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Abstract

Background: Esophageal carcinoma is the third most common gastrointestinal malignancy worldwide and is largely
unresponsive to therapy. African-Americans have an increased risk for esophageal squamous cell carcinoma (ESCQ), the
subtype that shows marked variation in geographic frequency. The molecular architecture of African-American ESCC is
still poorly understood. It is unclear why African-American ESCC is more aggressive and the survival rate in these patients
is worse than those of other ethnic groups.

Methods: To begin to define genetic alterations that occur in African-American ESCC we conducted microarray
expression profiling in pairs of esophageal squamous cell tumors and matched control tissues.

Results: We found significant dysregulation of genes encoding drug-metabolizing enzymes and stress response
components of the NRF2- mediated oxidative damage pathway, potentially representing key genes in African-American
esophageal squamous carcinogenesis. Loss of activity of drug metabolizing enzymes would confer increased sensitivity
of esophageal cells to xenobiotics, such as alcohol and tobacco smoke, and may account for the high incidence and
aggressiveness of ESCC in this ethnic group. To determine whether certain genes are uniquely altered in
African-American ESCC we performed a meta-analysis of ESCC expression profiles in our African-American
samples and those of several Asian samples. Down-regulation of TP53 pathway components represented the
most common feature in ESCC of all ethnic groups. Importantly, this analysis revealed a potential distinctive
molecular underpinning of African-American ESCC, that is, a widespread and prominent involvement of the
NRF2 pathway.

Conclusion: Taken together, these findings highlight the remarkable interplay of genetic and environmental
factors in the pathogenesis of African-American ESCC.

Keywords: mRNA expression, Microarray, Down-regulated genes, Up-regulated genes, Pathway analysis,
Targeted therapy

* Correspondence: robert.wadleigh@va.gov

YInstitute for Clinical Research, Department of Veteran Affairs Medical Center
(VAMC), Washington, D.C, USA

’Oncology Section, Washington DC VAMC, 50 Irving St. NW, Washington DC
20422, USA

Full list of author information is available at the end of the article

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-017-3423-1&domain=pdf
mailto:robert.wadleigh@va.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Erkizan et al. BMC Cancer (2017) 17:426

Background

Esophageal cancer is the third leading gastrointestinal
malignancy worldwide with greater incidence in males
than in females. Patients with esophageal cancer (EC)
show limited response to multimodal treatments with an
overall five-year survival rate of only about 20% [1]. Due
to lack of effective screening for early detection, EC is
usually diagnosed at an advanced stage or when metastasis
has already occurred. Consistently reliable molecular
markers to monitor outcomes remain to be developed [2].

Esophageal cancer has two main histologic subtypes
and they arise in two distinct areas of the esophagus.
Adenocarcinoma of the esophagus (EAC) is mostly seen
in Western countries [3] while esophageal squamous cell
carcinoma (ESCC) is predominant in Eastern countries
and the eastern part of Africa [3]. Geographical and
genomic differences play a significant role in ESCC [4].
In African-Americans, ESCC is the predominant sub-
type, and the survival rate is worse than in patients of
other ethnic groups [5].

The combined action of genetic and environmental
factors is believed to underlie the etiology of esophageal
cancer. Recent genome-wide association studies, gene
expression profiling, DNA methylation and proteomic
studies conducted in Japanese and Chinese ESCCs
(reviewed in [6]) have identified multiple risk variants
and gene signatures associated with ESCC. These studies
presented additional evidence for the effect of environ-
mental exposures such as alcohol intake, smoking,
opium abuse, hot food and beverage consumption, and
diet as risk factors for ESCC [3, 7-11].

Genetic and transcriptome analyses on African-
American ESCC have been particularly limited which
highlights the lack of understanding of the genetic archi-
tecture of ESCC in this ethnic group. In an earlier study
of black male ESCC samples, we detected loss of hetero-
zygosity that spanned a significant portion of chromo-
some 18 [12]. To explore the entire anatomy of the
neoplastic genome in black ESCC, we performed com-
parative genomic hybridization (CGH) on a panel of 17
matched pairs of tumor and control esophageal tissues
[13]. Multiple chromosomal gains, amplifications and
losses that represent regions potentially involved in etio-
logy defined the pattern of abnormalities in the tumor
genome [13]. We noted genomic imbalances that were
represented disproportionately in African-American
ESCC compared to those reported in ESCC of other
ethnic groups including Japanese [14—18], South African
black and mixed-race individuals [19], Taiwan Chinese
[20], Hong Kong Chinese [21], Chinese in Henan pro-
vince [22], and Swedes [23].

