploidy status and ubiquitous mutations to
distinguish somatic diploid cells and tumor cells. We
used five or six nonsynonymous ubiquitous mutations
which were identified in multi-region WES as candidate
mutations to exclude somatic diploid cells (Additional file 1:
Table S3). A single cell was considered to be somatic
diploid cells if the candidate mutations were validated as
wildtype by Sanger sequencing, while tumor cells had
SCNAs and mutations. Owing to allelic dropout and
imbalanced single-cell amplification, some mutations were
undetectable in single cells, but were validated in gDNA of
the tumor. As shown in Table S3, the candidate mutations
were all validated in the gDNA of the two tumors, but
sporadically identified in single cells. There were 15 diploid
cells excluded in patient 1, of which two cells (B1 and C8)
containing more than three mutations were excluded in
the later analysis, owing to the possibility that they were a
mixture of one diploid cell and debris of tumor cells. The
number of diploid cells in patient 2 was 13, and none of
the six candidate mutations were validated in them. In
total, 26 cells (13 from patient 1 and 13 from patient 2)
were confirmed to be somatic diploid cells, and two cells
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(B1 and C8 of patient 1) seemed to be mixtures, which
were all excluded in further analysis of tumor cells.

Considering the phylogenetic trees, putative driver
mutations in the COSMIC database, disease-associated
genes identified by DAVID [25, 26] and possible driver
mutations in cancer genome landscape [27], we selected
14 nonsynonymous mutations for each patient and validated
the presence of these WES identified mutations in single
tumor cells with SCNAs. The single cells with SCNAs were
confirmed to be tumor cells if at least four mutations were
present.

Results

Multi-region WES revealed variable genomic
heterogeneity

To depict the genomic heterogeneity of rectal cancer,
multi-region WES was performed to determine the
mutation distribution and SCNAs profiles in the two
rectal primary tumors. The two fresh primary rectal
tumors were of the same molecular subtype [28], which
was microsatellite stable, chromosomal instable (referring
to SCNAs here), and/or mutant TP53 with wildtype KRAS
and PIK3CA (Additional file 1: Table S1). To obtain muta-
tional profiles, we carried out WES on multiple regions
and matched blood (germline comparator) at ~100x depth
(Additional file 1: Table S4). For patient 1, four regions (A
to D) were sequenced (Fig. 1a), and 141 nonsynonymous
mutations involving 138 genes were detected (Fig. 1b,
Additional file 1: Table S5). In the five regions (A to E)
of patient 2 (Fig. 1c), 119 nonsynonymous mutations in-
volving 117 genes were identified (Fig. 1d, Additional file 1:
Table S5). The mutations were categorized as ‘ubiquitous;
which were mutations shared by all regions of the tumor,
‘shared; which were shared by more than one region but
not all regions, and ‘private; which were specific to a single
region. According to the phylogenetic trees which delin-
eated the tumor evolutionary patterns (Fig. le and f) and
the heat maps of nonsynonymous mutations (Fig. 1b and
d), analysis of the regional distribution of nonsynonymous
mutations revealed more ITH in patient 2 than that in pa-
tient 1. The observation that the mutational heterogeneity
of patient 2 was more extensive than that of patient 1 might
be due to the fact that the tumor from patient 2 was larger
in size and later in stage (Additional file 1: Table S1),
implying that a longer disease progression might foster
tumor heterogeneity.

As the mutation spectrums showed, C>T transitions
were prominent in both patients (Fig. 1g and h). There
was no significant difference in the mutation spectrum
among the tumor regions of patient 1 (x-squared test,
p>0.05). T>A transversions were detected in patient 2
among the shared and private mutations, especially in
region C (Fisher’s exact test, p <0.05), suggesting that
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different tumor microenvironment might bring about
the differences in mutational profiles [29].

