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Improved anticancer drug response
prediction in cell lines using matrix
factorization with similarity regularization
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Abstract

Background: Human cancer cell lines are used in research to study the biology of cancer and to test cancer
treatments. Recently there are already some large panels of several hundred human cancer cell lines which
are characterized with genomic and pharmacological data. The ability to predict drug responses using these
pharmacogenomics data can facilitate the development of precision cancer medicines. Although several
methods have been developed to address the drug response prediction, there are many challenges in obtaining
accurate prediction.

Methods: Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a
similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using
chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural
similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms,
which were incorporated to the drug response matrix factorization model.

Results: We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with
two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer
(GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-the-
art methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even
though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene
associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not
found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of
GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and
expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin.

Conclusions: Our analysis showed that the proposed data integration method is able to improve the accuracy of
prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene
associations compared to existing data as well as aid in drug repositioning.
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Background
Patients suffering from the same cancer may differ in
their responses to a specific medical treatment. Preci-
sion cancer medicines aim to decipher the cause of a
given patient’s cancer at the molecular level and then
tailor treatment to address that patient’s cancer pro-
gression [1]. Identification of predictive biomarker for
drug sensitivity in individuals is the key that will pro-
mote precision cancer medicine [2]. Human cancer cell
lines, compared to human or animal model, have been
popular to study the cancer biology and drug discovery
through facile experimental manipulation. Several
large-scale high-throughput screenings have catalogued
genomic and pharmacological data for hundreds of hu-
man cancer cell lines, respectively [3–6]. Development
of computational methods that link genomic profiles of
cancer cell lines to drug responses can facilitate the
development of precision cancer medicines, for which
the identified genomic biomarkers can be used to pre-
dict anticancer drug response [7, 8].
Machine learning algorithms such as elastic net

regularization and random forests were used to search
for genomic biomarkers of drug sensitivity in cancer
cell lines for individual drugs [3–5, 9, 10]. Recently,
Seashore-Ludlow et al. developed a cluster analysis
method integrating information from multiple drugs
and multiple cancer cell lines to identify genomic bio-
markers [6]. Geeleher et al. improved genomic bio-
marker discovery by accounting for variability in
general levels of drug sensitivity in pre-clinical models
[11]. In contrast to genomic biomarker identification,
some research works focused on drug response predic-
tion. Before-treatment baseline gene expression levels
and in vitro drug sensitivity in cell lines were used to
predict anticancer drug responses [12, 13]. Daemen
et al. used least square-support vector machines and
random forests algorithms integrating molecular fea-
tures at various levels of the genome to predict drug
responses from breast cancer cell line panel [14]. Men-
den et al. predicted drug responses using neural net-
work where each drug-cell line pair integrated genomic
features of cell lines with chemical properties of drugs
as predictors [15]. Ammad-ud-din et al. applied kerne-
lized Bayesian matrix factorization (KBMF) method to
predict drug responses in GDSC dataset [16]. The
method utilized genomic and chemical properties in
addition to drug target information. Liu et al. used drug
similarity network and cell similarity network to predict
drug response, respectively, meaning that predictions
were done twice separately. Then the final prediction is
obtained as a weighted average of the two predictions
based on dual-layer network (DLN) [17]. Cortés-Ciriano
et al. proposed the modelling of chemical and cell line in-
formation in a machine learning model such as random
forests (RF) or support vector regression to predict the
drug sensitivity of numerous compounds screened against
59 cancer cell lines from the NCI60 panel [18]. Although
various methods have been developed to computationally
predict drug responses of cell lines, there are many chal-
lenges in obtaining accurate prediction.
Based on the fact that similar cell lines and similar