The preponderance of chromosomal aberrations in
African-American ESCC predicts concomitant changes
in gene activity during carcinogenesis. We sought to
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identify dysregulated genes and pathways that could
define the expression signature in African-American
ESCC by conducting microarray expression profiling in
paired squamous esophageal tumors and normal tissue
specimens. Here, we report significant differential ex-
pression of a wide array of genes involved in multiple
pathways that may be crucial to causation and/or pro-
gression. Particularly noteworthy is the dysregulation of
NRF2 mediated oxidative stress genes and genes that en-
code drug-metabolizing enzymes and xenobiotics that
may, in part, contribute to the aggressive nature of
ESCC among blacks.

Methods

Samples

Seven paired specimens of the esophagus (tumor and
matching non-tumor tissues), each pair derived from the
same patient, were collected endoscopically or surgically
at the time of diagnosis, frozen and stored at -80 °C until
use. Staging indicated that all tumors included in this study
were at Stage IV. This study was done under a protocol
approved by the Washington D.C. VAMC Institutional
Review Board and a written informed consent was ob-
tained from each patient prior to biopsy or surgery. The
demographics and risk factors of the patients are listed in
the Additional file 1.

RNA extraction

Tissue samples were subjected to total RNA extraction
using TRIzol-reagent (Invitrogen, Carlsbad, CA) and
purified with RNeasy Mini kit (Qiagen), according to the
manufacturer’s guidelines. The concentration of each
RNA sample was determined by NanoDrop spectropho-
tometer ND-1000 (NanoDrop Technologies, Wilmington,
DE). RNA quality was assessed using the Agilent 2100
Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA).

cRNA preparation and expression profiling

An aliquot of 5 pg of high-quality total RNA from each
sample was used to synthesize ¢cDNA and biotinylated
cRNA utilizing the Affymetrix GeneChip® Expression
3’Amplification One-Cycle Target Labeling and Control
Reagent kit according to manufacturer’s instructions.
Biotinylated cRNA was hybridized to Affymetrix Gene-
Chips HG U133 Plus 2 (Affymetrix, Santa Clara, CA),
washed, stained on the Affymetrix Fluidics station 400
and scanned with a Hewlett Packard G2500A Gene
Array Scanner following Affymetrix instructions. All ar-
rays used in the study passed the quality control set by
Tumor Analysis Best Practices Working Group [24].

Microarray data analysis
The Affymetrix scanner 3000 was used in conjunction with
Affymetrix GeneChip Operation Software to generate one.
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CEL file per hybridized cRNA. These files have been de-
posited in NCBI Gene Expression Omnibus (GEO)
(www.ncbinlm.nih.gov/geo/) under the GEO accession
number of GSE77861 and are freely available for download.

The Affymetrix Expression Console was used to
summarize the data contained across all .CEL files and
generate 54,675 RMA normalized gene fragment expres-
sion values per file. Quality of the resulting values was
challenged and assured via Tukey box plot, covariance-
based PCA scatter plot, and correlation-based heat map
using functions supported in “R” (www.cran.r-project.org).
Lowess modeling of the data (CV ~ mean expression) was
performed to characterize noise for the system and define
the low-end expression value at which the linear relation-
ship between CV and mean was grossly lost (expression
value = 8). Gene fragments not having at least one sample
with an expression value greater than this low-end value
were discarded as noise-biased. For gene fragments not
discarded, differential expression was tested between
Tumor and Non-tumor biopsies via paired t-test under
Benjamini—-Hochberg multiple comparison correction
condition (alpha = 0.05). Gene fragments having a cor-
rected P < 0.05 by this test and an absolute difference of
means > = 1.5X were subset as those having differential
expression between Tumor and Non-Tumor. Gene anno-
tations for these subset fragments were obtained from IPA
(www.ingenuity.com) along with the corresponding
enriched functions, enriched pathways, and significant
predicted upstream regulators. The analysis pipeline is
summarized in the Additional file 2.

