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Abstract

Background: The differentiation of pancreatic ductal adenocarcinoma (PDAC) could be associated with prognosis
and may influence the choices of clinical management. No applicable methods could reliably predict the tumor
differentiation preoperatively. Thus, the aim of this study was to compare the metabonomic profiling of pancreatic
ductal adenocarcinoma with different differentiations and assess the feasibility of predicting tumor differentiations
through metabonomic strategy based on nuclear magnetic resonance spectroscopy.

Methods: By implanting pancreatic cancer cell strains Panc-1, Bxpc-3 and SW1990 in nude mice in situ, we
successfully established the orthotopic xenograft models of PDAC with different differentiations. The metabonomic
profiling of serum from different PDAC was achieved and analyzed by using 1H nuclear magnetic resonance (NMR)
spectroscopy combined with the multivariate statistical analysis. Then, the differential metabolites acquired were
used for enrichment analysis of metabolic pathways to get a deep insight.

Results: An obvious metabonomic difference was demonstrated between all groups and the pattern recognition
models were established successfully. The higher concentrations of amino acids, glycolytic and glutaminolytic
participators in SW1990 and choline-contain metabolites in Panc-1 relative to other PDAC cells were demonstrated,
which may be served as potential indicators for tumor differentiation. The metabolic pathways and differential
metabolites identified in current study may be associated with specific pathways such as serine-glycine-one-carbon
and glutaminolytic pathways, which can regulate tumorous proliferation and epigenetic regulation.

Conclusion: The NMR-based metabonomic strategy may be served as a non-invasive detection method for
predicting tumor differentiation preoperatively.
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Background
Pancreatic ductal adenocarcinoma (PDAC) is one of the
most malignant tumors with an extremely poor progno-
sis. Only about 7% of patients can be survived in 5 years,
making PDAC the fourth leading cause of death among
tumors [1]. Many risk factors have been correlated with
prognosis, including tumor size [2, 3], lymph node
metastasis [3, 4], nerve plexus invasion [5, 6], vascular
invasion [6, 7], tumor differentiation [2, 3, 8], surgical

margin status [3, 9] and specific molecular prognostic
factors [10, 11]. Thereinto, poorly differentiated/high
grade tumors are closely associated with poor outcome
of the patients [12]. Furthermore, previous researches
also linked tumor histological grading to an increased
risk of early death within 1 year [13, 14]. As an import-
ant component of early mortality risk score, tumor
differentiation can help to assessing short-term tumor-
related mortality [14, 15]. Given the important role of
tumor differentiation in PDAC management, increased
interest in preoperative tumor differentiation assessment
were emerged in order to identify high-risk patients,
which can benefit the most from neoadjuvant treatment
[13, 16–19], even over than upfront surgery [20, 21].
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Thus, notarizing differentiation of tumors preoperatively
can provide constructive information for prognostic
evaluation and management of PDAC [22].
Conventionally, the preoperative assessments of tumor

differentiation were conducted by tissue histological ob-
servations derived from fine needle aspiration. This
method has been realized to be an effective way to grade
the pancreatic neuroendocrine tumors and intraductal
papillary mucinous neoplasms [23, 24]. However, this
technique is highly invasive for many patients and the
achievable samples are too limited to give a reliable
histological grading, making this technique still being far
away from application in clinical PDAC differentiation
assessment [19]. Thus, it would be of great importance
to develop an easily acceptable and reliable method to
assess the differentiation of PDAC preoperatively.
Nuclear magnetic resonance (NMR) spectroscopy-