drugs exhibit similar drug responses [17], here we
propose a similarity-regularized matrix factorization
(SRMF) method for drug response prediction which
incorporates similarities of drugs and of cell lines sim-
ultaneously. To demonstrate its effectiveness, we ap-
plied SRMF to a set of simulated data and compared it
with two typical similarity-based methods: KBMF and
DLN. The evaluation metrics include Pearson correl-
ation coefficient (PCC) and root mean square error
(RMSE). The results showed that SRMF performed
significantly better than KBMF and DLN in terms of
drug-averaged PCC and RMSE. Moreover, we applied
SRMF to GDSC and CCLE drug response datasets
using ten-fold cross validation which showed that the
performance of SRMF significantly exceeded other
existing methods, such as KBMF, DLN and RF. We
have also applied SRMF to infer the missing drug re-
sponse values in the GDSC dataset. Even though the
SRMF model does not specifically model mutation
information, it correctly predicted the associations
between EGFR and ERBB2 mutations and sensitivity
to lapatinib that targets the product of these genes.
Similar fact was observed with predicted response of
CDKN2A-mutated cell lines to PD-0332991. Further-
more, by combining newly predicted drug responses
with existing drug responses, SRMF can identify novel
drug-cancer gene associations that do not exist in the
available data. For example, MET amplification and TSC1
mutation are significantly associated with c-Met inhibitor
PHA-665752 and mTOR inhibitor rapamycin, respect-
ively. Finally, the newly predicted drug responses can
guide drug repositioning. The mTOR inhibitor rapamycin
is sensitive to non-small cell lung cancer (NSCLC) based
on newly predicted drug responses versus available
observations. Besides, expression of AK1RC3 and HINT1
were identified as biomarkers of cell line sensitivity to
rapamycin.

Methods
Data and preprocessing
We firstly used the data from the Genomics of Drug
Sensitivity in Cancer project consisting of 139 drugs and a
panel of 790 cancer cell lines (release-5.0). Experimentally
determined drug response measurements were deter-
mined by log-transformed IC50 values (the concentration
of a drug that is required for 50% inhibition in vitro, given
as natural log of μM). Notably, a lower value of IC50
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indicates a better sensitivity of a cell line to a given
drug. In addition, cell lines were characterized by a set
of genomic features. We selected the 652 cell lines for
which both drug response data and gene expression
were available. Furthermore, we focused on the 135
drugs for which SDF format (encoding the chemical
structure of the drugs) were available from the NCBI
PubChem Repository. Then PubChem fingerprint de-
scriptors were computed using the PaDEL software
[19]. The resulting drug response matrix of 135 drugs
by 652 cell lines has 88,020 entries, out of which 17,344
(19.70%) are missing and 70,676 are known. For a pair
of drugs, the similarity between their fingerprints was
measured by the Jaccard coefficient. The cell line simi-
larities, on the other hand, were calculated based on
their gene expression profiles, and Pearson correlation
coefficient was used to compute the profile similarity
between two cell lines.
The data from the Cancer Cell Line Encyclopedia

consists of 24 drugs and a panel of 1036 human cancer
cell lines. Drug sensitivity data were summarized by
activity area (the area over the drug response curve).
Notably, the higher the activity area value, the better
the sensitivity. We selected the 491 cancer cell lines
for which both drug sensitivity measures and gene
expression profile data were available. There are 23
drugs having PubMed SDF files from which we can
obtain drug chemical structures. The resulting drug
response matrix of 23 drugs by 491 cell lines has
11,293 entries, out of which 423 (3.75%) are missing
and 10,870 are known.
Fig. 1 The framework of drug response prediction method SRMF. a The in
active area values) in cancer cell lines versus the unknown values marked a
profile-based cell line similarity. b Rationale for the matrix factorization app
a low dimensionality. Furthermore, the associations among drugs and cell
shared latent space. c SRMF computes the coordinates of drugs and cell lin
drug response matrix including the newly predicted drug responses
Problem formulation
In this article, we applied a powerful matrix factorization
framework to predict anticancer drug responses in
cell lines (Fig. 1). Similar framework has been
adopted to predict drug targets [20]. The primary
idea is to map m drugs and n cell lines into a shared
latent space, with a low dimensionality K, where
K ≪ min (m, n). The properties of a drug di and a
cell line cj are described by two latent coordinates ui
and vj(K dimensional row vectors), respectively. As
to drug response matrix Y, we aimed to approximate
each known response value of drugdi for cell line cj
via their latent coordinates which can be our object-
ive function:

min
U ;V

j W ⋅ Y−UVT
� �j�� ��2

F ; ð1Þ

where W is a weight matrix, in which Wij = 1 if Yij is a
known response value; otherwise Wij = 0, W ⋅ Z denotes
the Hadamard product of two matrices W and Z, U and
V are two matrices containing ui and vj as row vectors,
respectively, and ∣|⋅|F is the Frobenius norm.
Then to avoid overfitting of U and V to training data,