Validation of results by real-time PCR

RT-PCR was performed for KRT17, PRDCSH, TNFRSF6B,
SELK, RAB5B, ALD, RAF genes. The delta-delta Ct cal-
culation method was used for the quantification of the
RT-PCR results.

Pathway analysis

Ingenuity Pathway Analysis (IPA) (Qiagen- Build version
364,062 M, Content version 26,127,183) was used to de-
termine perturbed pathways. In addition, we performed
IPA to identify perturbed pathways affected in ESCC
from different ethnic groups by utilizing publicly avai-
lable datasets of ESCC mRNA expression microarrays
including GSE17351 [25], GSE20347 [26], GSE23400
[27], GSE29001 [28], GSE33426 [28], GSE33810 [29] and
GSE45670 [30] from the GEO repository (http://
www.ncbi.nlm.nih.gov/geo/). The characteristics of these
studies such as sample size, tissue storage, and control
tissue type are presented in the Additional file 3. The
differentially expressed gene lists were obtained by the
analysis with GEO2R (http://www.ncbi.nlm.nih.gov/geo/
geo2r/). The p-values were adjusted with Benjamini and
Hochberg correction.
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Results

Transcriptome profiling of African-American ESCC tu-
mors versus adjacent normal esophageal tissues revealed
significant differential expression of 756 genes comprising
340 over-expressed and 416 under-expressed loci that
were detected by 460 and 558 gene probes, respectively
(Additional file 4). A volcano plot displayed genes that
underwent the highest alteration in expression (Fig. 1a).
Among the most strongly up-regulated genes are keratin
17 (KRT17), immunoglobulin genes including /JGHGI and
ornithine decarboxylase 1 (ODCI). Genes that showed a
huge loss of expression included cysteine-rich secretory
protein 3 (CRSP3) and sciellin (SCEL). Experimental vali-
dation of microarray results through a real-time PCR
assay on RNA derived from the same original samples for
selected up-regulated (KRT17, PRDCSH, TNFRSF6B) and
down-regulated (SELK, RABSB, ALD, RAF) genes sup-
ported the microarray data (data not shown).

Principal component analysis of differentially expressed
genes indicated the magnitude of the co-variance between
paired tumor and non-tumor samples of each patient
(Fig. 1b). The first principal component contributed
57.9% of the variance among the samples. Correlation-
based clustering of all differentially expressed genes
distinguished clearly tumor from the corresponding
non-tumor tissues (Fig. 1c).

Perturbed pathways and networks in African-American
ESCC

To determine the overall biological impact of the wide-
spread transcriptional aberration in African-American
ESCC, we performed pathway and network analysis on
significantly dysregulated using Ingenuity Pathway Analysis
(IPA). The majority of differentially expressed genes
encoded a diversity of enzymes (Fig. 1d). Genes that coded
for transporters, transcription regulators, phosphatases,
translation regulators, ion channels and transmembrane
receptors were among those that were most prominently
down-regulated (Fig. 1d).

IPA detected the enrichment of 25 networks (Fig. 2,
Additional file 5), 14 of which were interconnected.
Networks 20, 21, and 22 displayed linkage to at least
five other networks representing the highest number
of interconnections. The cell cycle and organismal in-
jury and abnormalities were the constituent pathways
of network 20. Network 21 included carbohydrate and
lipid metabolism and molecular transport, and net-
work 22 comprised cell death and survival pathways.
(The complete list of genes in these networks is pre-
sented in Additional file 5).

