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Abstract

Background: miRNAs exert their effect through a negative regulatory mechanism silencing expression upon
hybridizing to their target mRNA, and have a prominent position in the control of many cellular processes
including carcinogenesis. Previous miRNA studies on retinoblastoma (Rb) have been limited to specific miRNAs
reported in other tumors or to medium density arrays. Here we report expression analysis of the whole miRNome
on 12 retinoblastoma tumor samples using a high throughput microarray platform including 2578 mature miRNAs.

Methods: Twelve retinoblastoma tumor samples were analyzed using an Affymetrix platform including 2578
mature miRNAs. We applied RMA analysis to normalize raw data, obtained categorical data from detection call
values, and also used signal intensity derived expression data. We used Diana-Tools-microT-CDS to find miRNA
targets and ChromDraw to map miRNAs in chromosomes.

Results: We discovered a core-cluster of 30 miRNAs that were highly expressed in all the cases and a cluster of 993
miRNAs that were uniformly absent in all cases. Another 1022 miRNA were variably present in the samples
reflecting heterogeneity between tumors. We explored mRNA targets, pathways and biological processes affected
by some of these miRNAs. We propose that the core-cluster of 30 miRs represent miRNA machinery common to all
Rb, and affecting most pathways considered hallmarks of cancer. In this core, we identified miR-3613 as a potential
and critical down regulatory hub, because it is highly expressed in all the samples and its potential MRNA targets
include at least 36 tumor suppressor genes, including RB1. In the variably expressed miRNA, 36 were differentially
expressed between males and females. Some of the potential pathways targeted by these 36 miRNAs were
associated with hormonal production.

Conclusion: These findings indicate that Rb tumor samples share a common miRNA expression profile regardless
of tumor heterogeneity, and shed light on potential novel therapeutic targets such as mir-3613 This is the first work
to delineate the miRNA landscape in retinoblastoma tumor samples using an unbiased approach.
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Background

MicroRNAs (miRNAs) are key biologic regulators,
structurally they are small non-coding RNA sequences
(22-25 nucleotides) that are complementary to spe-
cific 3'-UTR mRNAs. Their function once hybridized
to their target is to silence the target mRNA through
cleavage of the molecule or inhibiting translation.
These negative regulatory mechanisms gives miRNAs
a prominent position in the control of many cellular
processes, including carcinogenesis; miRNAs are esti-
mated to regulate posttranscriptional expression of
approximately 70% of human genes. High throughput
miRNAs expression profiles are more sensitive for
discriminating different human tissues including dif-
ferent types of cancer than mRNA profiles. MiRNAs
expression profiles also change with progressive stages
of tumor development, and have been proposed as
potential useful biomarkers for cancer. These changes
in miRNA profiles have also been proposed as poten-
tial markers that can provide an opportunity and
serve to dissect and improve our understanding of
cellular functions and gene networks involved in can-
cer related clinical processes such as response to
treatment [1-3].

Retinoblastoma (Rb) is an intraocular malignancy of
early childhood and is a robust model of heritable
predisposition to developing cancer [4]. Even though
retinoblastoma is a rare tumor, its study has led to the
understanding of critical molecular mechanisms in can-
cer development. Several miRNAs have been studied in
Rb, including some studied initially in other malignan-
cies. One such example is oncomir 1 also known as
cluster-17-92, a potent oncogenic cluster previously
studied in B-cell lymphomas, lung carcinoma, and pros-
tate cancer, and found to be expressed in Rb [2, 5-7].
Studies in retinoblastoma cell lines examined miRNAs
involved in specific process such as hypoxia in Rb, and
proposed miR-181b, miR-30c-2, miR-125-3p, miR-497
and miR-491-3p as hypoxia regulated miRNAs [8].
MiRNA profiles obtained with low and medium density
arrays have also been used to compare Rb tumor with
normal retina in order to find differentially expressed
miRNAs and to identify deregulated pathways between
tissues [9-12].