L2 (Tikhonov) regularization was imposed to the latent
variables U and V.

min
U ;V

j W ⋅ Y−UVT
� �j�� ��2

F
þ λl j U j�� ��2

F
þ j V jj j2F

� �
; ð2Þ

Furthermore, prior knowledge on drugs and cell lines
is very useful and valuable to decipher the global struc-
ture of drug-cell line response data. Based on the results
put data for SRMF includes the available drug responses (such as
s grey, chemical structure-based drug similarity and gene expression
roach. Drugs and cell lines are mapped into a shared latent space with
lines are described using the inner products of their coordinates in the
es U and V in the shared latent space, which are used to reconstruct
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that similar cell lines and similar drugs exhibit similar
drug responses [17], we proposed to exploit the drug
similarity and cell line similarity to further improve the
drug response prediction accuracy. The primary idea of
exploiting the drug (cell line) similarity information for
drug response prediction is to minimize the differences
between similarity of two drugs (cell lines) and that of
them in the latent space. These objectives can be
achieved by minimizing the following objective functions
(3) and (4):

j Sd−UUT j�� ��2
F
; ð3Þ

j Sc−VVT j�� ��2
F ; ð4Þ

where Sd and Sc are drug similarity matrix and cell line
similarity matrix, respectively.
The final drug response prediction model can be for-

mulated by considering the drug response matrix as well
as the similarity of drugs and cell lines. By plugging Eqs
(3) and (4) into Eq. (2), the proposed SRMF model is
formulated as follows:

min
U ;V

j W ⋅ Y−UVT
� �j�� ��2

F þ λl j U jj j2F þ j V jj j2F
� �

þ λdj Sd−UUT j�� ��2
F þ λcj Sc−VVT j�� ��2

F : ð5Þ

The SRMF algorithm
Since the objective function (5) is not convex with respect
to variables U and V, we searched for the local minimum
instead of the global minimum by an alternating
minimization algorithm. The algorithm which was de-
duced detailedly in Additional file 1 updates variables U
and V alternately. We provided this algorithm in the fol-
lowing, and the software can be freely downloaded from
the website (https://github.com/linwang1982/SRMF).

https://github.com/linwang1982/SRMF
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Measurements of prediction performance
By accounting for variability in sensitive ranges of
drugs, the correlation between observed and predicted
response values for all drug response entries may
overestimate the prediction performance [17]. Here, we
focused on evaluation metrics for individual drugs, in-
cluding Pearson correlation coefficient (PCC) and root
mean squared error (RMSE) for each drug [17]. RMSE
is computed as follows,

RMSE Dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

C R D;Cð Þ−R D;Cð Þð Þ2
n

s
ð8Þ

where n is the number of cell lines with known response
values for drug D, R(D,C) and R̂ D;Cð Þ are observed and
predicted response values for drug D versus cell line C, re-
spectively. Moreover, drug-averaged PCC and RMSE are
computed as the average PCC and RMSE over all drugs.
There is compelling evidence that the sensitive and re-

sistant cell lines of each individual drug are more valuable
to decipher mechanisms of drug actions, we also care
about PCC and RMSE from sensitive and resistant cell
lines for each drug, and they were denoted as PCC_S/R
and RMSE_S/R, respectively. Here, for each drug the
logIC50 (activity area) were split into quartiles, with
cell lines in the first and fourth representing drug-
sensitive (−resistant) and –resistant (−sensitive) cell
lines, respectively, which was also performed for drug
sensitive analysis of breast cancer cell lines [21]. Conse-
quently, we have drug-averaged PCC_S/R and RMSE_S/R
which are the average PCC_S/R and RMSE_S/R over all
drugs, respectively.