We combined VAF, copy number, and the purity of
tumor tissue to analyze the cancer cell fraction of each
region as a means to discriminate mutational heterogeneity
of each region [30]. As shown in Additional file 1: Fig. S1
and Fig. S2, patient 2 had much more mutations on axes
(marked by green and blue) than patient 1, which were re-
ferred to region-specific subclones. Therefore, the multiple
regions in patient 2 were more heterogeneous than those of
patient 2. Moreover, the mutational scenarios of the two pa-
tients were quite different. In patient 1, mutations in ATM
and GNAS, as well as a deletion in the tumor suppressor
gene PTEN, likely led to tumorigenesis since they are
potential cancer driver genes [2, 27]. In patient 2, mutations
in TP53, ERBB2 and APC, which were frequently mutated
in colorectal tumors and involved in the WNT/B-catenin
signalling pathway [31], might play important roles in
tumorigenesis and could be possible drug targets [32, 33].

Gene mutations are associated with chromosomal
instability, a consequence of which is SCNAs [34], and the
interactions of these two events facilitate tumor progres-
sion. We performed WGS on multiple tumor regions and
matched blood at ~0.3x depth to depict SCNA profiles of
each tumor region. The SCNA profiles of the tumor
regions for each patient were found to be very similar
(mean Pearson correlation coefficient of patient 1 and
patient 2 was 0.9713 and 0.9822, respectively) and highly
reproducible (Fig. 1i). The genomes of both patients had
gains at chr20q and losses at chr18q, which were accord-
ant with the previously reported frequent copy number
changes in colorectal cancer [35]. In addition, we observed
common SCNA gains in these two patients at chr1q21-23,
chr3q27-28, chr5q32-35, chr6p21, chr8q23-24, chri6pll
and chrl7q25, as well as SCNA losses at chrlp22 and
chr9q12. Patient 1 had losses at chrX, while patient 2 had
gains at chrX. Given that the WGS was performed at a
low depth of coverage, to improve the resolution of more
focal events, we analyzed SCNA profiles with the WES
data eliminating the contamination caused by diploid cells
by using Sequenza. The SCNA profiles of the tumor
regions in patient 1 also seemed to be similar, while
those of certain regions in patient 2 were obviously dis-
tinguishable at chr3q and chr8p among the five regions
(Additional file 1: Fig. S3). Collectively, these data indicate
that the SCNA profiles of the tumor cells in patient 2 were
more heterogeneous, and multi-region WES was not
sufficient to fully represent the full scenarios of the
SCNA profiles.

Single-cell sequencing showed SCNA-based
subpopulations

We performed single-cell WGS to access the ITH of
each region at the single-cell level. Tumor cells were
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sorted by FACS based on the 7-AAD Lineage EpCAM"&"
biomarker combination [36] and then single cells were
picked up by micropipetting under microscope. Genomic
DNA of each cell was amplified using MALBAC [15], an

outstanding whole genome amplification method that
allows accurate detection of SCNAs and mutations from
single cells [37, 38]. The SCNA profile of each cell was
plotted using previously established protocols [10, 15]. In
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total, 40 single cells of patient 1 (ten single cells for each
region) and 48 single cells of patient 2 (eight single cells
for region D and ten single cells for the other regions)
passed the quality control and were subjected to single-cell
WGS. Hierarchical clustering showed that the single cells
of each patient were divided into two subpopulations,
diploid cells and cells with SCNAs (Fig. 2a). PAM cluster-
ing [39] was applied to quantify the number of clusters,
which also supported the results (Additional file 1: Fig. S4).