While approximately 40 miRNAs have been described
in Rb, reports have not examined whether reported miR-
NAs are uniformly expressed in all or most cases [13].
This is relevant because tumors are not homogeneous;
they display both intra and inter tumor heterogeneity
[14, 15]. While examination of tumor heterogeneity has
been directed largely towards intra tumoral heterogeneity,
inter tumoral heterogeneity has scarcely been addressed.
Analysis of complete intra tumoral heterogeneity and
subclonal architecture from human primary tumors is
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particularly challenging in retinoblastoma, because of lim-
ited tumor volume and because diagnostic constraints
preclude sampling of multiple tumor sites. Nonetheless
expression profiles provide the opportunity to improve
our understanding of miRNAs in Rb by permitting inter
tumoral heterogeneity to be taken in to account. In this
context, we can address unanswered questions such as to
what extent are tumors similar and different between
patients in terms of miRNA expression? or what is the
miRNA machinery that defines Rb and is shared between
tumors from different patients? And which miRNAs are
similarly or differentially expressed in different patients?

To address these questions, we determined the
miRNA profiles of tumor tissues from 12 children with
Rb using a high density microarray platform which
included 2578 mature miRNAs. Using the detection call
algorithm as an ‘expressed’ or ‘non-expressed’ dichoto-
mized score for each miRNA in the array, we first gener-
ated a simplified miRNome landscape map of expressed
and non-expressed miRNA in Rb. We identified 142
miRNAs present in all samples, and within these a cen-
tral core of 30 miRNAs that were uniformly highly
expressed. We also identified 993 miRNAs that were
uniformly absent in all samples and 1022 miRNAs that
were present in only some of the samples. We explored
the targets and gene networks affected by miRNAs that
were uniformly or variably expressed, using unsuper-
vised clustering tools combined with clinical descriptors
in order to examine the potential significance of the
identified clusters. With this unbiased approach, we
found miRNAs that had not previously been recog-
nized to be involved in Rb. Our findings also reveal
the magnitude and complexity of tumor heterogeneity
in terms of miRNA expression and highlight some of
the biological processes that are negatively regulated
by these miRNAs.

Methods

Primary cultures

Tumor samples were obtained from 12 patients who
were treated with enucleation prior to receiving any
adjuvant radiation or chemotherapy. These were
cultured in RPMI medium supplemented with 12% FBS
for a week, using growth conditions reported for the
retinoblastoma cell line Y79. All samples were collected
after obtaining parental written informed consent, for
participation in a larger IRB approved case-series study
[16, 17] involving patients at the Hospital de Pediatria,
Instituto Mexicano del Seguro Social (IMSS) and
Hospital Infantil de México Federico Gémez Secretaria
de Salud in Mexico City. The patient corresponding to
T1 had a positive family history for Rb, while all other
patients had sporadic Rb.
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RNA isolation

Total RNA was isolated from the primary cultures using
TRI-zol® (Invitrogen, CA, USA) reagent and was then
solubilized in nuclease free water. RNA was quantified
using a Nanodrop (Thermo fisher Scientific, USA) spec-
trometer and its quality was confirmed by electrophor-
esis using 1.5% agarose stained with SYBR® safe (Thermo
fisher Scientific, USA). We divided RNA in 200 ng
aliquots and stored at 70 °C until use. We amplified
miR-16 using stem-loop specific miRCURY LNA™
oligonucleotides in several randomly chosen samples to
ensure that the RNA isolated was informative.

Labeling and tailing samples for microarrays

Total RNA was tailed and biotinylated using Affymetrix
Flash-tag biotin for miRNAs microarray (Affymetrtix,
USA) and spike-in control probes were added according
to manufacturer instructions. Briefly, poly-A tailing on
the 3’end was carried out at 37 °C in a 15 pl reaction
volume containing 1x reaction buffer, MnCl, 25 mM,
1 pl of 1:50 ATP mix and 1 pl of phosphatidic acid phos-
phatase (PAP) polymerase. The biotin was incorporated
to these poly-A tails at 25 °C after adding 4 pl of ligation
mix containing biotin and 2 pl of T4 DNA ligase,
yielding a total of 21 pl. An Enzyme Linked Oligosor-
bent assay (ELOSA) was performed to confirm biotin
labeling.

miRNAs microarrays

Hybridization cocktails were added to labeled samples
containing 2X hybridization mix, 27% formamide,
DMSO, 20x of hybridization control probes and nucle-
ase free water. Each sample was injected in a GeneChip®
miRNA 4.0 array and hybridized at 48 °C for 16-18 h.
Every sample was washed in the GeneChip® Fluidics
Station 450 following FS450-0002 protocol and array
fluorescence was measured by the GeneChip ° Scanner
3000 7G.