based metabonomic technique is a promising diagnostic
tool with the advantages of high sensitivity, non-invasion
and high throughput. This technique can analyze the
disease-related metabonomic differences occurred in
various types of biosamples (etc. tissues, body fluids and
cells) to identify differential metabolites and further bio-
markers contributed to establishment of recognition
models for diagnosis. At present, NMR-based diagnostic
strategy has demonstrated a favorable clinical perform-
ance in many diseases [25–31]. Particularly noticeable,
magnetic resonance spectroscopy have also been recom-
mended for diagnosis of brain, prostate and breast can-
cer in European cancer conference [29]. In addition, by
using NMR-based methods, many reports on detecting
PDAC in vivo or in vitro have showed an encouraging
result to distinguish PDAC from not only the normal
but also other benign lesions [32–35]. Therefore, in
present study, we used 1H NMR spectroscopy to analyze
serum metabonomes from PDAC mice models estab-
lished by implantations of Panc-1, BxPC-3 and SW1990
(being poor, poor to moderate and moderate to well dif-
ferentiated [36–39], respectively) cell strains on pan-
creas, thus, to assess the feasibility of this strategy in
predicting the differentiation of tumor.

Methods
Cell culture and animals feeding
PDAC cell strains (Panc-1, BxPC-3 and SW1990,
Catalog NO. SCSP-535, TCHu 12 and TCHu 201) were
obtained from Shanghai Institute of Cell Biology,
Chinese Academy of Sciences (Shanghai, China) authen-
ticated with short tandem repeat test and mycoplasma
culture. At the circumstance of 5% CO2 and 37 °C, these
strains were incubated in dulbecco’s modified eagle
medium (DMEM, Gibco, Thermo Fisher Scientific Inc.,
USA) added with 10% fetal bovine serum (Gibco) in cell
incubator (3110, Thermo Scientific). Then, cells were

digested by 0.125% trypsinogen (Life Technologies, Grand
Island, NY, USA) for the passage with the ratio of 1:2-4
every 2-3 days. BALB/c nude mice (male, 4 weeks, weigh-
ing 18-20 g), purchased from Shanghai Slac laboratory an-
imals Co., Ltd. (NO: SCXK (HU) 2012-0002), were bred in
Fujian Medical University Animals Centre (Fuzhou, china)
with a standard SPF-grade laboratory conditions.

Establishment of animal models
This experimental protocol was in accordance with the
principles of National Institutes of Health guide for the
care and use of laboratory animals and approved by
Ethical Committee of Fujian Medical University. Three
PDAC cell strains in the exponential phase were digested
with 0.125% trypsinogen, washed by phosphate buffered
saline (PBS) for three times, then collected and resus-
pended in PBS (1 × 107 cells per milliliter). After skin
degerming, the cell suspension liquids were subcutane-
ously injected into the axilla of mice (one cell strain each
mouse), followed by a month of normal feeding. The
tumors with a size of 5 to 10 mm in diameter generated in
the injected positions of mice. Consequently, the mice
were executed by a mercy killing, and the tumor tissues of
Panc-1, BxPC-3 and SW1990 were carefully collected and
divided into pieces of 1 mm3 for implantation in situ.
Forty-five mice were randomly divided into 3 groups

using random number table. Before surgery, all mice have
a 12-h fasting without drink-deprivation. A 2-cm horizon-
tal incision was made on the middle of abdominal wall to
expose the pancreas. One piece of tumors was placed on
the body or tail of pancreas and fixed with biogum
(BaiYun medical glue Co., Ltd., Guangzhou, China),
followed by carefully organ restoration and suture. Three
groups were dealt with tumor tissues of Panc-1, BxPC-3
and SW1990, respectively (n = 15 for each).