We then analyzed the presence of the WES detected
mutations in each single cell, and the procedure of normal
and tumor cell validation was shown in Fig. 2b. There was
a possibility that even after the 7-AAD Lineage EpCAM™e"
enrichment, there were still a few normal stroma cells
mixed in the tumor cell population, and these diploid cells
were ruled out in the validation procedure (Additional file 1:
Table S3). In single tumor cells with SCNAs, we selected
a set of mutations identified by multi-region WES and
assessed their presence by targeted PCR and Sanger
sequencing to exclude the calling of false-positive SN'Vs
inherited from single-cell whole-genome amplification.
After validating mutations by Sanger sequencing, we
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were able to confirm 24 out of 40 cells from patient 1
(Fig. 2, six for region A, five for region B, five for region C,
and eight for region D, Additional file 1: Table S6) and 35
out of 48 cells from patient 2 (Fig. 2d, six for region A, nine
for region B, eight for region C, six for region D, and six for
region E, Additional file 1: Table S6) as tumor cells with
genomes that acquired SCNAs and possessed cancer-
associated mutations simultaneously. Of special note,
the mutation in PDE11A gene was ‘shared’ mutation by
regions B, C and D in patient 2 (Fig. 1b). However, we
found that it also existed in a single cells (Al and E4,
Fig. 2d) in regions A and E, suggesting that the ITH was
more extensive on the single-cell level, and the depth
(~100x) of the WES used in the multi-region WES was
insufficient to capture all of the low-frequency mutations
present in minor subclones.

Single-cell sequencing revealed de novo focal SCNAs that
were hidden in the bulk sequencing

After excluding all the diploid cells and one cell doublet
(single cell D2 of patient 1) from further analyses, clustering
analyses based on large-scale SCNA profiles showed that
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there was one population in patient 1 (Fig. 3a), whereas two
subpopulations were detected in patient 2 (Fig. 3b). PAM
clustering [39] also supported two subpopulations of patient
2 (Additional file 1: Fig. S4).

We further analyzed the single cell SCNA data with
PCA. The subclonal SCNAs of single cells were identified
by PCA based on the depth of each bin. The subclonal
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SCNAs of more than 1.5 Mb in patient 1 (63 bins)
were visualized with a clustered heatmap (Fig. 3c,
Additional file 1: Fig. S5). In stark contrast to the
large-scale copy number-based clustering, single cells
of patient 1 were clustered into two groups based on
subclonal SCNAs (>1.5 Mb), supported by PAM clustering
[39] which also quantified two clusters (Additional file 1:
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Fig. S4). The subclonal SCNAs of patient 2 were more
extensive and complicated (1674/6037 bins before manual
selection), which might be related with the advanced stage.
Based on the large-scale copy number-based clustering,
the PCA of patient 2 confirmed the existence of two sub-
populations (Fig. 3b). The single tumor cells of patient 2
were also clustered into two groups based on subclonal
SCNAs (806 bins), though the proportion of two sub-
population altered from 29:6 to 25:10, meaning that the
preponderant subpopulation based on the large-scale
copy number-based clustering might divided into two
subclones because of subclonal SCNAs (29 = 25 + 4) in the
future (Fig. 3c, Additional file 1: Fig. S5). The PAM results
[39] also supported two clusters existed (Additional file 1:
Fig. S4). These results implied that single tumor cells had
different fitness advantages owing to subclonal SCNAs,
and could possibly form more subpopulations at a later
stage during tumor progression.

The SCNA profiles of genomic DNA extracted from
multiple regions were distorted by the presence of
somatic diploid cells, whereas the profiles obtained by
the sequencing of single tumor cells likely revealed the
true differences within the bulk tumor. Therefore, sin-
gle-cell sequencing is necessary to precisely determine the
true number of different subclones within a tumor cell
population [40]. For instance, variable SCNAs in certain
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chromosomal regions in single tumor cells were hidden in
the bulk gDNA in region A of patient 1 (Fig. 3d). The
frequencies of the two subpopulations based on SCNA
profiles in patient 2 were 17% (6/35) and 83% (29/35). The
SCNA-based subclonal frequencies of patient 2 might
explain the regional differences observed in the multi-
region WES (Additional file 1: Fig. S3), which arose from
the proportions of the two subpopulations in each region.