Data analysis

Raw data from CEL files were analyzed using Affymetrix®
Expression ConsoleTM software to normalize fluores-
cence signals and to obtain quality control data. To adjust
background/signal a Robust Multichip Analysis (RMA)
was carried out and once completed we observed that the
values of spike-in control probes complied with the qual-
ity standards established by the manufacturer. ‘.chp’ files
were created and then used for further expression analysis,
the names of ‘.cel’ files (raw data) and “.chp’ files corre-
sponding to each sample are in the Additional data
Additional file 1. Using the ‘.chp’ files we obtained two
types of data for each probe in the array: expression log2
intensity signal data, and detection call data categorizing
each miRNA as ‘Present’ (P) or ‘Absent’ (A), along with
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the corresponding p value estimates. The statistical algo-
rithms used for the detection call metrics were developed
by the supplier using an experimental design called the
Latin Square [18, 19], on which naturally absent tran-
scripts were spiked in a complex background at
known concentrations. This analysis generates a de-
tection p-value to determine the detection call, indi-
cating whether a transcript is reliable detected
(Present) or not detected (Absent) [20, 21].

Bioinformatics analysis

Both categorical and expression data were analyzed. For
this, we employed text format tables containing data
from all hybridized samples. All data were analyzed
using Multi-experiment-viewer (MEV) TM4 Microarray
Software Suite [22]. Non-supervised and supervised
analyses were performed such as hierarchical cluster
analysis (HC) and significance analysis for microarray
(SAM) which incorporates correction for multiple
testing [23]. For the ‘one class SAM’ the response vari-
able or outcome was a quantitative continuous variable
(expression data), used to find the miRNAS that were
most highly expressed across all the samples. For the
two class SAM the outcome variable was a quantitative
continuous variable (also expression data) for two
groups, used to find miRNAs that were differentially
expressed between male and female patients. Fig-tree
was used to visualize dendrograms derived from HC
analysis. DIANA-Tools-microT-CDS, miRPathv3, (at
http://www.microrna.gr/), Target-Scan and Tarbase
v.7 (at http://diana.imis.athena-innovation.gr/Diana-
Tools/index.php?r=tarbase/index) were used to search
for mRNA targets and signaling pathways affected by
miRNAs of interest [24]. In addition, we used
TargetScan (at http://www.targetscan.org/vert_71/)
and miRDB (at http://www.mirdb.org/miRDB/) to
search for mRNA targets [25, 26]. The TS gene data-
base was used to search for tumor suppressor genes
(at https://bioinfo.uth.edu/TSGene/) [27, 28]. In order
to find the chromosomal location for miRNAs, we
used annotation data from the miRBase [26] (at ftp://
mirbase.org/pub/mirbase/ CURRENT/genomes/ and at
http://www.mirdb.org/miRDB/). ChromDraw was used to
map all miRNAs classified as “Absent” in order to com-
pare their location with respect to chromosomal regions
that we had previously reported as regions of recurring
loss in Rb [29].

Validation by qRT-PCR

We used qRT-PCR with locked nucleic acid primers to
validate our findings; miRNA-16 and 3613-3p were used
to validate ‘present’ in all tumors, and 3613-5p and 4529
were used to validate ‘absent’ in all the samples. We
prepared cDNA with specific primers for these miRNAs
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and prepared qRT-PCR mixes using 1 pg total RNA
tumor with Mircury LNA™ Universal RT microRNAs
PCR Exiqon kit. Once cDNA was synthesized, each sam-
ple was run in duplicate using Illumina Eco Real-Time
PCR System and results were plotted to compare cycle
detection.

Results

Discretized data reveals miRNA landscape

To characterize the Rb miRNome we used the GeneChip
miRNA 4.0 arrays from Affymetrix including probes for
2578 mature human miRNAs, and RNA from Rb pri-
mary cultures obtained from 12 tumors as described
above. All children received enucleation as their first line
of therapy. Corresponding clinical data is summarized in
Table 1.