Fifteen canonical pathways were significantly enriched
in African-American ESCC and the top three included
NRF2-mediated oxidative stress pathway, integrin signal-
ing and protein ubiquitination, in that order (Fig. 2b,


http://www.ncbi.nlm.nih.gov/geo
http://www.cran.r-project.org/
http://www.ingenuity.com
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/

Erkizan et al. BMC Cancer (2017) 17:426 Page 4 of 13

a A IGHG1 b
]
o KRT17 < °]
° 2808 A QN
= © o
S | Y Ve e ~
o § S
3 g
2 a o
® o £ o
= S
I} O -
o T o
g - £ .
- Observed Difference E N
A Significantly UP (n=340) < Non-Tumor
O No difference (n=9978) ™ Tumor
o < Significantly Down (n=416) c|>'-
0 50 5 10 15 030 028 -026 024 022
Fold Change Principal Component 1 (57.9%)
(9 Color ke

8 91011121314
Expression

u) sjuswbelq suag passaldx3 Ajenuaiayiq

Y Y
Tumor Non-Tumor

(952

# Differentially Expressed Gene Fragments

Fig. 1 Gene expression differences observed between paired Esophageal Tumor and Non-Tumor biopsies for seven patients. a Volcano Plot
depicting the differential expression testing results for 10,734 gene fragments. Gene fragments having significant difference in expression
between Tumor and Non-Tumor where the magnitude of difference is also > = 1.5X are represented as triangles (n = 756). b Covariance-
based Principal Component Analysis (PCA) scatter plot depicting the paired sample relationships when the 756 gene fragments identified to
have significant difference in expression between Tumor and Non-Tumor are used. ¢ Correlation-based clustered heat map depicting the
sample relationships (x-axis) when the 756 gene fragments identified to have significant difference in expression between Tumor and
Non-Tumor (y-axis) are used. d Bar plot describing the breakdown of the 756 gene fragments identified to have significant difference
in expression between Tumor and Non-Tumor by protein type (where known).

Additional file 6). The gene constituents of these path-  Activation of NRF2 perturbs stress response and

ways are presented in Additional file 7. These results detoxification pathways in ESCC

suggest that African-American ESCC is underpinned by  Enriched pathways involving stress response, xenobiotic
a dysregulation of genes that play an important role in  metabolism, and toxic response are noteworthy because
oxidative stress and xenobiotic metabolic responses. smoking and alcohol consumption have been consistently
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Fig. 2 Ingenuity Pathway Analysis (IPA) of ESCC. a Interconnected canonical pathways. Pathway 20 (injury and abnormalities and cell cycle),
pathway 21 (carbohydrate and lipid metabolism, and molecular transport), and pathway 22 (cell death and survival pathways) serve as hub for
interconnected canonical pathways. b The enriched canonical pathways in ESCC by IPA. The most enriched pathways represented the higher
—log(p-value). The white bar represents the genes that do not overlap with the data set. Green bar represents genes that are down-regulated

and red bar represents genes that are up-regulated. The gray bar demonstrates the genes without any change in expression.

shown to be strong contributing factors in ESCC etiology.
It was therefore important to focus on pathways involved
in detox networks.

The NRF2-mediated oxidative stress response pathway
showed the highest enrichment (with a —log(p) of 6.25),
in general, and in the toxicology panel as well (Fig. 3).
NRF2 pathway is one of the primary mediators of de-
toxification and metabolism responses. Transcriptional
targets of NRF2 include genes involved in alcohol
metabolism such as ADH7, AKRIB1, ALDH3A1, and
ALDH7A1, all of which are differentially expressed in
our dataset (Additional file 8). Other targets that showed
altered expression in African-American ESCC include
genes with a wide range of function: MGST2, ABCC],
ABCCS, GCLC GPX4, ACOX1, BLVRA, FTL1, CEBPB,
ACLY, ELOVLS, FABP5, ACAAIB.

IPA predicted that 19 upstream regulators are activated
in our dataset (Table 1 and Additional file 9). Nuclear
factor-erythroid 2 p45-related factor 2 gene, NFE2L2, a
known upstream regulator of the NRF2 pathway was pre-
dicted to have the highest activation z-score of 3.796,
followed by MEK, LDL, and CTNNB1 pathways, with
decreasing z-scores. In addition, MYC was predicted to be
an activated upstream regulator (Additional file 9).

The TP53 regulatory pathway was predicted to be the
most inhibited with a z-score of -3.113 and a p-value of
4.05E-19 (Table 1). In our sample, 99 differentially
expressed genes were downstream of the TP53 pathway
(Additional file 10). Inhibition of the TP53 pathway is a
hallmark of carcinogenesis and is predicted in our ESCC
dataset, as well.

