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Abstract

Background: During posttreatment surveillance of head and neck cancer patients, imaging is insufficiently accurate
for the early detection of relapsing disease. Free circulating tumor DNA (ctDNA) may serve as a novel biomarker for
monitoring tumor burden during posttreatment surveillance of these patients. In this exploratory study, we
investigated whether low level ctDNA in plasma of head and neck cancer patients can be detected using Droplet

Digital PCR (ddPCR).

Methods: 7P53 mutations were determined in surgically resected primary tumor samples from six patients with
high stage (II-IV), moderate to poorly differentiated head and neck squamous cell carcinoma (HNSCO).

Subsequently, mutation specific ddPCR assays were designed. Pretreatment plasma samples from these patients
were examined on the presence of ctDNA by ddPCR using the mutation-specific assays. The ddPCR results were

evaluated alongside clinicopathological data.

Results: In all cases, plasma samples were found positive for targeted TP53 mutations in varying degrees (absolute
quantification of 2.2-422 mutational copies/ml plasma). Mutations were detected in wild-type TP53 background
templates of 7667-156,667 copies/ml plasma, yielding fractional abundances of down to 0.01%.

Conclusions: Our results show that detection of tumor specific TP53 mutations in low level ctDNA from HNSCC
patients using ddPCR is technically feasible and provide ground for future research on ctDNA quantification for the
use of diagnostic biomarkers in the posttreatment surveillance of HNSCC patients.
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biomarker

Background

Monitoring tumor response during posttreatment sur-
veillance of head and neck cancer patients heavily relies
on clinical examination supported by endoscopy and/or
imaging (e.g. computerized tomography (CT), magnetic
resonance imaging (MRI), or positron emission tomog-
raphy (PET)). However, early detection of recurrent
disease is challenging due to lymph nodal micrometas-
tases and radiation or surgery induced fibrosis and
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inflammation, obscuring residual or recurrent tumor tis-
sue [1-3]. Accurate and timely detection of locoregional
metastases and recurrent disease is pivotal as survival
rates rapidly decline with late detection and delayed sal-
vage surgery [4, 5]. With recent developments in mo-
lecular diagnostics, the use of (blood-based) genetic
biomarkers is growing in a wide variety of cancer types
[6]. Cell free circulating tumor DNA (ctDNA), released
into the bloodstream by apoptotic and necrotic tumor
cells, harbor tumor-specific mutations [7]. These muta-
tions can be detected in blood plasma from cancer
patients by blood sampling, also known as “liquid bi-
opsy” [8]. For head and neck cancer, research has been
focused mainly on actionable oncogenic mutations such
as PIK3CA and HRAS, hot-spot TP53 mutations, and
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HPV-related biomarkers to use as prognosticators or
predictors for establishing and adjusting targeted therapy
[9-12]. For similar purposes, transcriptional and epigen-
etic changes are studied substantially [13-15]. For the
early detection of recurrent disease, early driver muta-
tions in HNSCC such as TP53 mutations would be fa-
vorable to use as biomarkers, as these are likely to occur
consistently throughout clonal evolution [16, 17], and
are found to be most frequent and concordant in recur-
rent and metastatic HPV-negative tumors compared to
mutations in other genes [18-22]. By targeting and
quantifying early driver mutations in ctDNA, tumor bur-
den could be monitored after treatment, facilitating earl-
ier detection of asymptomatic residual and/or recurrent
disease. Previous studies showed correlations between
ctDNA levels and tumor dynamics during posttreatment
monitoring in patients with various types of cancer [23—
26]. However, accurate detection of ctDNA in plasma is
challenging, because ctDNA concentrations can be very
low. This could greatly impair reliable and valid meas-
urement of tumor dynamics. Highly sensitive Droplet
Digital PCR (ddPCR) facilitates detection and quantifica-
tion of low levels of ctDNA by partitioning DNA sam-
ples into 20,000 water-in-oil droplets [27]. In this
exploratory study, we investigated whether detection and
quantification of ctDNA in plasma from several head
and neck squamous cell carcinoma (HNSCC) patients
using ddPCR is technically feasible.