Differences between the two patients

We evaluated the ITH of two rectal cancer patients at
the multi-region and single-cell levels. Each patient showed
unique large-scale copy number patterns (Fig. 4a).
Hierarchical clustering and PCA showed that 24 tumor
cells of patient 1 and 35 tumor cells of patient 2 were
obviously grouped into two populations (Fig. 4b and c).
The two patients only had TTN and SYNE1 mutations
in common (Fig. 4d), and these genes might play a role
in chromosome segregation during mitosis [41] and
subcellular spatial organization [42]. Gene Ontology
(GO) terms based on biological processes (DAVID 6.7)
showed that the mutated genes in patient 1 were clustered
in homophilic cell adhesion via plasma membrane
adhesion molecules, biological adhesion, and regulation
of stem cell differentiation, while the mutated genes in
patient 2 were clustered in cell adhesion, neuron
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projection morphogenesis, and biological adhesion (Fig. 4e).
In a word, the copy number profiles and mutational
scenarios of the two patients were quite different,
suggesting the necessity of personalized medicine in
clinical therapy.

Discussion

In this study, we performed multi-region integrated
single-cell sequencing to explore the ITH in two rectal
tumors. The large-scale copy number profiles of multiple
regions and single tumor cells in each patient appeared
to be similar, implying that the majority of chromosomal
rearrangements were early events and were inherited
clonally and steadily, which was accordant with previous
studies on breast cancer [12, 13]. Besides the clonal
SCNAs, some subclonal SCNAs were also observed by
single-cell sequencing. Subclonal SCNAs, which are
generated by later events during tumorigenesis, play an
important role in boosting single-cell heterogeneity. In
the mutational scenarios, the ubiquitous mutations are
formed early in tumor-initiating cells and are inherited
by their offspring, whereas the “private” mutations
accumulate sporadically and markedly increase the ITH
among different individuals. Subclonal SCNAs and
sporadic mutations might impart further advantages to
certain subpopulations during tumor growth and mutually
facilitate the ITH.

We applied 40 single cells and 48 single cells to evaluate
the ITH for patients 1 and 2, respectively. After removing
the diploid somatic cells, there were 24 and 35 tumor cells
with SCNAs for patients 1 and 2, respectively. A previous
study on breast cancer suggested that 20-40 single cells
were eligible for detecting SCNA-based subpopulations
[13], which was compatible with our results about sub-
clonal SCNAs. Therefore, the amount of single cells for
each patient we have studied was reasonable. The com-
putationally derived tumor percentage of each region
was determined by Sequenza (Additional file 1: Fig. S3).
The separated regions of one tumor were assessed by
the pathologists, of which the histological features were
reckoned similar. The tumor purifies of two patients
identified by the pathologists were both more than 90%,
but the deduced results of WES showed that the tumor
purity of P1 was just 25-49% (Additional file 1: Fig. S3)
owing to somatic cell infiltration. The lower tumor purity
of P1 might give rise to lower ITH in some extent, since
the diploid cell contamination would mask the true
profiles, distorting the SCNA profiles and descending the
mutational heterogeneity by missing low frequency
mutations. When obtaining the tumor mutations by
WES, the germline mutations could be excluded by
comparing tumor regions to peripheral blood or normal
rectum samples. Here, we utilized peripheral blood but
not normal rectum as control in order to avoid missing
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somatic mutations that existed early in both adjacent
normal tissues and tumors, which is rare but could
happen in some cases.