Tissues samples collection and preparation
Thirty days after surgeries, 1 mL of blood from each group
was collected by aortic puncture under continuous airway
anesthesia of isoflurane (Jiupai pharmaceutical Co., Ltd.,
Shijiazhuang, China) and stored in clear 1.5-mL Eppen-
dorf tubes. After standing for 30 min, the blood went
through a 10-min centrifugation at 10,000 g and 4 °C. The
supernate was collected and immediately frozen by liquid
nitrogen and stored at −80 °C. For the detection of 1H
NMR spectroscopy, 400 μL of serum were melted on the
surface of ice, and then mixed with 200 μL of 90 mM deu-
terated phosphate buffer (NaH2PO4 and K2HPO4, pH 7.4).
The mixture of serum and buffer were centrifuged again,
and finally, 550 μL of the supernate was moved into 5-mm
NMR tubes (ST500, NORELL, Inc., Morganton, North
Carolina, USA).
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Detection of 1H NMR spectroscopy and preprocessing
The 1H NMR spectroscopy of serum samples were
performed on a Varian NMR system (Agilent Tech-
nologies Co, Palo Alto, California, USA) with a
500.13 MHz of proton frequency at the temperature
of 298 K. For each sample, a water-suppressed CPMG
(Carr-Purcell-Meiboom-Gill) spin-echo pulse sequence
(RD-90°-(τ-180°-τ)n-ACQ) was used to acquire the
NMR spectrum. Herein, a total of 64 scans with a
spectral width of 6 KHz and a data point of 12 K
were accumulated for all spectra. Spin-echo loop time
(2nτ) of 70 ms was applied with a relaxation delay of
2.0 s. The NMR spectra were processed by using
MestReNova (V9.0.1, Mestrelab Research S. L., Spain).
In order to increase the signal-to-noise ratio, all free
induction decays were multiplied by an exponential
weighting function equivalent to a 1 Hz line-
broadening and subsequently disposed with Fourier
transformation. To make the spectra more compar-
able, the manual phase rectifications and baseline cor-
rections were conducted by using MestReNova. The
chemical shifts were referenced to the double-peak of
endogenic lactate at δ1.33 for metabolites identifica-
tion. Automatically, the spectral regions δ9.0-0.5 of
the processed NMR spectra were segmented into scat-
ter integral regions of 0.002 ppm with a removal of
spectral region δ6.40-5.50 and δ5.19-4.36 to eliminate
the impacts of residual water signal and urea signal,
respectively. Finally, for each spectrum, the integrated
data were normalized to the total sum of the
spectrum in favour of multivariate statistical analysis.

Multivariate statistical analysis
The multivariate statistical analysis, including principal
component analysis (PCA), partial least squares dis-
criminant analysis (PLS-DA) and orthogonal partial
least squares discriminant analysis (OPLS-DA), were
performed in SIMCA-P+ (V14.0 Umetrics, Sweden) to
analyze the metabonomic differences between three
PDAC groups. PCA, performed in the approach of
mean-centered scaling, could simplify the normalized
date into several components, which can roughly
evaluate the clusters distributions and identify the ex-
istence of outlines. PLS-DA and OPLS-DA, which can
be classified as supervised multivariate statistical ana-
lysis, were conducted in the approach of parato-scaling
approach for better extraction and maximization of the
metabonomic differences between PDAC groups.
Furthermore, the OPLS-DA models coefficients, which
were back-calculated from the coefficients, incorpo-
rated with the weight of the variables, and then to be
plotted with color-coded coefficients to enhance inter-
pretability of the models. As a result, the metabolites
responsible for the metabonomic differences between
groups can be extracted from the corresponding color-
coded loading plots and displayed visually. By assist-
ance of MATLAB (V7.1, the Mathworks Inc., Natick,
USA), the color-coded coefficient loading plots were
drew and color-coded according to the absolute value
of coefficient. That meant, in the loading plots, a
warm-toned color (i.e. red) represents for the metabo-
lites being positive or negative significant in
distinguishing different groups while a cool-toned

Fig. 1 Representative 500 MHz 1H CPMG NMR spectra of serum samples from pancreatic cancer mice induced by the different differentiated
cells. The spectral regions of δ5.5-9.0 (in the dashed box) were magnified 20 times compared with the regions of δ0.0-5.5 for the purpose of
clarity. The abbreviations for peak assignments were noted in Table 1
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color (i.e. blue) corresponds to the metabolites not be-
ing significant in discriminations. Moreover, to screen
out differential metabolites, the cutoff value of correl-
ation coefficients (|r| > 0.576) was determined according
to the statistical significance of the Pearson correlation co-
efficient test at the level of P < 0.05 and df (degree of free-
dom) =10. In order to assess the quality and validity of
models, the 10-fold cross validation and response permu-
tation testing (n = 200) were performed and the corre-
sponding parameters R2 and Q2 in the permutated plots
presented the degree of model fitting and the potentially
predictive ability of models, respectively.