Methods

Patients and samples

Six patients (median age 60.5 [42-77] years) with histo-
logically confirmed HPV-negative HNSCC were selected
retrospectively for analysis of archived primary tumor
samples and presurgically obtained blood samples. Pa-
tient selection was based on TNM stage (stage II or
higher) and availability of blood plasma samples in our
biobank. Additional clinicopathological and radiological
data were collected from hospital charts of selected pa-
tients (Table 1; Fig. 1).

Table 1 Summary of patient and tumor characteristics
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Sample workup

All primary tumor samples were acquired from formalin
fixed paraffin embedded (FFPE) incisional or excisional
biopsy specimens, microscopically containing >30%
tumor cells. In order to reveal TP53 mutation status of
primary tumor samples, targeted next-generation se-
quencing (NGS) was performed using the Ion Torrent™
PGM platform (Thermo Fisher Scientific, Waltham,
MA, USA), as previously described [28]. NGS was based
on the Cancer Hotspot Panel v2+ (Thermo Fisher
Scientific, Waltham, MA, USA), covering TP53 exons
2-10 [29]. All blood samples were collected in 10 ml
K,EDTA blood collection tubes (BD Vacutainer, Franklin
Lakes, NJ, USA). Prior to archiving, centrifugation took
place for 10 min at 800 g (Rotina 380, Hettich,
Germany), after which supernatant plasma was ali-
quoted in 1 ml portions and stored at —80 °C until
DNA isolation. Storage time of patient FFPE and cor-
responding plasma samples varied from 4 months to
9 years.

Plasma samples were thawed and DNA was immedi-
ately isolated from 2 ml of plasma using QIAamp Circu-
lating Nucleic Acid (NA) kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Isolated
plasma samples were eluted in 50 pl elution buffer as
provided with the kit and stored at 4 °C until ddPCR
analysis. Positive control samples, containing both wild-
type (WT) and mutant (MT) DNA, were created for all
patients by isolating tumor DNA from the primary
tumor FFPE samples using COBAS DNA Sample Prep-
aration Kit (Roche, Basel, Switzerland) according to
manufacturer’s instructions. After quantity measurement
of isolated DNA samples with a Qubit fluorometer using
the dsDNA HS (High Sensitivity) Assay Kit (Thermo
Fisher Scientific), cfDNA was diluted to 10 ng/ul using
purified water. For each assay, no template controls
(NTC) were used to control for environmental contam-
ination, and wild-type-only (WT-only) samples were
used in order to estimate false-positive rates. Five WT-
only samples were created by isolating plasma DNA

Patient ID  Sex Smoking Alcohol Biopsy type TNM-stage Tumor site® Differentiation grade Max diameter primary Growth — Vascular
(pack years) (units/day) tumor (mm) typeb invasion

P1 M 0 8 Excisional ~ T4aN1MO  OSCC Moderate 40 NS No

P2 M 0 0 Excisional  T4aN2cMO OSCC Poor 72 NS Yes

P3 F 0 0 Excisional  T2NOMx 0scC Moderate 32 Unknown Yes

P4 M Unknown 1 Excisional ~ T4aN2bM0 OSCC Moderate 46 S No

P5 M 49 12 Excisional ~ T4aN1TMO  OSCC Moderate/poor 37 Unknown No

P6 Fooo42 2 Incisional T3N2cMO  OPSCC Unknown 13 N/A No

20SCC Oral Squamous Cell Carcinoma, OPSCC Oropharyngeal Squamous Cell Carcinoma

PNS Non Spiculated, S Spiculated
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Fig. 1 Primary tumors of six patients encircled in red. a Axial T1 MRI image of a tumor in the left mandible of patient 1. b Axial ceCT image of a
tumor in the floor of mouth of patient 2. ¢ Axial ceCT image of a tumor in the right lateral tongue of patient 3. d Axial ceCT image of a tumor in
the right mandible/floor of mouth/tongue of patient 4. e Axial ceCT image of a tumor in the floor of mouth in patient 5. f Axial T1 MRI image of
tumor in left mid tongue base of patient 6. ceCT = contrast enhanced computed tomography

from anonymous healthy individuals using the QIAamp
Circulating NA kit.