Functional meta-analysis of gene expression of ESCC in
diverse ethnic groups

To determine whether African-American ESCC impli-
cates genes that are unique or shared by ESCC of other
ethnic groups, we performed a meta-analysis that in-
cluded our African-American ESCC expression data and
data from seven studies published in publicly available
datasets in the GEO database. We note that our expres-
sion profiling data is the first such study in African-
American ESCC to be deposited in the GEO repository.
ESCC expression profiles in GEO included those gene-
rated in Japan (GSE17351) [25], Hong Kong, China
(GSE33810) [29] and from various parts of China
(GSE23400 [27], GSE20347 [26], GSE45670 [30],
GSE33426 [28], and GSE29001 [28]). Ten genes that
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Fig. 3 The toxicology chart summarizes the enrichment of detoxification pathways enriched in our dataset by IPA. Ingenuity Pathway Analysis
(IPA) identified NRF2-mediated oxidative stress response pathway as the most enriched toxicology pathway. Blue bar represent —log(p-value)

and the ratio is the number of genes characterized in the dataset compared to the total number of genes belonging to that pathway

underwent the highest changes in expression in these
studies are listed in the Additional file 11. Of the up-
regulated genes, KRT17 was over-expressed in two other
studies, the rest of the up-regulated genes were ornithine
decarboxylase 1 (ODC1), Profilin 2 (PFN2), Glycoprotein
Nmb (GPNMB). Six out of 10 down-regulated genes
(CRISP3, TMPRSS11B, CLCA4, SCEL, SLURPI, KRT78)
were shared with four other studies.

Analysis of the functional outcome of expression
profiles from all microarray studies showed that
NRF2-mediated oxidative stress pathway was signifi-
cantly enriched only in our dataset (Fig. 4). Likewise,
the significant enrichment of ubiquitination, androgen,
and B- cell receptor signaling pathways was revealed
only in our dataset. Integrin, ephrin receptor and pro-
tein kinase A signaling pathways were shared by at
least two or more studies at or above the significance
threshold.

It was important to examine the dysregulation of gen-
etic components of the detox networks in the ESCC
microarray expression datasets. All studies showed en-
richment of toxicology pathways than other signaling
pathways (Fig. 5). Interestingly, our dataset contained
the highest number of genes in the NRF2-mediated oxi-
dative stress response pathway while in other studies this
number was either at or below the significance thres-
hold. Aryl hydrocarbon receptor, fatty acid metabolism,
xenobiotic metabolism signaling, G2/M DNA damage
checkpoint regulation and cell death genes were sig-
nificantly perturbed in all studies. In our dataset
(GSE77861) and in GSE23400 [27], the number of genes
in retinoic acid receptor signaling was above the signifi-
cance threshold.

Meta-analysis of the upstream regulatory pathways of
ESCC in various ethnic groups

Meta-analysis of all available ESCC gene expression pro-
file datasets showed a distinctive upstream regulatory
pathway in African-Americans that highlighted a sig-
nificant enrichment of the NRF2 mediated oxidative
stress response pathway (Table 1). The activated path-
ways such as CBX5, insulin, MEK, NFE2L2, ANXA7,
HSF2, NFE2L1, and PLIN5 were either uniquely repre-
sented in our study or shared with only one other study.
Six out of eight datasets predicted the activation of up-
stream pathways of E2F and RABL6 although the ran-
kings of z-score of these pathways were diverse (Table 1
and Additional file 9). FOXM1 was also projected as one
of the common activated upstream pathways. Regardless
of the z-score rankings, the activation of angiopoietin 2
pathway is the third highly represented upstream path-
way in five of the studies (Additional file 9). The acti-
vation of fibronectin, and beta-catenin pathways as
upstream regulators was revealed in five studies that
included ours.

The predicted inhibited upstream pathways were diver-
gent among the studies. While the TP53 pathway was pre-
dicted to be the top inhibited pathway in our study, the
most common inhibited pathways including CDKNI1A,
IRF4, KDM5B, ACKR2, BNIP3L, DYRKIA were found in
all datasets except in our study. In contrast, our dataset
exclusively demonstrated the inhibition of FGFRI,
ESRRA, EHF, and IL13 pathways.