The metabolic pathways and interactions analysis
The differential metabolites derived from multivariate
statistical analysis were further analyzed for the metabolic
pathways by using KEGG (www.genome.jp/kegg) and
MBROLE 1.0 (http://csbg.cnb.csic.es/mbrole/) [40, 41].

Results
NMR spectral profiles of serum samples from Panc-1,
BxPC-3, SW1990 groups
After visual confirmation for tumorgenesis, 12, 13, and
11 serum samples from Panc-1, BxPC-3 and SW1990
groups were included for the detections with 1H NMR
spectroscopy, respectively. Typical one-dimensional
500-MHz 1H NMR spectra of serum samples from
models induced by the different differentiated PDAC
cells are presented in Fig. 1, which provided an inte-
grated overview of all metabolites. Forty-seven metab-
olites were identified from the NMR spectra (Table 1)
based on the relative literatures and public databases
[42, 43]. A certain degree of metabolic differences
could be noticed between different PDAC groups
visually such as ethanol and phosphocholine. But
considering the high similarity of spectra, the metabo-
nomic information acquired was quite limited and the
multivariate statistic analysis will help to extract the
detailed information.

Table 1 The metabolites assignments from NMR spectra of
serum from PDAC micea

Abbreviation Metabolites 1H chemical shift(multiplicity)b

1-MH 1-Methylhistidine 7.06(s), 7.78(s)

3-HB 3-Hydroxybutyrate 1.20(d), 2.31(dd), 2.40(m), 4.16(m)

Ace Acetate 1.92(s)

AA Acetoacetate 2.28(s)

Act Acetone 2.24(s)

Ala Alanine 1.48(d)

All Allantoin 5.39(s)

Bet Betaine 3.27(s), 3.90(s)

Cho Choline 3.20(s)

Cit Citrate 2.53(d), 2.67(d)

Cr Creatine 3.04(s), 3.93(s)

Eth Ethanol 1.18(t), 3.61(q)

For Formate 8.46(s)

Fum Fumarate 6.52(s)

Glu Glutamate 2.08(m), 2.11(m), 2.35(m), 3.75(t)

Gln Glutamine 2.14(m), 2.45(m), 3.75(t)

G Glycerol 3.55(m), 3.66(dd), 3.78(m)

GPC Glycerolphosphocholine 3.23(s), 4.33(m)

Gly Glycine 3.56(s)

His Histidine 7.08(s), 7.82(s)

HOD Residual water signal 4.76(br)

IB Isobutyrate 1.07(d)

Ile Isoleucine 0.94(t), 1.01(d)

L1 LDL 0.86(br), 1.28(br)

L2 VLDL 0.89(br), 1.30(br), 1.58(br)

L3 Unsaturated fatty acid 2.04(br), 2.24(br), 2.76(br), 5.31(br)

Lac Lactate 1.33(d), 4.11(q)

Leu Leucine 0.96(d)

Lys Lysine 1.46(m), 1.73(m), 1.91(m),
3.03(m), 3.76(t)

Mal Malonate 3.11(s)

Met Methionine 2.14(s), 2.63(t)

MG Methylguanidine 2.83(s), 3.36(s)

Mol Methanol 3.36(s)

m-I myo-Inositol 3.52(dd), 3.61(dd), 4.07(m)

NAG N-acetyl glycoprotein 2.03(s)

Phe Phenylalanine 7.32(d), 7.37(t), 7.42(dd)

PC Phosphocholine 3.21(s)

Py Pyruvate 2.37(s)

Suc Succinate 2.40(s)

Thr Threonine 1.33(d), 4.26(m)

TMA Trimethylamine 2.89(s)