Experimental settings
The settings of the hyper-parameters of each method
were as follows. For the matrix factorization based
methods, including SRMF and KBMF, the low dimen-
sionality K was set as 45 for GDSC dataset [16]. More-
over, as to SRMF, the drug response matrix was scaled
in the way that its elements lie within the range [−1, 1]
by dividing through the maximum absolute value of the
matrix, so that the data range is similar with that of
drug (cell line) similarity matrix, and the regularization
parameters λl , λd , λc of SRMF were selected from{2‐3,
… , 22}, {2‐5, … , 21, 0}and{2‐5, … , 21, 0}, respectively. In
DLN, the decay parameters σ and τwere chosen from
range of [0, 1] at 0.001 increments and 0.01 increments,
respectively. The weight parameter λ was selected from
range of [0, 1] at 0.01 increments [17]. For a prediction
method, the most suitable hyper-parameters on differ-
ent datasets are usually different. Thus, we adopted grid
search to choose the optimal hyper-parameters for each
drug response prediction method on each dataset. RF
treated drug response prediction as a regression problem
where each possible drug-cell line pair integrated genomic
features of the cell line with chemical fingerprint features
of the drug as predictors. For RF, genomic features of cell
lines used the gene transcript levels for the 1000 genes
display the highest variance across the cell line panel, and
all fingerprint features with constant values across all
drugs were removed [18].
Results
Similar cell lines are sensitive to similar drugs
We calculated the Pearson correlation between each
pair of gene expression profiles of cell lines after nor-
malizing gene expression values across cell lines. As
shown in Fig. 2a, gene expression correlations were sig-
nificantly higher for cell lines within the same cancer
type. This is in agreement with the tissue specificity of
gene expression [22]. Furthermore, we calculated the
Pearson correlation coefficient of drug responses for
each cell line pair after normalizing drug response
values across cell lines. Figure 2b shows that drug sen-
sitivity correlations were also significantly higher for
cell lines within the same cancer-type. These results
suggest that cell lines with similar gene expression pro-
files tend to be within the same cancer-type, which
have similar responses for the same drug.
A hierarchical clustering of 135 drugs based on their

chemical fingerprint features was performed (Additional
file 2). Furthermore, we calculated the Pearson correl-
ation between each pair of sensitivity profiles of drugs.
Drug pairs within the same cluster of chemical finger-
prints have significantly higher drug sensitivity correla-
tions (Fig. 2c). This result depicts that drugs with
similar chemical fingerprints show similar inhibitory ef-
fects on the same cell line.
Simulation study
In this section, we evaluated the performance of SRMF
and compared it with KBMF [16] and DLN [17] by ap-
plying them to a set of simulated data (Additional file 3).
These three methods all integrated drug similarity and
cell line similarity to drug response prediction. The
drug-averaged PCC and RMSE were used as metrics to
assess the performance of different methods. We ran
each method on simulated data and repeated this pro-
cedure for 200 times. Then the drug-averaged PCC and
RMSE of 200 realizations were averaged, respectively. As
shown in Fig. 3a, the drug-averaged PCC values of
SRMF are still higher even though high noise levels
exist. Moreover, the drug-averaged RMSE values of
SRMF decrease slower than the other two approaches
when the data noise increases (Fig. 3b). Thus, SRMF
performs better than KBMF and DLN in the current
simulation settings.



Fig. 2 Similar cell lines respond similarly to the similar drugs. a Lower triangular matrix containing Pearson correlation between each pair of gene
expression profiles of cell lines. The X-axis and Y-axis represent cell lines classified by their cancer-types (TCGA classification). Box plots show the
correlations of gene expression within the same and between different cancer-types. b Lower triangular matrix containing Pearson correlation
between each pair of drug sensitivity profiles of cell lines. Box plots show the correlations of drug sensitivity within the same and between
different cancer-types. c Box plots show the correlations of sensitivity profiles across cell lines within the same and between different drug
clusters. The drugs were hierarchically clustered according to the similarity of their chemical fingerprints. The one-sided Mann–Whitney U test
was used to measure the statistical difference between two groups