Discussion
ESCC is the predominant esophageal carcinoma subtype
worldwide occurring in specific geographic areas and in
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Table 1 Comparison of the predicted upstream regulatory pathways in ESCC

GSE77861 GSE17351 GSE33810 GSE20347

Gene z-score -log(p) Gene z-score -log(p) Gene z-score -log(p) Gene z-score -log(p)
NFE2L2 3.8 75 NUPR1 47 10.1 mir-8 26 12 RABL6 58 26.7
MEK 2.7 1.2 CLDN7 39 79 let-7 26 03 FOXM1 44 14.2
LDL 2.8 0.5 MYOCD 38 6.0 LYN 24 06 IgG complex 37 219
CTNNB1 26 16 NR3C1 3.7 42 ILTORA 23 1.0 MITF 35 158
RABL6 25 2.1 IRGM1 35 70 TRIM24 24 0.1 FOXO1 34 1.3
FOXM1 24 12 BNIP3L 34 82 miR-1-3p 2.2 08 RARA 33 16.2
CBX5 23 24 RBL2 32 48 IFI16 2.2 04 TLR7 33 42
ANGPT2 23 23 TP53 32 211 /BTB16 2.2 20 PRL 33 8.1
PLINS 2.2 2.2 IL1RN 3.1 43 miR-10 2.2 04 IFNL1 32 10.0
ANXA7 2.2 24 SRF 30 57 CDKN2A 2.1 0.1 TGFB1 3.2 46.3
TP53 -3.1 184 CSF2 -56 9.3 ERBB2 -32 82 TP53 =53 38.7
IL13 -3.0 0.7 RABL6 —4.1 89 SHH -3.1 7.8 NUPR1 —44 19.5
CDKN2A -30 26 SPP1 -4 53 IGFBP2 =31 7.5 SPDEF -4.0 87
CD28 -2.8 20 EGFR -38 14.0 TGFB3 =29 7.5 KDM5B -34 126
EHF =25 23 ERK1/2 -38 9.2 ERG =29 7.0 HSF1 -33 6.7
CLDN7 -24 39 EGF =37 9.9 CCTNB1 =27 7.1 CDKNTA -33 9.5
let-7 -22 0.5 HGF =36 17.1 CREB -26 1.7 CLDN7 =31 6.7
ESRRA -22 14 TNF -34 39 WNT1 =25 06 BTK -29 50
TCF3 =20 0 E2F1 -34 79 CCND1 =25 29 WISP2 =29 86
FGFR1 =20 0.8 FN1 -34 47 ERG2 =25 09 E2F6 -28 43

GSE29001 GSE33426 GSE45670 GSE23400

Gene z-score -log(p) Gene z-score -log(p) Gene z-score -log(p) Gene z-score -log(p)
RABL6 58 252 TGFB1 7.7 429 TNF 53 240 CSF2 50 144
HGF 5.7 39.5 TNF 7.2 15.1 ERBB2 49 213 RABL6 4.7 19.7
VEGF 53 32.7 VEGF 70 15.0 CSF 42 48 VEGF 44 323
FOXM1 50 194 HGF 6.9 220 EGFR 39 13.6 HGF 42 388
CSF2 50 30.7 ESR1 6.9 420 IFNL1 38 58 FOXM1 4.0 16.0
E2F1 46 28.1 EGF 6.5 120 IFNG 3.7 21.3 ESR1 39 311
TBX2 44 13.0 CSF2 6.5 14.0 CCND1 37 185 ERBB2 37 564
E2F group 4.2 15.8 CTNNBI1 6.3 13.0 ILTA 36 155 FN1 3.7 7.5
IFNA1 3.7 6.4 SMARCA4 6.2 11.0 RABL6 36 5.1 TBX2 36 122
IFNL1 36 13.0 IFNG 59 15.0 OSM 35 15.6 EGF 34 326
NUPR1 -6.2 156 let-7 -6.0 19.0 GATA4 -4.8 1.6 TP53 =52 530
let-7 =50 17.0 cD3 =51 15.0 ILTORA —4.3 74 CDKN2A —4.3 10.5
KDM5B —4.5 10.7 SPDEF —4.2 8.0 MYOCD -39 11.2 let-7 -39 16.0
IRGM —4.5 14.8 KDM5B —4.1 7.5 ILTRN -36 8.1 RB1 -38 17.7
TP53 —4.2 54.2 IRGM1 -4.0 9.0 IRGM1 =35 6.5 NR3C1 -35 79
SPDEF —4.1 102 TRIM24 -49 4.0 HAND2 -33 57 SPDEF -34 8.5
RBL2 -4.0 13.7 RB1 -39 14.0 SRF -33 1.1 PPARG -33 13.0
BNIP3L -4.0 173 RBL2 -39 7.2 ACKR2 -32 53 let-7a-5p -33 43
CDKN2A -39 7.3 ILTRN -38 2.2 PTEN -3.2 50 IRGM1 -3.2 7.2
TRIM24 -3.8 182 CD28 -36 8.2 POUSF1 -3.0 24 CR1L -3.1 8.9