In order to obtain an initial panoramic view of how
many miRNAs are expressed and how many are not
expressed in these tumors, we used detection call
metrics based on statistical criteria as an approximation
for ‘expressed’ or ‘not-expressed’ categories for each
miRNA (as detailed above).

With this discretized data we then used an unsuper-
vised hierarchical clustering analysis, and produced a
heat map using yellow for miRNAs classified as
‘expressed’ and black for those miRNAs classified as ‘not
expressed’. The resulting heat map (Fig. 1) shows a
miRNA landscape composed of three main clusters. The
cluster at the bottom named “P” (for present) shows 561
miRNAS expressed in almost 90% of samples including
a remarkable smaller cluster with 142 miRNAs that are
expressed in all the samples. The second cluster at the
center of the heat map named “A” (for absent) shows
995 miRNAs that are uniformly not expressed in all
samples and a third cluster named “V” (for variably
present) with 1022 miRNAs that are expressed in some

Table 1 Clinical data from patients with Rb

Patient Age at diagnosis (months) Gender Laterality® Clinical stage®
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Fig. 1 Rb miRNOME landscape with 2578 miRNA elements.
Hierarchical cluster analysis using discretized data, yellow represents
detected/expressed miRNAs and black represents not detected/not
expressed miRNAs

but not all the samples. The list of miRNAs in these
clusters is shown in the Additional file 2. We validated
miR-16 as present and miR-4529-3p as absent using
qRT-PCR as part of our initial approach to describe the
general miRNOME landscape of miRNAs in the on/off
state. Results of this validation are shown in Additional
file 2: Figure S1.

Functional core of 30 miRNA in Rb discovered

We subsequently focused on the 142 miRNAs present in
all samples and asked if the level of expression among
them could tell us which miRNAs are most abundant
and thus more functionally relevant. To answer this we
extracted the corresponding expression level data into a
heat map (Fig. 2a) and also plotted the signal intensity
median for each of the 142 miRNAs across the samples
in a histogram (Fig. 2b). We applied to this group of
miRNAs a Significant Analysis for Microarrays (SAM)
[23] to determine the most highly expressed miRNAs
among them. In this SAM analysis the response (out-
come) variable was a quantitative continuous variable
(expression data) in one group for one class SAM, corre-
sponding to the analysis results shown in Fig. 2 which
shows the most significant highly expressed miRNAs
from the 142 miRNAs that were found to be present in
all tumor samples. Using these criteria we found 30 out
of 142 miRNAs to be very highly expressed (red bars in
Fig. 2c), and 22 miRNAs out of 30 were top ranked (see
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Fig. 2b). Some of the miRNAs plotted as top ranking
were not significant by SAM since expression levels
among samples were more variable despite similarly high
medians.

We next investigated the potential mRNA targets,
pathways and biological processes affected by this core
of 30 miRNAs. Using the MicroT-CDS algorithm to pre-
dict miRNA targets from the Diana-Tools platform, we
found 8120 potential target genes and according to miR-
Pathv3 [24], 182 mRNAs in this group of predicted
targets are related to cancer (Additional file 3). The
function of miRNAs is to repress protein translation,
thus we searched for tumor suppressor genes in the list
of potential targets and found that 48 of these mRNA
targets are tumor suppressors (TS) according to the TS
gene database [27, 28]. The complete list can be found
in Additional file 3. From the core of 30 miRNAs, we se-
lected the five miRNAs with the greatest number of
tumor suppressor gene targets: miR-3613-3p with 36 tar-
gets, miR-4668-5p with eight, miR-5787 with seven,
miR-762 with two and miR-1273 g-3p with four targets.
We noted that miR-3613-3p not only has 36 tumor sup-
pressor targets, but also, using TarBase v.7 we were able
to identify 400 mRNAs for which there is experimental
evidence supporting them as targets for this miRNA.
Using other algorithms for theoretical target predictions
such as TargetScan and miRDB, we uncovered that miR-
3613-3p has several thousand potential targets.