Wang et al. BMC Cancer  (2017) 17:513 Page 6 of 12
10-fold cross-validation on GDSC and CCLE drug response
datasets
We conducted 10-fold cross-validation to evaluate the
performance of SRMF in the GDSC dataset with IC50 as
drug response measurement. The drug response entries
were divided into 10 folds randomly with almost the
same size. The 9-fold was used as a training set and the
remaining 1-fold was used as a test set. The prediction
process was repeated 10 times for each fold as a test set.
Here, we compared SRMF with three state-of-the-art
Fig. 3 Evaluation of different prediction methods through simulations. We co
of target drug response. The dimensions of the simulation results are m = 100
We varied the noise level, which represents the strength of Gaussian noise ad
a and b represent the performance based on different statistics: drug-average
methods, namely, KBMF, DLN and RF [18]. Surprisingly,
SRMF achieved best prediction performance with weight
parameter for drug similarityλd = 0, which means that
drug structure did not contribute to the prediction per-
formance improvement of SRMF. Table 1 shows the
comparison results obtained by various methods. As
shown in Table 1, SRMF attains the best measure values
in all metrics over the GDSC dataset. The drug-averaged
PCC_S/R (Pearson correlation between predicted and
observed responses of sensitive and resistant cell lines)
mpared the performance of SRMF, KBMF and DLN for the estimation
, n = 150. Details of the simulation methods are in Additional file 3.
ding to the target response matrix, from 0 (no noise) to 0.5 (high noise).
d PCC and drug-averaged RMSE



Table 1 The comparison results of different methods obtained under the 10-fold cross validation on GDSC dataset

Methods Drug-averaged PCC_S/R Drug-averaged RMSE_S/R Drug-averaged RMSE_S/R Drug-averaged RMSE

SRMF (drug response + gene expression) 0.71 (±0.15) 1.73 (±0.46) 0.62 (±0.16) 1.43 (±0.36)

SRMF (drug response) 0.69 (±0.16) 1.72 (±0.48) 0.59 (±0.17) 1.45 (±0.39)

KBMF 0.59 (±0.14) 2.00 (±0.51) 0.49 (±0.14) 1.59 (±0.42)

DLN 0.55 (±0.14) 2.49 (±0.85) 0.44 (±0.13) 2.08 (±0.83)

RF 0.50 (±0.15) 2.23 (±0.66) 0.40 (±0.14) 1.69 (±0.50)

PCC_S/R—Drug-averaged Pearson correlation for responses from sensitive and resistant cell lines; RMSE_S/R—Drug-averaged root-mean-square error for
responses from sensitive and resistant cell lines; PCC—Drug-averaged Pearson correlation for responses across all cell lines; RMSE—Drug-averaged root-mean-
square error for responses across all cell lines. The value shown in the bracket represents standard deviation
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obtained by SRMF is 0.71, which is 20.34% better than
the second method KBMF. The drug-averaged RMSE_S/
R (root mean square error between predicted and
observed responses of sensitive and resistant cell lines)
obtained by our method is 1.73, which is 13.50% lower
than that obtained by the second method KBMF. Not-
ably, the prediction performance of SRMF was decreased
when the gene expression data was dropped out (setting
weight parameter for cell line similarityλc = 0) (Table 1).
Figure 4 shows the box plots of different methods with
respect to the above two evaluation metrics for each
drug. To further evaluate the prediction performance of
SRMF on individual drugs, the comparison results of
four models for the drugs targeting genes in the PI3K
and ERK pathways are shown in Fig. 5 and Additional
file 4, respectively, which indicate that SRMF obtained
higher PCC and lower RMSE for most drugs.
We further validated the prediction performance of

SRMF on CCLE dataset with active area as drug
response measurement using the same manner. Here
the low dimensionality K was set as 12. The compari-
son results of four models are shown in Table 2. SRMF
also attained the best measure values in all metrics.
The drug-averaged PCC_S/R obtained by SRMF is 0.78,
Fig. 4 Box plots of four methods on GDSC dataset with respect to differen
predicted and observed response values of sensitive and resistant cell lines
observed drug responses of sensitive and resistant cell lines for each drug.
groups.
which is 9.86% better than the second competing method
DLN. The drug-averaged RMSE_S/R obtained by SRMF is
0.74, which is 6.33% lower than that achieved by the sec-
ond method RF. As in the GDSC dataset, gene expression
versus drug structure indeed improves the prediction
performance of SRMF in CCLE dataset. Notably, one may
assess treatment potential not by absolute values of drug
response data, but rather by their relative order, because
of batch effect of different experiments. So compared
to RMSE, PCC might be a better measurement of
prediction performance [4, 15, 17]. In fact, even the
published original data from GDSC and CCLE have dif-
ferent magnitudes in IC50 for their common drugs
[23]. Thus, SRMF achieved better predictive power as
to Pearson correlation, suggesting that it can potentially
be used in drug repositioning.