Trp Tryptophan 7.27(m), 7.30(s), 7.54(d), 7.73(d)

Tyr Tyrosine 6.90(d), 7.19(d)

Table 1 The metabolites assignments from NMR spectra of
serum from PDAC micea (Continued)

Abbreviation Metabolites 1H chemical shift(multiplicity)b

Urea Urea 5.80(br)

Val Valine 0.99(d), 1.04(d)

α-Glc α-Glucose 3.42(t), 3.54(dd), 3.71(t),
3.73(m), 3.84(m), 5.24(d)

β-Glc β-Glucose 3.24(ddb), 3.41(t), 3.46(m),
3.49(t), 3.90(dd), 4.65(d)

aPDAC pancreatic ductal adenocarcinoma
bmultiplicity:s, singlet; d, doublet; t, triplet; q, quartet; dd, doublets;
m, multiplet; br, broad resonance
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Metabonomic characteristics of serum from the PDAC groups
To show an overview of 1H NMR data collected from the
serum of Panc-1, BxPC-3, and SW1990 groups, the PCA
and PLS-DA were performed. The PCA scores plot
showed a certain degree of separated trends between the
three PDAC groups (Fig. 2a) though a little overlap or dis-
persity was demonstrated, indicating their obvious metabo-
nomic differences. In further, a greater discrimination in
cluster distributions of Panc-1, Bxpc-3 and SW1990 could
be observed visually in PLS-DA scores plot (Fig. 2b), dem-
onstrating a significant differences with each other.
To get deep insight into the metabolites responsible for

the metabonomic alterations occurred in three PDAC
groups, pair-wise comparisons were conducted by using
the PLS-DA combined with orthogonal projection (OPLS-
DA). The pronounced separations were demonstrated in
OPLS-DA scores plots (Fig. 3 upper left panels) and the
metabolites corresponding to the metabolic difference were
marked in loading plots (Fig. 3 bottom panels). The
summarized dominant metabolites, based on the cutoff
value of correlation coefficient (|r| > 0.576), and the correl-
ation coefficients were listed in detail based on their
biochemical types (Table 2). Overall, the levels of metabo-
lites belonged to glycolysis and glutaminolysis, alcohols
and amino acids were lower in SW1990 group while the
high concentrations of choline and its derivatives were
noticeable in Panc-1 group. The favorable fit and
prediction parameters (R2 and Q2) of the OPLS-DA
models and the corresponding permutation test and prob-
ability (p-value) via CV-ANOVA also confirmed the strong
predictive ability of the models to guarantee a reliable iden-
tification of characteristic metabolites.

The biochemical pathways related with the metabonomic
difference between PDAC groups
For better understanding of the bioinformation con-
tained in discriminatory metabolites, the biochemical

pathways were identified based on the differential me-
tabolites derived from OPLS-DA of pair-comparisons
and those with p-value less than 0.01 were demonstrated
on Fig. 4. The p-value for pathway identification were
calculated automatically by the MBROLE [40].
In the analysis to compare SW1990 with Bxpc-3, the

numerous amino acid-related pathways were noticeable,
including metabolism of essential and non-essential
amino acids, the biosynthesis of aminoacyl-tRNA and
ABC transporters. In addition, the pathways related with
glycolysis involving pyruvate, galactose, glutamine and
glutamate were also identified as differential features to
distinguish the Bxpc-3 from the SW1990. Meanwhile,
except the pathways of lysine, histidine and thiamine
metabolisms, most pathways involved in Bxpc-3 vs
SW1990 were also identified in the comparison between
Panc-1 and Sw1990. In addition, the pathways of glycer-
ophospholipid metabolism and the degradation of valine,
leucine and isoleucine were also identified to be a signa-
ture contributed to distinguish Panc-1 from SW1990. In
term of metabolic diversity between Panc-1 and BxPC-3,
the metabolic discrimination seems to be quite limited
where only a few pathways related with amino acids and
glycerophospholipid metabolism were identified.