Once we had explored potential targets, we then fo-
cused on identifying pathways and biological processes

affected by this core of 30 miRNAs. We used DIANA-
mirPATH v3.0 and found 59 pathways that are poten-
tially regulated by this core of 30 miRNAs (p < 0.05).
Many of these pathways are related to proliferation,
angiogenesis and apoptosis, critical processes belonging
to the so called-cancer hallmarks [30] (Fig. 3). From this
list of 59 pathways, we found 12 pathways (p < 0.001)
related to anti proliferation, regulation of pluripotency in
stem cells, pathways in cancer, axon guidance and others
(Additional file 3).

We confirmed miRNA-3613-3p expression by qRT-
PCR (Additional file 2: Figure S2) and also searched in
independent public cancer datasets generated with
miRNA Affymetrix arrays v.3 and v.4 in samples from
patients with hepatoblastoma [31], medulloepithelioma
[32], Ewing’s sarcoma (mostly pediatric malignant
tumors) [33] and synovial sarcoma [34]. As shown in
Additional file 2: Figure S3, median and mean expres-
sion levels of miR-3613-3p are consistently higher than
7, and are as high as 10 in medulloepithelioma than its
counterpart miR-3613-5p in all data sets. Signal distribu-
tion in all data sets were similar and show the range of
expression level across the miRNOME.

Variable miRNAs are related to gender

To test if clusters ‘P’ and ‘V’ identified in the miRNome
landscape were related to known clinical properties cor-
responding to these tumors we first focused on the 419
miRNAs from the cluster ‘P, present in most but not all
samples from the landscape map (Fig. 1). We extracted
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the corresponding expression data, performed unsuper-
vised hierarchical clustering and superimposed clinical
data (laterality, age at diagnosis, clinical stage, or gen-
der) on the two branch tree we obtained. Surprisingly,
cases appeared to group largely according to gender
in the two branches with the exception of one case
T5 (Fig. 4a and b). In order to identify miRNAs most
likely to be related to gender differences, using SAM,
we searched among the 419 in cluster P for differen-
tially expressed miRNAs. The response (outcome)
variable was again a quantitative continuous variable
(expression data) on two groups, using two class
SAM, corresponding to the differential analysis. Re-
sults shown in Fig. 4c show the genes that are most
significantly differentially expressed when comparing
males and females. This analysis yielded 36 miRNAs
that are differentially expressed between males and
females (Fig. 4c), the list of the miRNAs and the in-
tensity plots can be found in Additional file 3.

We next searched for potential mRNA targets and
pathways affected by these 36 miRNAs, and identified
2900 potential targets and 50 significant (p < 0.001)
pathways. From these, eight correspond to hormonally
and developmentally related processes (Fig. 4c).

A similar analysis was performed on the 1022 miRNAs
contained in cluster V from the miRNome landscape.
We obtained a three branched cluster using expression
data and hierarchical clustering analysis. Subsequent
search for mRNA targets led us to uncover pathways

related to pluripotency, stem cells, angiogenesis and
migration. Although these pathways suggest a potential
relationship to characteristics that might be found in
more invasive tumors, we were unable to find correla-
tions with microscopic features in the tumors or other
clinical descriptors. The three branched figure and the
list of pathways can be found in Additional file 3.

Some miRNAs are consistently absent in all Rbs

Because many chromosomal regions have recurrently
been described as lost in Rb, we next examined whether
the 995 miRNAs in cluster ‘A’ that were classified as ab-
sent or undetectable in all samples, were located within
loci or regions recurrently described as lost [35, 36]. Using
annotated data from the miRBase we were able to map in
the human genome 2573 out of 2578 miRNAs included in
the Affymetrix chip. With a map that we had previ-
ously generated using NGS which demonstrated
regions of recurrent losses in Rb [29], we identified
in the 995 undetectable miRNAs, those located at
loci recurrently lost in Rb by chromosome. In total, we
found 144 miRNAs located in areas recurrently lost in Rb
[37, 38] the complete list is shown in Additional file 3.
Data plotted in Fig. 5a show a survey of miRNAs across
the human genome, with three bars per chromosome
representing the total number of miRNAs mapped to each
chromosome, the corresponding undetectable miRs and
the undetectable miRs mapped at recurrently lost regions
per chromosome.
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Figure 5b shows an ideogram of chromosome 1’s cyto-
genetic map as an example, indicating the location of
undetected miRNAs. Above the ideogram, data plots of
gains and losses demonstrate that these miRNAs are in
regions corresponding to areas of recurring chromo-
somal loss in Rb.