Identification of consistent and novel drug-cancer gene
associations for predicted response data
Using SRMF validated in the previous subsections, we
trained a model on all available data and used it to predict
the missing responses in the GDSC dataset. Here we
focused on an EGFR and ERBB2 (also known as HER2)
inhibitor lapatinib, where more than half of response
t evaluation metrics. a Pearson correlation coefficient between
for each drug. b Root mean squared error between predicted and
The t-test was used to measure the statistical difference between two



Fig. 5 Prediction performance comparisons of four methods for the drugs targeting genes in the PI3K pathway with respect to two measurements.
a Pearson correlation coefficient between predicted and observed response values of sensitive and resistant cell lines for each drug. b Root mean
squared error between predicted and observed drug responses of sensitive and resistant cell lines for each drug
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values (342/652) were missing, and a cyclin D kinases
(CDKs) 4 and 6 inhibitor PD-0332991, where nearly
10% of response values (62/652) were missing. There
were clear associations between EGFR and ERBB2
mutations and sensitivity to lapatinib that targets the
product of these genes [24, 25]. Here, we grouped the
unassayed cell lines based on their EGFR mutation pro-
files, and found that the EGFR-mutated cell lines were
significantly more sensitive to lapatinib. This prediction
Table 2 The comparison results of different methods obtained und

Methods Drug-averaged PCC_S/R Dr

SRMF (drug response + gene expression) 0.78 (±0.07) 0.7

SRMF (drug response) 0.76 (±0.08) 0.7

KBMF 0.65 (±0.10) 0.8

DLN 0.71 (±0.06) 0.9

RF 0.69 (±0.10) 0.7

PCC_S/R—Drug-averaged Pearson correlation for responses from sensitive and resis
responses from sensitive and resistant cell lines; PCC—Drug-averaged Pearson corre
square error for responses across all cell lines. The value shown in the bracket repre
happened to coincide with that in assayed cell lines
(Fig. 6a). Similar fact was observed with predicted
response of ERBB2-mutated cell lines to lapatinib (Fig. 6b).
As to PD-0332991, the predicted results show that
CDKN2A-mutated cell lines are more sensitive to PD-
0332991 (Fig. 6c), and this prediction was consistent
with that in assayed cell lines and in agreement with
previously published study [26]. In summary, even
though SRMF does not specifically model mutation
er the 10-fold cross validation on CCLE dataset

ug-averaged RMSE_S/R Drug-averaged PCC Drug-averaged RMSE

4 (±0.23) 0.71 (±0.09) 0.57 (±0.18)

5 (±0.23) 0.69 (±0.09) 0.60 (±0.23)

1 (±0.20) 0.71 (±0.10) 0.64 (±0.17)

9 (±0.43) 0.64 (±0.06) 0.86 (±0.42)

9 (±0.26) 0.62 (±0.11) 0.61 (±0.20)

tant cell lines; RMSE_S/R—Drug-averaged root-mean-square error for
lation for responses across all cell lines; RMSE—Drug-averaged root-mean-
sents standard deviation