Discussion
In this study, we tried to evaluate the potential value of
non-targeted NMR strategy to predict the tumor differ-
entiation. Since many factors (e.g., drugs, operations)
could influence the metabonomic characteristics of
serum from patients. We chose three PDAC strains,
Panc-1, BxPC-3 and SW1990 which can form tumors in
vivo with typical histopathologic characters from poor,
poor to moderate and moderate to well differentiation
respectively [36–39] to establish PDAC models for re-
search. By using animal models, the interference factors
can be furthest eliminated. It is beneficial to purify

Fig. 2 The PCA (a) and PLS-DA (b) scores plots based on 1H NMR data of serums from PDAC groups. P, Panc-1; B, BxPC-3; SW, SW1990

Wen et al. BMC Cancer  (2017) 17:708 Page 5 of 11



Fig. 3 (See legend on next page.)

Wen et al. BMC Cancer  (2017) 17:708 Page 6 of 11



serum metabonomic alteration caused by tumor with
different differentiation and also specify the association
between tumor differentiation and serum metabonomes.
To amplify the metabolic difference between the tumors
in different differentiations, all groups were compared
directly. Given most of clinical patients were diagnosed
with moderately differentiated PDAC and the significant
clinical value for the identification of tumors in poor
differentiation, we focus on the metabonomic difference
between SW1990 and other two strains.

Comparative low levels of lactate, glutamate and
glutamine indicate a poor differentiation
In present study, we found that the high concentration
of citrate, lactate, glutamate and glutamine can help to
distinguish the SW1990 from Panc-1 and Bxpc-3. Being
well known, the tumor metabolic reprogramming has
been validated to be the cornerstone for malignant
transformation and one common composition in this
process is the aerobic glycolysis (Warburg effect).
Through the aerobic glycolysis, rather than tricarboxylic
acid (TCA) cycle, the tumor cells derive the predomin-
ant ATP/energy and generate extensive lactate from
pyruvate to result in environmental acidosis which pro-
mote the spreading of the tumor cells [44]. Meanwhile,
the lactate generated from hypoxic PDAC can be taken
up by normoxic PDAC cells nearby as fuel to maintain
proliferation, creating a phenomenon called tumor sym-
biosis [45]. Thus, the tumor metabolic impact upon the
level of lactate in peripheral circulation may be deter-
mined by the dynamic balance of release and uptake of
lactate around tumor microenvironment. Our outcome
indicates that the tumor with a poorer differentiation
could induce a lower concentration of lactate in serum
relative to that with a better differentiation, which may
be due to a stronger ability of lactate recirculation. It’s
also implied by inconsistent variation trends of lactate in
serum reported by previous studies [46, 47]. In addition,
due to the breakdown of TCA cycle, glutaminolysis is
enhanced in PDAC cells to generate TCA intermediates
(e.g. malate, oxaloacetate and citrate) which is called
anaplerosis reaction, and subsequently served as building
blocks for synthesis of lipid and non-essential amino
acids [48]. Besides, glutamine can also act as fuel to sup-
port energy metabolism through aspartate, oxaloacetate
and pyruvate transformation process, thus promoting
growth of pancreatic cancer via Kras-regulated meta-
bolic pathway [49]. Therefore, the significantly low levels

of glutamine, glutamate and citrate may indicate that the
tumor with poorer differentiation may provide a more
dramatic glutaminolysis and deprive more glutamine
and glutamate from peripheral circulation.