The heterogeneity of distinct regions of one tumor
arises from the proportion of various subclones. Tumor
tissue is a mixture of different cell populations that interact
with the microenvironment, and the evolution of tumori-
genicity is complex and dynamic. The preponderant
subclone adapting to the circumjacent microenvironment
plays a dominant role in certain region of one tumor, of
which the master status is dynamically changing. For
instance, though substantial tumor cells could be killed
during the therapy, there were still survival of rare
subclones with resistance to drugs, which might lead to
relapse. It is the heterogeneity that make some tumors so
hard to eradicate. At single-cell level, SCNAs were
confirmed to be in correlation with gene expression [43],
and the SCNAs of colorectal cancer, which affected the
expression of functional genes, were reported to be
potential biomarkers [35]. For instance, there was only
one population according to the large-scale copy number
profiles in patient 1, but when zoom in to focal SCNA
alterations, there were apparently two subpopulations,
meaning that although the large-scale copy number pro-
files (24 chrmosomes) appear to be similar at this time
snap-shot, the single tumor cells possibly form two sub-
populations owing to the differences in subclonal SCNAs
in the future. Besides clonal SCNAs which all tumor cells
steadily inherited, subclonal SCNAs would facilitate
further cell-to-cell heterogeneity, which might lead to dif-
ferent therapy requirement. Among the subclonal SCNAs
in patient 1, MINA, which is located in the focal region
chr3ql1.2, is a c-Myc target gene that may affect cell
proliferation [44]. The tumor suppressor genes PIK3C3 on
chr18q12.3 and SMAD2 on chr18q21.1, which affected
the TGF-Bp pathway, were reported to be related to
metastasis [35, 45]. SCNAs induced upregulation or
downregulation of these important genes would eventually
give rise to growth advantages in certain populations
during tumor progression.

Two patients were of the same age, no smoking, no
alcohol intake, and both adenocarcinoma without micro-
satellite instable. The protein biomarkers of two tumors
were different, CEA was highly expressed in P1, while
CA724 was highly expressed in P2. Even though P2
(T3), which had one lymph node metastasis and positive
nerve invasion, was further progressed than P1 (T2), the
postoperative therapy was quite effective. The regular
follow-up showed that the two patients under personalized
medicine were healthy with no relapse after surgery.
Consistent with previous studies [46], our study also
demonstrated the mutational diversification of multiple
regions and branch evolution in rectal cancer. Additionally,
we found that the regional differences in SCNA profiles of
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different tumor regions might arise from different subpop-
ulations (Fig. 3a and b). Single-cell sequencing further
confirmed the distributions of minor subpopulations, and
revealed the subclonal structure of the tumor. Minor cell
populations might exist early in tumorigenesis but in
limited quantities, or they might be generated later with
extraordinary growth advantages [47].

Tumors are composed of many cells, and bulk sequencing
only reveals the average genomic alterations of this cell
mixture; thus, clonal analysis cannot resolve the subclonal
composition of a tumor beyond the resolution of the sample
used for the analysis. Contamination by diploid cells and the
proportions of tumor subpopulations may affect the SCNA
profiles of tumor regions. Moreover, deep sequencing is
required to detect rare mutations in bulk tumor, which is
costly. Thus, single-cell sequencing is of significant
importance in investigating tumor cell heterogeneity
and in discovering subtle diversification. However, it
should be noted that we did not find any correlation
between the copy number variation and mutation
events. In accordance with the previous report [48], our
results also suggest that a single biopsy is sufficient for
determination of major copy number profiles and high-
frequency mutations for target therapy, however, it is
insufficient for precise detection of subclonal SCNAs
and low-frequency mutations.

In a conclusion, although the two patients are of the
same molecular classification, the extent of heterogeneity
differed. There are different clinicopathological features
and molecular paths of tumorigenesis in colon and rectal
cancer [3], so it is meaningful to focus just on rectal
tumors. Personalized medicine, tailored to each individual
based on druggable genes, is necessary. In addition, the
extensive ITH might also indicate that there are many
possibilities for drug resistance in each patient. This study
provides a preliminary impression of ITH in rectal cancer.

Conclusions

The SCNA profiles of multiple regions and single tumor
cells within one tumor are similar, suggesting that a
considerable number of SCNAs are early events in
cancer development and inherited steadily. The regional
differences of SCNA profiles within multiple regions
arise from different proportions of SCNA-based subpop-
ulations. Single-cell WGS shows focal SCNAs that were
not detected in the multi-region WES, implying that a
detailed genetic characterization of the tumor can be
better uncovered by single-cell sequencing. Although the
two patients are of the same molecular classification, the
extent of heterogeneity differed. Intertumor heterogeneity
supports the necessary of personalized medicine tailored
to each patient based on clonal target genes. Intratumor
heterogeneity means there are many possibilities for drug
resistance in each patient.
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