Analysis of cluster17-92 in Rb

Cluster 17-92 which is probably the best studied miRNA
family in cancer, has been reported as highly expressed in
Rb [29]. We explored the expression of cluster 17-92
within the more global perspective of inter-tumoral hetero-
geneity presented in our approach. For this we first evalu-
ated the detected/undetected score for the three human
paralogs of this cluster [39] which are located in chromo-
somes 7, 13 and X and applied unsupervised hierarchical
clustering (Fig. 6a). To evaluate the expression levels of all
members of this miRNA family in our 12 samples, we dis-
aggregated each paralog member by chromosome cluster
and plotted the median intensity signal for each of the
samples (Fig. 6b). Four miRNAs from the paralog cluster

in chromosome 13 which includes mir-17-5p, mir-20a-3p,
miR19b-3p and miR-92a-3p, have levels of expression
greater than 6, while members of the paralog in chromo-
some 7 are the most consistently expressed as a group.

Discussion

With our initial step of using call detection algorithms,
we obtained a simplified miRNOMIC landscape that is
easier to interpret, and is composed of three categories:
a central miRNA machinery shared by all the samples;
an important number of miRNAs in the “off” state also
shared by all the samples; and a third group of miRNAs
that are variably present and that we believe correspond
to biologic variability and tumor heterogeneity. We de-
scribed a miRNOME landscape interpreting and situat-
ing each miRNA present in the array, while not limiting
this description to any biased grouping of miRNAs. Our
findings are the product of data exploration with higher
order bioinformatics analytical tools guided by clear and
pre-defined questions. This approach allowed us to
obtain a truly panoramic view of the miRNA landscape
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Fig. 5 Identification of undetected miRNAs located in recurrently lost loci in Rb. a Total number of miRNAs located per chromosome compared
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ratio plot above, while those regions that are recurrently ‘gained’ are represented by green dots [20]

in Rb. These results are biological relevant despite the
small size of our sample. With this approach we were
able to “dissect” complex data using dichotomized data
to first determine how many and which miRNAs are
turned ‘on’ or ‘off’ in each tumor. Subsequent analysis of
expression patterns allowed us to interpret the potential
biologic significance of groups of miRNA with similar
levels of expression. We propose that this approach and
‘landscaping’ can provide a useful panoramic view of the
Rb miRNome, revealing a shared core machinery of 142
miRNAs expressed in all Rbs we studied, and also
uncovers the magnitude of inter tumoral heterogeneity
at the miRNA level. Our interpretation is that by using a
2578 miRNA array based tool, Rb may be defined by 142
miRNAs that are consistently detectable and 995
miRNAs that are consistently not detectable. Biologic

variability and heterogeneity might be defined by a set of
419 miRNAs that are detectable in most but not all the
cases and by 1022 miRNAs that are detectable only in
some cases.

Regarding the core of 30 miRNAs, and considering
that 1) arbitrary units of intensity in the plotted data run
from O to 14, 2) median signal intensity for all the mi-
croarrays is 2.01 and 3) that the average signal intensity
for the 30 miRNAs core is above 8, we interpret that
these highly expressed miRNAs constitute a functional
core of miRNAs shared by all tumors included in this
study. Notably most of these 30 miRNAs have been
described recently by NGS in cervical cancer [40]. The
majority of predicted and experimentally supported tar-
get genes identified for the complete 30 miR core are
targets for miR-3613-3p. Within these targets we found
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that 48 mRNA are tumor suppressors [27, 28], of which
36 are targets for miR-3613-3p. High expression of this
miRNA in all samples, indicates that many more tumor
suppressor genes beyond RB1 are likely down regulated
or not expressed through miR-3613-3p’s effect in Rb,
suggesting that this miRNA may be a strategic down
regulatory hub or node for this tumor.

The biological processes affected by this core of 30
miRNAs that are shared by all 12 cases in our study, are
related to the malignant phenotype [41]. Therefore, we
propose that this miRNA core belongs to a stable and
likely critical genetic network that may characterize the
identity profile of Rb.