Comparative low levels of amino acids in serum imply
poor differentiation
Likewise, the higher concentrations of amino acids could
also contribute to the distinguishing of the SW1990
from Panc-1 and Bxpc-3, which could serve as key par-
ticipants in the cancer metabolism reprogramming.
Under the influence of the abnormal expression of onco-
genes and tumor suppress genes, the anabolic metabol-
ism and transport of amino acid were tremendously
enhanced for rapid proliferation of cancer cells. To pro-
vide required nutrients for cancer growth, the catabolic
metabolism of whole-body tissue would be enhanced,
leading to an increased circulating amino acids at the
early stage of PDAC [50]. But the catabolic metabolism
cannot maintain in a high level for a long time and end
in a severe nutritional imbalance called cachexia, thus
creating a decrease of amino acids in serum at last. In
this process, L-type amino-acid transporter 1 (LAT-1),
the most important transporter of neutral amino acids,
plays a key role in internalized transportation of essential
amino acids (EAAs) in PDAC. As previous reports
demonstrated, the overexpression of LAT-1 can promote
cancer growth via mammalian target-of-rapamycin
(mTOR) and serve as a prognostic factor in PDAC
[51, 52]. Thus, the higher concentration of EAAs in
SW1990 group than in Panc-1 and BxPC-3 group in-
dicates that the tumors with poor differentiation may
have a higher expression of LAT1 and nutritional
stress from rapid proliferation, which can associated
with poor prognosis.
With regard to the non-essential amino acids

(NEAAs), several pathways were involved to enhance
their biosynthesis and utilization for cell proliferation.
As noted above, the accumulated glycolysis intermedi-
ates could also promote the biosynthesis of glycine,
serine and threonine through 3-phospho-D-glycerate
pathway. In addition, the increased glutaminolysis pro-
vides numerous substrates (e.g. isocitrate, malate, alpha-
ketoglutaric acid) not only to supply the lipids synthesis
but also to promote the biosynthesis of alanine and as-
partate. Besides being used as building blocks and fuels
for cell proliferation, NEAAs have been indicated to
bridge the interplay metabolism and epigenetics, thus

(See figure on previous page.)
Fig. 3 OPLS-DA scores plots (upper left panels) and plots of permutation tests (n = 200) (upper right panels) derived from 1H NMR spectra of
serum samples and corresponding coefficient loading plots (bottom panels) from the pair-wise comparisons between Panc-1, Bxpc-3 and
SW1990 groups. a. Panc-1 vs SW1990, b. BxPC-3 vs SW1990, c. Panc-1 vs BxPC-3. The color map shows the significance of metabolites variations
between the two classes. Keys of the assignments were shown in Table 1. P, Panc-1; B, BxPC-3; SW, SW1990
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serve as programmed switch for cell differentiation [53].
For instance, several NEAAs including glycine could be
associated with gene signatures of cell proliferation and
Myc target activation through the serine-glycine-one-
carbon pathway (SGOC pathway), which contribute sig-
nificantly to energy generation and biosynthesis of
NADPH and purine [54]. In addition, the mTOR-
dependent induction of SGOC pathways can also lead to
DNA methylation and tumorigenesis under the coopera-
tively oncogenic function of the loss of liver kinase B1
and activation of Kras, which highly involved in epigen-
etics [55]. Thus, NEAAs are highly associated with gen-
esis, progression and epigenetics, and their relative
concentration in serum may be indicators for the differ-
entiation of PDAC.

Relative high concentration metabolites of choline
metabolism may imply a poor differentiation
Impressively, the high correlation coefficient of choline
groups in the pair-comparison of Panc-1 vs BxPC-3
and Panc-1 vs SW1990 implied that relatively high con-
centration of choline-like metabolites including phos-
phocholine (PC) and glycerolphosphocholine (GPC)
may be significant metabolic features for poor differen-
tiation of PDAC. According to previous study, the
tumor-associated choline metabolism plays a key role
in cell malignant transformation, tumor migration and
metastasis [56, 57], characterized by elevated level of
PC and total choline in tissue [45, 46]. Thereinto, the

Table 2 OPLS-DA coefficients of metabolites in different
pair-comparisons derived from NMR-data