ddPCR

The plasma samples from all 6 patients were analyzed
for TP53 point mutations, identified in the primary
tumor tissue by NGS. MT and WT TP53 sequences
were used as DNA template for designing ddPCR (Bio-
Rad Laboratories, Hercules, CA, USA) assays following
the MIQE guidelines (Additional file 1: Table S1) [30].
DdPCR reaction volumes of 22 ul were prepared, con-
sisting of 13 pl mastermix (11 pl Supermix for Probes
[no deoxyuridine triphosphate], 1 pl of primer/probe
mix for both MT and WT 7TP53), and 9 pl cfDNA
sample of patient plasma. The NTCs contained 9 pl of
purified water instead of cfDNA sample. The WT-only
samples contained 1-7 ul of cfDNA. From the PCR
reaction mixture, 20 pl was used for droplet gener-
ation. Droplet Digital PCR was performed using the
QX200 ddPCR system according to manufacturer’s
instructions (Bio-Rad Laboratories). QuantaSoft v1.7.4.0917
(Bio-Rad Laboratories) software was used for data
analysis.

Prior to plasma sample testing, thermal gradient
experiments were performed on FFPE samples in order
to determine optimal amplification conditions during
thermal cycling for each assay independently. Based on
clearest separation of negative and positive droplet

clusters, thermal cycling conditions for all 6 assays were
set at 95 °C for 10 min (1 cycle), 94 °C for 30 s and 55 °
C for 60 s (55 cycles), and infinite hold at 12 °C. To en-
sure experiment quality, wells with total droplet counts
of less than 10,000 would be considered invalid and
excluded from analysis. The positive control samples
were used to verify assay performance and facilitate
thresholding in fluorescence values. Additionally, posi-
tive control samples were validated by comparing the
fractional abundance (FA) in FFPE samples to NGS
mutation frequencies. False-positive rate estimation was
determined by performing 5 experiments for each assay
using the WT-only samples, where total amounts of
detected MT-positive droplets determined thresholds
above which positive droplets in patient samples were to
be considered as true positive.

Post-analysis

For each patient, plasma was analyzed in duplicate.
Therefore, PCR results of patients samples were based
on the mean of estimated target DNA concentrations
(copies/pl) in merged wells, automatically calculated by
manufacturer software. Correction for false positivity
was performed by virtually subtracting the amount of
MT-false-positive droplets from the amount of MT-
positive droplets detected in the patients sample with
the corresponding assays. Subsequently, absolute sample
concentrations were (re)calculated as described in
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Additional file 1: Eq. S1. Relative quantification was
defined as the FA of MT to total (WT + MT) copies.

Results

Assay validation

In all six patients, T7P53 mutations were detected in FFPE
by both NGS and ddPCR (Additional file 1: Table S1 and
Additional file 2: Figure S1). FA of MT copies ranged from
6.1-71.7% in positive control samples, compared to NGS
mutant percentages of 7-70%. False-positive rate esti-
mation was necessary to determine aspecific MT signal
(Additional file 1: Table S2). One MT-false-positive
droplet was detected in the WT-only sample control
series for assay 1 and 3, establishing a true positivity
threshold of >1 MT-positive droplet for these assays
(Additional file 3: Figure S2 and Additional file 4:
Figure S3). For the remaining assays, no MT-false-
positive droplets were detected in the WT-only sam-
ples. WT-false-positive droplets for all used assays in
NTCs ranged from 0 to 10 droplets. No MT-positive
droplets were detected in any of the NTC samples
(Additional file 5: Figure S4).

ctDNA quantification

The amount of ctDNA was quantified and analyzed in
blood plasma samples from all 6 patients (Table 2). MT
copies of TP53 were detected in plasma samples from all
patients (Fig. 2a), ranging from 0.04 to 7.60 copies/pl
ddPCR mix and 1-181 MT-positive droplets in merged
wells (Fig. 2b). When corrected for MT-false-positive
droplets, plasma ctDNA concentrations ranged from 2.2
to 422 copies/ml plasma (Fig. 3a). MT copies were
detected in WT backgrounds of 138-2821 copies/yl,
yielding FA of MT copies of 0.01-5.2% (Fig. 3b).