The upstream regulatory pathways represented more than one study in the meta-analysis indicated in bold
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various countries including China, Japan, Iran, Italy and
France [8, 31]. In the United States, a high incidence of
ESCC has been reported in the District of Columbia and
coastal areas of the southern states [32]. ESCC occurs at
a 5-fold greater frequency among African-Americans
than among white Americans while the converse has
been observed for EAC [7, 33]. Even though five-year
survival rates increased in both whites and black bet-
ween 2004 and 2010, the mortality rate for esophageal
carcinoma is still far greater in blacks than among
whites [33-35]. Notably, in recent years, an increased
incidence of EAC has been observed, particularly among
whites [1, 34]. Altogether, these distinctive features in-
dicate geographic and racial disparities in esophageal
cancer [31].

We conducted a transcriptome analysis to identify the
molecular repertoire involved in esophageal squamous
cell carcinoma in African-American males. To our
knowledge, this study is the first to investigate and
analyze the global gene expression pattern of stage IV
ESCC in African-Americans.

Heavy alcohol consumption, cigarette smoking, and
poor diet are environmental risk factors for ESCC. Our
findings in African-American ESCC reveal dysregulation
of genes involved in detox networks, including NRF2
pathway, which is a primary mediator of detoxification
and metabolism responses (Additional file 5) [36]. Nuclear
factor-erythroid 2 p45-related factor 2 (NFE2L2) gene en-
codes a transcription factor NRF2 that regulates the tran-
scription of antioxidant/electrophile response element
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(ARE)-containing target genes in response to oxidative
and/or toxic environmental changes. The NRF2 pathway
also regulates wound healing, resolution of inflammation,
autophagy, ER stress response and unfolded protein re-
sponse [37], apoptosis, differentiation of keratinocytes [38]
and the embryonic development of the esophagus in re-
sponse to growth factor-induced ROS production [39, 40].

The role of NRF2 pathway is cancer-type dependent.
NRF2 protects against chemical carcinogen-induced car-
cinogenesis in the stomach, bladder and skin [41]. How-
ever, NRF2 activation plays an oncogenic role in lung,
head and neck, ovarian and endometrial cancers [41].
Previous studies conducted in Asian samples demon-
strated that higher expression of NRF2 is positively cor-
related with lymph node metastasis and drug resistance

in ESCC [42]. Mutations in NFE2L2 confer malignant
potential and resistance to therapy in advanced ESCC
[43]. However, only 10% of Asian ESCC carry mutations
in the NFE2L2 gene or its negative regulator KEAPI
[44]. Consistent with this data, our meta-analysis of gene
expression profiles only showed a modest involvement
of NRF2 in toxicology pathways in Asian ESCC datasets.
IPA demonstrated the enrichment of NRF2 pathway in
ESCC with high confidence in our dataset, suggesting a
unique molecular signature of African-American ESCC.
The significance of NRF2 pathway in African-American
ESCC merits further functional evaluation.

In our CGH data, we previously found a loss of 7q
in >50% of ESCC from African-American males [13].
Transcriptome mapping identified four genes located
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in the 7q21.1-22.3 region among which is the cyto-
chrome P450 gene cluster that includes CYP3AS,
CYP3A7, CYP3A4, and CYP3A43. It is noteworthy
that our analysis indicates a significant loss of expres-
sion of CYP3AS5 in addition to the down-regulation of
three other genes that encode cytochrome P450 en-
zymes. It is well established that CYP3A enzymes
metabolize more than half of the drugs used clinically
[45]. Cytochrome P450 enzymes are also active in
metabolizing toxic compounds thus their loss poten-
tially contributes to carcinogenesis.