Metabolites ra

BxPC-3 vs
SW1990

Panc-1 vs
SW1990

Panc-1 vs
BxPC-3

Glycolysis and glutaminolysis

α-Glucose −0.788 −0.631 –

β-Glucose −0.735 −0.842 –

Citrate 0.817 0.921 –

Glutamate 0.808 0.747 −0.789

Glutamine 0.767 0.856 –

Lactate 0.906 0.905 –

pyruvate −0.880 – 0.793

Succinate – – –

Carboxylic acids and derivatives

Acetate – – –

Formate – – –

Fumarate – – –

Isobutyrate – – −0.709

Malonate – – −0.648

Alcohols

Ethanol 0.879 – −0.804

Methanol 0.702 0.760 0.667

myo-Inositol 0.889 0.817 −0.877

Glycerol 0.935 0.784 −0.916

Lipid

LDL −0.899 −0.847 0.912

VLDL −0.774 0.720 0.921

Unsaturated fatty acid −0.899 −0.847 0.912

ketone body

3-Hydroxybutyrate 0.747 – −0.636

Acetoacetate – – –

Acetone −0.760 – 0.912

Choline and derivatives

Choline – −0.836 −0.841

Glycerolphosphocholine 0.671 −0.912 −0.894

Phosphocholine 0.736 −0.832 −0.892

Amino acid

Non-essential amino acid

1-methylhistidine – – −0.651

Alanine 0.750 0.778 –

Betaine 0.812 0.834 −0.769

Creatine 0.930 0.826 −0.849

Glycine 0.871 0.674 –

Histidine 0.776 0.602 –

Tyrosine 0.832 0.859 –

Table 2 OPLS-DA coefficients of metabolites in different
pair-comparisons derived from NMR-data (Continued)

Metabolites ra

BxPC-3 vs
SW1990

Panc-1 vs
SW1990

Panc-1 vs
BxPC-3

Essential amino acid

Isoleucine 0.749 0.795 –

Leucine 0.707 0.775 –

Lysine 0.886 0.822 −0.780

Methionine – 0.645 –

Phenylalanine 0.878 0.813 −0.642

Threonine 0.630 0.794 0.730

Tryptophan 0.846 0.847 −0.673

Valine 0.839 0.858 –

Others

Methylguanidine 0.650 0.732 –

Allantoin −0.687 – –

N-acetyl glycoprotein – 0.661 0.914

Trimethylamine −0.855 0.750 0.782
aCorrelation coefficients, positive and negative signs indicate positive and
negative correlation in the concentrations. |r| > 0.576 was the cutoff value
for significance based on discrimination significance of p = 0.05 and
df = 10. “-” means |r| < 0.576
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overexpression of choline kinase-α (Chk-a) induced by
hypoxia-inducible factor (HIF) accounts for the increase
of cellular PC and total choline [58], generating excessive
phosphatidylcholine for biosynthesis of cell membrane. In
addition, the EDI3-intermediated choline metabolism, a
pathways verified in other solid tumor, can not only cleave
GPC to form choline to supplement Kennedy pathway,
but also generate glycerol-3-phosphate and its sequentially
downstream intermediators for cellular signaling to
regulate migration, invasion, proliferation and differenti-
ation [57]. Other research detecting serum from PDAC
patients also indicated that the choline metabolism were
obviously altered and could potentially serve as
biomarkers to detect PDAC in early stage. Thus, the
difference of choline metabolism in PDAC could reflect
and create a handful of regulatory functions on tumor
progression and differentiation.
There are some pitfalls in this study. The PDAC

models were established by using three PDAC cell lines
which could only represent a part of metabonome land-
scape of pancreatic cancer, which inevitably lower the
level of evidence provided from our study. The hetero-
geneity of pancreatic cancer in patients may compromise

the directly clinical transformation application of our
results. Thus, the further validation based on a large
patient cohort will be performed in the future.

Conclusions
In this study, we compared the serum metabonomic
profiling between PDAC with different differentiations
and successfully established pattern recognition models
to distinguish with each other. The lower concentration
of amino acids, glycolytic and glutaminolytic participa-
tors may serve as the predictors for poor differentiation
of tumor. Thus, NMR-based metabonomic strategy can
be a promising non-invasive approach to predict tumor
differentiation preoperatively.
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