Fig. 6 The associations of drug sensitivity and cancer gene mutations were consistent for predicted response data. a and b grouped cell line response
values for lapatinib based on their EGFR mutation profiles and ERBB2 mutation profiles, respectively. WT refers to the non-mutated (wide type) cell
lines. c grouped cell line response values for PD-0332991 based on their CDKN2A mutation profile
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information, it can correctly predict consistent drug-
cancer gene associations for unassayed cell lines.
The newly predicted drug responses combined with

existing drug responses were able to detect novel drug-
cancer gene associations as well. For example, MET
amplification was significantly associated with sensitiv-
ity to c-Met inhibitor PHA-665752 [27, 28], which was
obtained by combining newly predicted drug responses
and available observations versus available observations
themselves (Fig. 7a), confirming the need for comple-
menting the missing drug response values to capture
new drug-sensitizing genotypes. The significant associ-
ation between TSC1 mutation and sensitivity to mTOR
inhibitor rapamycin [29] was identified based on a
combination of newly predicted drug responses and
available observations versus available observations
themselves (Fig. 7b).
Fig. 7 The new associations of drug sensitivity and cancer genes were ide
available observations. a grouped cell line response values for PHA-665752 ba
(wide type) cell lines. b grouped cell line response values for rapamycin based
Drug repositioning and novel genomic correlates of drug
sensitivity
The newly predicted drug responses of GDSC dataset
can aid in drug repositioning. The mTOR inhibitor
rapamycin was sensitive to non-small cell lung cancer
(NSCLC) [30] based on newly predicted drug responses
versus available observations (Fig. 8a). Furthermore, we
applied elastic net regression, a penalized linear model-
ling technique, to identify genomic correlates of rapa-
mycin sensitivity by integrating gene expression data
and cell line responses to rapamycin including newly
predicted response values and existing data [3–5]. Ex-
pression of AK1RC3 and HINT1 was identified as the
top two sensitive signatures for rapamycin. Higher
AK1RC3 expression was correlated with newly pre-
dicted sensitivity to rapamycin (Fig. 8b, Pearson cor-
relation coefficient PCC=−0.35, P value=1.33 × 10‐10).
ntified based on a combination of newly predicted drug responses and
sed on their MET amplification profiles. WT refers to the non-mutated
on their TSC1 mutation profile



Fig. 8 Repositioning of rapamycin and identification of a novel genomic correlate of rapamycin sensitivity. a grouped cell line response values for
PHA-665752 based on their tissue types. NSCLC refers to the non-small cell lung cancer. b The scatter plot displays the association between
AK1RC3 expression and newly predicted rapamycin sensitivity. Red circles, NSCLC cell lines; black circles, cell lines from other tumour types
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Similar situation appeared with HINT expression (PCC=
−0.24, P value=1.07 × 10‐5). Interestingly, AK1RC3 has
been suggested as an adjunct marker for differentiating
small cell carcinoma from NSCLC [31], and the increased
expression of HINT1 inhibits the growth of NSCLC cell
lines [32].

Discussion
SRMF currently incorporated the gene expression profile
based cell line similarity. Notably, SRMF can be extended
to incorporate multiple types of similarity measures for
cell lines through weighted low-rank approximation [20]
and multiple kernel learning techniques [33]. Conse-
quently, as to the two datasets used in the current study,
some other genomic features of cell lines such as copy
number variation, somatic mutation and pathways could
potentially improve the performance of SRMF. Moreover,
there are already some large panels of cancer cell lines for
which multiple layer omics data such as microRNA ex-
pression, DNA methylation and reverse-phase protein
array, and their related drug responses have been experi-
mentally determined [5, 18, 21]. With increasing data on
drug responses becoming available over time, and ex-
tended matrix factorization models to utilize the above
heterogeneous data, we hope this matrix factorization
based approach will have much better predictive power.
Besides, our approach can be applied to other research
fields such as modelling the causal regulatory network by
integrating chromatin accessibility and transcriptome data
in matched samples, which are deposited in Encyclopedia
of DNA Elements (ENCODE) and Roadmap Epigenomic
projects [34].

Conclusions
In this study, we developed a similarity-regularized matrix
factorization method SRMF to predict the response of
cancer cell lines to drug treatments for IC50 values in the
GDSC and activity areas in the CCLE study. The perform-
ance of SRMF was first evaluated through simulation
studies and further validated by the 10-fold cross valid-
ation on GDSC and CCLE datasets. Clearly, SRMF shows
better overall prediction performance than other methods
in the comparison study. Finally, in comparison with exist-
ing data, the newly predicted drug responses of GDSC
dataset can find consistent and novel drug-cancer gene as-
sociations and aid in drug repositioning.
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