The persistent metabolic imbalance and tumor pro-
moters found in cigarette smoking activate growth-
promoting, cancerous conditions. Thus, the continual
activation of NRF2 pathway could provide an adaptation
mechanism to environmental toxicant especially in can-
cers [37]. Aryl hydrocarbon signaling, fatty acid, and
xenobiotic metabolism also share some of the proteins
that function in the NRF2 pathway. Therefore, the effect
of the dysregulated NRF2 pathway may amplify the im-
pairment of the dynamics of these pathways. In addition
to response to toxins, NRF2 might promote cell prolife-
ration of cancer cell by reprogramming metabolism to
anabolic pathways [46]. However, further studies are re-
quired to investigate the causal association of NRF2
pathway in the esophageal tumor development in
African-Americans. Future genomic studies are impor-
tant to evaluate the mutational spectra of NFE2L2 or
KEAPI in African-American ESCC.

Recent studies that outlined the genomic and mole-
cular characterization of esophageal carcinoma in the
Asian population suggested the dysregulation of the re-
ceptor tyrosine kinase (RTK)-MAPK-PI3K, NOTCH,
Hippo, cell cycle, and epigenetic pathways as the primary
molecular mechanism of ESCC [44, 47]. The amplifica-
tion or over-expression of FGFRI, MET, EGFR, ERBB2,
ERBB4, and IL7R was observed in the majority of the pa-
tients and has been suggested as main drivers for the
ESCC tumorigenesis [47]. Our meta-analysis of ESCC
expression datasets indicated that the activation of
growth factors and or their receptors, RABL6, FOXM]1,
CCND1, and CTNNBI are upstream signaling drivers of
the cellular growth of ESCC.

The upstream regulatory role of RABL6 was predicted
in six out of eight ESCC datasets. RABL6 gene encodes a
member of the Ras superfamily of small GTPases. The
encoded protein RABL6, also known as RBEL or PARF,
binds to both GTP and GDP and may play a role in cell
growth and survival. Overexpression of this gene may
play a role in breast, and pancreatic cancer tumorige-
nesis [48—50]. Functional analysis of RABL6 in ESCC
warrants further study.

The most common inhibited upstream regulatory
pathways are TP53 and KDM5B across most of the
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ESCC datasets. Studies have shown that TP53 negatively
regulates NRF2-mediated gene expression [51]. The
down-regulation of TP53 could synergistically sustain
the activation of NRF2 seen in African-American ESCC.
We previously identified a single nucleotide mutation of
SCEL gene in both normal and squamous cell carcinoma
of esophagus in African-Americans [52]. In our present
study, SCEL is significantly under-expressed in African-
American ESCC, and thus could play a role in squamous
cell carcinogenesis as suggested by the down-regulation
of this gene in larynx and hypopharynx [53], and in
tongue squamous cell carcinoma [54].

The diversity among the inhibited upstream pathways
implies the variety of susceptibility loci remain to be dis-
covered in ESCC tumorigenesis, particularly the contri-
bution of the deregulation of immune components.
Given the differences in enriched pathways displayed by
ESCC in various ethnic groups, it is possible that diffe-
rent genetic backgrounds have dissimilar responses to
various environmental exposures. [55, 56].

Conceivably, our findings unmasked only a restricted
view of the processes that are compromised in ESCC
given the inherent limitations of microarray-based tran-
scriptome profiling, the small sample size that was ana-
lyzed and incomplete modeling of biological reactions
due to lack of functional data. However, the present
study uncovered salient mechanistic aspects of the squa-
mous esophageal cellular system in African-Americans,
which to our knowledge, have not been described
previously.

Conclusion

Our expression profiling study and pathway analysis sug-
gest a widespread and prominent disruption of detox
networks as revealed by the involvement of the NRF2
pathway and loss of detoxifying enzymes as a potential
distinctive molecular mechanism in African-American
esophageal squamous cell carcinogenesis.
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