Discussion

Our study shows that quantification of rare target muta-
tions in ctDNA in plasma from HNSCC patients using
ddPCR is technically feasible. Highly sensitive detection
methods like digital PCR are needed in order to detect
rare MT targets within high concentrations of WT back-
ground [31]. WT background size (i.e. concentration of
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WT cfDNA) can strongly vary over time for each patient
individually, depending on multiple factors. For instance,
patient’s physical status (e.g. inflammation, post-traumatic,
post-exercise, chronic illness), as well as pre-analytical
technical procedures (e.g. white blood cell lysis caused by
whole blood transportation and processing) appear to
affect ¢fDNA concentrations [32—35]. Increased cfDNA
concentration causes dilution of ctDNA, which could lower
the accuracy of rare MT fragment detection. Therefore,
pre-analytical steps should be most optimally in lowering
background DNA; e.g. blood plasma instead of serum is
preferred as source for ctDNA, as the amount of cfDNA in
serum can be 2—4 times higher than that in plasma [36].

It has been shown for various applications that ddPCR
is capable of rare target DNA quantification with higher
precision and accuracy compared to quantitative PCR
[27, 37-39]. Although we did not perform quantitative
PCR we found relative quantification measurements of
MT copies down to 0.01%. This falls within the potential
dynamic range for absolute quantification of rare target
DNA within a 100,000-fold of WT background as
previously demonstrated [40, 41]. Similar quantification
results were reported in a study where TP53 mutations
were identified in plasma using another PCR-based
detection method in 88% of HPV-negative HNSCC
patients (n = 22) with MT fractions varying between
0.016 and 2.9% [42]. We also found large variability in
MT quantification measurements among patient sam-
ples. This is consistent with previous mutation analysis
of blood samples from HNSCC patients, in which MT
TP53 fragments of 0-1500 per 5 ml plasma were
targeted and detected by conventional PCR [43].

Variances in detected MT copies among patients can
be the result of various (pre)analytical deficiencies and
technical errors like plasma sample contamination from
the environment. Furthermore, decreased DNA concen-
tration due to prolonged storage, poor sample quality,
subsampling during whole blood retrieval and/or centri-
fugation, inefficient DNA isolation from plasma samples,
poor droplet handling leading to shredding or coalition
of droplets, instrument artifacts, intrinsic PCR errors
caused by PCR inhibition and/or minor mismatches

Table 2 Absolute and relative quantifications of MT and WT DNA in plasma samples from HNSCC patients

Sample MT DNA concentration WT DNA concentration FAmut
B Sample (copies/ul) Samplece,; (copies/ul) Plasma (copies/ml) Reaction (copies/ul) Plasma (copies/ml)

P1 047 043 24 315 17,500 0.13%
P2 7.60 7.60 422 138 7667 5.50%
P3 0.17 0.16 89 158 8778 0.10%
P4 1.79 1.79 99 2821 156,667 0.06%
P5 0.37 0.37 21 380 21,167 0.10%
P6 0.04 0.04 2.2 397 22,056 0.01%
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between primer/probes and target molecules can all
affect PCR results [44, 45].

During ddPCR post-analysis, manual threshold deter-
mination and stochastic sampling errors could directly
lead to over- or underestimation of target copies, result-
ing in inaccurate quantification of results [46]. Further-
more, we know from previous validation experiences
that fluorescence values of positive droplet clusters can
vary inter-experiment, while assessing DNA samples de-
rived from the same individual and using identical

ddPCR assays. The same holds true for ddPCR experi-
ments on DNA samples derived from different plasma
matrices and/or volumes, containing different PCR in-
hibitors [47]. These points concerning post-analysis need
to be addressed in order to implement ddPCR for
ctDNA quantification into clinical practice. Therefore
each assay and each sample should be analyzed individu-
ally. Although we used FFPE for positive control samples
for threshold placement and plasma from different indi-
viduals for false-positive rate estimation, samples were
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patient specific and of similar matrix of DNA source,
respectively. In this way, plasma DNA composition from
the patients was mimicked most realistically. Moreover,
the alternative of using (spiked) series of artificially
synthesized DNA oligonucleotides for creating control
samples can provoke overestimation of PCR targets due
to the high purity of these solutions. Eventually, inter-
pretation of ddPCR results depends on the accuracy of
ctDNA quantification which is determined by false
positive rate estimation.