Regarding validation miRNA expression values gener-
ated on different platforms cannot be directly compared

because unique labeling methods and probe sequences
result in variable signal distributions for probes that
hybridize to the same miRNAs [42], nonetheless, we
were able to confirm miRNA-3613-3p expression using
qRT-PCR. Results for miRNA 3613-5p and 4529 as non-
detectable miRNAs in all the samples are in accordance
with our microarray results, however it was challenging
to verify by this technique, consistent high expression
for miRNAs 3613-3p and 638 from the 30 miRNA core
present in all samples by microarrays (Additional file 2:
Figure S2). In amplification curves using Illumina Eco
Real-Time PCR system it can be observed that not all
the samples were consistently amplified, and signal de-
tection occurred at later cycles of the run (Additional file
2: Figure S2a and b). In contrast qRT-PCR amplification



Castro-Magdonel et al. BMC Cancer (2017) 17:458

curves using Roche Light Cycler 480 system show more
consistent amplification of miRNA 3613-3p in red and
no amplification for miRNA 4529 in green (Additional
file 2: Figure S2c). Quantitative agreement between re-
sults obtained with the two different amplification sys-
tems is thus moderate and concordance with microarray
results is not robust. As an alternative for verification we
searched in public datasets for experimental information
that could be useful as an independent form of valid-
ation. We searched among datasets generated with the
miRNA Affymetrix platform in primarily pediatric can-
cers [31-34], and found high expression of miRNA
3613-3p in all the datasets we consulted. In some data-
sets we found even higher expression levels of miR
3613-3p than in Rb, suggesting that this mir may have a
relevant role not only in retinoblastoma. Although more
robust methods for validation and experimental work
are needed to confirm the relevance of mir-3613-3p in
cancer cells, in our search for targets and pathways, ex-
clusion of this miRNA resulted in a complete absence of
pathways with the word ‘cancer’. Similarly, there was a
complete absence of the 36 tumor suppressors that are
targets linked to this miRNA, suggesting that presence
of miR-3613-3p is critical to tumor suppression in Rb.
High expression of mir-3613-3p could also potentially
explain those rare Rb cases in which no oncogenic mu-
tations have been found in RB1 [43]. From these obser-
vations we predict that by turning off mir-3613-3p, the
inhibition of protein translation of any of the tumor sup-
pressor genes silenced by this miRNA in Rb cells could
be lifted, restoring function; this could potentially re-
verse the malignant phenotype or result in tumor cell
death. The conspicuous presence of mir-3613-3p in all
samples and its centrality shown by our analysis, sug-
gests that we may have uncovered a so called ‘oncogene
addiction’ state in these samples, in which there is a de-
pendency on one or a few genes for maintenance of the
malignant phenotype [44].

Regarding heterogeneity within the group of miRNAs
present in most but not all the cases (419 miRNAs in
cluster “P”), our analysis yielded a two branched tree
containing two clusters that appeared closely associated
with the gender of patients. The high intensity signals of
these two groups of differentially expressed miRNAs,
suggest that this represents an underlying relevant differ-
ence. Our finding of associated pathways related to
development and hormone metabolism further supports
a relationship with gender. These results are plausible
and coherent considering that gender differences reflect
ongoing and subtle biochemical processes present
throughout childhood, involving and affecting all cells
and therefore would be expected to also affect tumor
cells [45]. Some miRNAs consistently absent in all Rbs
might function as tumor suppressors, since we found
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that 144 out of 995 miRNAs that are consistently “off”
in all these tumors are indeed located in areas previously
reported as recurrently deleted in Rb [35-37].

Analysis of the discretized data of cluster17-92 in Rb
indicates that these miRNAs belong to cluster ‘P’ of the
landscape miRNome map, which is detected in most but
not all the samples under study. Our results shows
heterogeneity in the expression of cluster 17-92, with
different levels of expression for members encoded by
the same primary transcript, consistent with other
reports [46, 47]. Even though some paralog members of
cluster 17-92 show high expression levels, including
miR-19 which is able to recapitulate the oncogenic activ-
ity of the full cluster and is located in a locus previously
reported as amplified in Rb [29], they are not expressed
in all the samples and do not belong to the 30 miRNA
core described previously.