Several biological factors could affect ctDNA concen-
tration. Especially tumor volume is of interest as it may
reflect tumor burden and actual disease status through
correlation with ctDNA concentration. Simultaneously,
tumor characteristics such as histological grade,
localization, growth pattern, growth rate, and degree of
vascularization possibly complicate reliable monitoring
of tumor burden by ctDNA quantification, as these fac-
tors might affect ctDNA release into the bloodstream all
differently [44, 48]. However, in a series of 117 patients
with primary HNSCC, no significant correlation was
found between gender, tumor stage, site, and plasma
ctDNA concentration detected by touchdown PCR [49].
Interestingly, in our study, the highest amount of ctDNA
was detected in plasma from the patient that harbored
the largest tumor diameter of all six included patients.
This tumor also had a poor histological differentiation
grade with vascular invasion. At the other end, the
lowest amount of ctDNA was detected in plasma from
the patient with the smallest tumor diameter and
without vascular invasion. However, we studied and
compared plasma samples retrieved at one time point
from a rather small group of high-stage HNSCC patients
with presumably greater tumor burden and plasma
ctDNA concentrations.

Therefore, serial ctDNA quantification in clinical
patients diagnosed with primary HNSCC of all stages is
needed to clarify its significance for posttreatment
disease monitoring and the possible advantages of its
specific application with respect to early tumor detection
in relation to current clinical diagnostics [50]. Tumor
heterogeneity could further complicate monitoring
tumor burden through ctDNA detection, because intra-
tumoral heterogeneity of the primary tumor induces
branched tumor evolution of subclonal populations
harboring different molecular alterations [51]. This
could lead to increased clonal heterogeneity between
primary tumor and matched metastatic or recurrent tu-
mors, risking mistargeting of ctDNA. However, as early
driver TP53 mutations show high concordance between
primary and recurrent and/or metastatic tumors, these
may hold promise as most reliable targets for ctDNA
detection and for early tumor detection of HNSCC
recurrences [21].
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Conclusion

The detection of tumor specific 7P53 mutations in
ctDNA from HNSCC using a ddPCR is technically feas-
ible and provide ground for further research on ctDNA
quantification to be used as a diagnostic biomarker in
the posttreatment surveillance of HNSCC patients.
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Additional file 1: Table S1-2. NGS data, PCR assays, and Assay
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Additional file 2: Figure S1. DdPCR results of 6 different MT TP53
assays on positive control (FFPE) samples of all 6 patients are shown. The
MT-positive clusters (blue dots) and MT/WT-positive clusters (orange
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(TIFF 1834 kb)

Additional file 3: Figure S2. 2D-plots with the amounts of droplets of
ddPCR results in healthy individuals using assay 1-6. All threshold are
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droplets, WT+ WT-positive droplets, MT+/WT+ MT/WT-positive droplets,
NT No template droplets. (TIFF 1255 kb)

Additional file 4: Figure S3. DdPCR results for all 6 patients side-by-side
with the WT-only samples from healthy individuals. All patient samples are
shown in duplicate. In order to estimate the false positive rate for patient
samples, plasma samples from five different healthy individuals were used.
In the samples from healthy individuals 3 and 1 used during validation of
assay 2 and assay 6, less than 10,000 droplets were detected. Therefore,
these results were excluded from false positive estimation for the
corresponding assays. (TIFF 6899 kb)

Additional file 5: Figure S4. NTC samples showing minimal
environmental contamination with WT-positive droplets. No MT-positive
droplets were detected in any of the NTC samples. (TIFF 3242 kb)
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