Tumor heterogeneity can be considered to reflect
biological variability, and heterogeneity can be thought
of as a multilayered structure since there are so many
aspects of tumor biology that show heterogeneity, in-
cluding response to treatment or genetic and phenotypic
traits. This work reveals consistent similarities and
differences or heterogeneity in several Rb tumors at the
miRNA level. There is a need to better understand
tumor heterogeneity and we propose that tumor hetero-
geneity be considered as a ‘composite’ of similarities and
differences among cancer cells. This definition can be
useful and practical for interpretation of high through-
put data, and with this work we explain at the miRNome
level the nature of these similarities and differences.
These results indicate that tumor cells share a funda-
mental unity despite of intra or inter tumoral heterogen-
eity and we interpret that the diversity found may
account at least in part, to inter tumor heterogeneity in
miRNA terms. Tumor cells must share a fundamental
unity and such a ‘unity’ has yet to be defined for every
type of tumor. This endeavor is particularly challenging
for solid tumors which are composed of many cell types
in addition to tumor cells. Nonetheless, defining those
characteristics that are shared between tumors may help
determine those critical to promoting tumor survival.

There are some methodological considerations to note.
We cultured the tumors because the amount of tissue
we can ethically obtain from an enucleated eye with Rb
is limited and necrosis poses an additional constraint.
Despite this, there are advantages to culturing cells for a
week. First, because we discarded dead cells and propa-
gated viable cells through a standardized procedure that
allowed us to generate sufficient material, we were able
to assume constant conditions for all tumors. Secondly,
because Rb cells grow in suspension we were able to
separate out any adherent non-tumor cells. The profiles
we obtained, thus originate from a very highly enriched
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collection of tumor cells with limited or no miRNAS’ sig-
nals from non-tumor cells. Our approach assumes that
we have detected the average miRNA signals that were
contributed during RNA extraction from different clones
or tumor cell populations that might have existed within
the original tumor sample grown in culture. This is an
important limitation since intra-tumoral heterogeneity
requires sampling at multiple tumor sites, which we
were unable to do.

Two additional and important limitations are inherent
to our experimental design which does not include nor-
mal tissues. First normal retina from this age group is
extremely difficult to obtain even from children that
have died from accidental causes. Second, we were not
interested in comparing normal versus tumor tissue, the
most obvious comparison in the cancer field made since
the invention of the two channel microarray platforms.
Our goal was to address a knowledge gap in the field,
specifically what is shared and what is not shared among
tumors with the same diagnosis. The chief advantage of
this design is that it allows uncovering what is com-
monly expressed among the samples and also unveils
underlying variability. The disadvantage of our design is
that it does not permit identifying what is common or
different in comparison with the normal counterpart,
whether retina or Rb’s cell of origin.

Conclusions

This miRNA landscape approach reveals the existence of
a set of 142 miRNAs shared by all Rb and an additional
set of miRNAs which are variably expressed. Our explor-
ation of mRNA targets and pathways affected by a core
group of the 30 most consistently highly expressed
miRNAs within the 142 shared by all Rb, suggests that
this core belongs to and impacts stable genetic networks
that have structures shared across samples. Some of
these pathways belong to fundamental biologic processes
involved in cancer, while others are related to neural
functions reflecting the tissue of origin. Still other miR-
NAs target basic processes such as metabolism, which
may merely reflect the shared human eukaryotic ori-
gin and more fundamental genetic networks affected
by this core.

Our results indicate that human Rbs, share a common
and fundamental miRNA expression profile despite their
heterogeneity. The therapeutic implication of targeting
mir-3613-3p for Rb patients remains to be studied.
Studying characteristics shared among tumor cells, given
the selection processes occurring in malignant tumors,
may allow finding critical targets or the long sought
‘Achilles heel’ of cancer cells. Integrating global mRNA
and proteomic data from these tumors could also
improve our understanding of the role of mir-3613-3p
and the effect it exerts on its 36 potential targets that
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are tumor suppressors. Furthermore data derived from
the landscape presented here can also be used for mod-
eling cancer genetic networks using a systems biology
approach.
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