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Abstract

Background: Impaired glucose metabolism-related genetic variants and traits likely interact with obesity and related
lifestyle factors, influencing postmenopausal breast and colorectal cancer (CRC), but their interconnected pathways are
not fully understood. By stratifying via obesity and lifestyles, we partitioned the total effect of glucose metabolism
genetic variants on cancer risk into two putative mechanisms: 1) indirect (risk-associated glucose metabolism genetic
variants mediated by glucose metabolism traits) and 2) direct (risk-associated glucose metabolism genetic variants
through pathways other than glucose metabolism traits) effects.

Method: Using 16 single-nucleotide polymorphisms (SNPs) associated with glucose metabolism and data from 5379
postmenopausal women in the Women’s Health Initiative Harmonized and Imputed Genome-Wide Association Studies,
we retrospectively assessed the indirect and direct effects of glucose metabolism-traits (fasting glucose, insulin, and
homeostatic model assessment-insulin resistance [HOMA-IR]) using two quantitative tests.

Results: Several SNPs were associated with breast cancer and CRC risk, and these SNP—cancer associations
differed between non-obese and obese women. In both strata, the direct effect of cancer risk associated with
the SNP accounted for the majority of the total effect for most SNPs, with roughly 10% of cancer risk due to
the SNP that was from an indirect effect mediated by glucose metabolism traits. No apparent differences in
the indirect (glucose metabolism-mediated) effects were seen between non-obese and obese women. It is
notable that among obese women, 50% of cancer risk was mediated via glucose metabolism trait, owing to
two SNPs: in breast cancer, in relation to GCKR through glucose, and in CRC, in relation to DGKB/TMEM195
through HOMA-IR.

Conclusions: Our findings suggest that glucose metabolism genetic variants interact with obesity, resulting in
altered cancer risk through pathways other than those mediated by glucose metabolism traits.
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Background
Breast cancer is the most commonly occurring cancer and
the second most common cause of cancer-related deaths
in the United States [1]. Colorectal cancer (CRC) is the
second most commonly diagnosed cancer and one of the
leading causes of cancer-related mortality throughout the
world [2]. Impaired glucose metabolism, i.e. insulin
resistance (IR), is characterized by hyperinsulinemia and
hyperglycemia, and demonstrates strong associations with
breast cancer and CRC [3-8]. The association is particu-
larly strong in postmenopausal women, in whom high in-
sulin levels have been associated with a twofold increase
in breast cancer risk [9, 10]. The homeostatic model as-
sessment—insulin resistance (HOMA-IR) reflecting high
blood levels of insulin and glucose is positively associated
with breast cancer in the postmenopausal women [11].
Besides its importance in glucose homeostasis, insulin is
an essential hormone in anabolic processes in early cell
growth and development, directly through the insulin
receptor and indirectly through the insulin-like growth
factor receptor [12, 13]. Insulin receptors that are mainly
found in adipose tissues, muscle, and liver cells are over-
expressed in breast cancer and CRC cells. This overex-
pression results in the enhanced anabolic state necessary
for cell proliferation, differentiation, and anti-apoptosis,
via abnormal stimulation of multiple signaling pathways,
including the phosphatidylinositol 3-kinase (PI3K)/serine/
threonine-specific protein kinase (Akt) and mitogen-
activated protein kinase (MAPK) pathways [14, 15]. In
addition, high glucose levels owing to glucose intolerance
induce high levels of intracellular glucose, facilitating
breast cancer and CRC cell growth [6, 8]. Thus, impaired
glucose metabolism, such as IR, leading to hyperglycemia
and hyperinsulinemia, contributes to overexpression of
these receptors and multiple abnormal cellular signaling
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cascades, and therefore may be associated with carcino-
genesis. Considering the relationships of these glycemic
phenotypes and cancer risk, the glucose metabolism-
related genetic variants that are related to impaired glu-
cose metabolic syndromes (e.g. high glucose, insulin, and
HOMA-IR levels) are plausibly associated with increased
risk of breast cancer and CRC. A limited number of
population-based epidemiologic studies have been
performed to examine these relationships [16—-22].

Breast cancer, particularly in postmenopausal women,
and CRC risk are elevated among those who are obese
[4, 23-26]. Obesity status and obesity-related lifestyle fac-
tors are accompanied by elevated glucose metabolism traits
(e.g., insulin, glucose, and HOMA-IR levels) [4, 23, 24]. Spe-
cifically, physical inactivity and high-fat diet, as modifiable
factors for obesity, [3] increase insulin levels and IR, and are
associated with increased risk of breast cancer [8, 27, 28]
and CRC [29-32]. Further, previous in vitro studies have re-
vealed obesity— glucose metabolism-related gene signature—
breast cancer or CRC risk pathways, suggesting that glucose
metabolism-related genetic variants interact with obesity
and jointly influence cancer susceptibility [15, 27, 33—36].

In this study among postmenopausal women, we ex-
amined the pathway of glucose metabolism genetic vari-
ants, glucose metabolism traits (fasting insulin, glucose,
and HOMA-IR levels), and cancer risk. We focused on
the mediation effects relating glucose metabolism gen-
etic variants (exposure) and breast cancer and CRC risk
(outcome), and on the role of glucose metabolism traits
(mediator) that play in this association (Fig. 1). We first
evaluated the magnitude of the total effect of glucose
metabolism genetic variants on breast cancer and CRC
(i.e. the overall genetic effect, without considering the
effect of glucose metabolism traits). We then evaluated
how this total effect is partitioned into direct (cancer
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Fig. 1 Diagrams of total, direct, and indirect pathways of SNPs in glucose metabolism genes, glucose metabolism traits, and cancer risk.
(HOMA-IR, homeostatic model assessment-insulin resistance; HR, hazard ratio; SNP, single-nucleotide polymorphism.). a C is a total effect
(overall genetic effect, without considering the effect of glucose metabolism traits), expressed via HR. b C" is a direct effect (cancer risk as-
sociated with glucose metabolism-relevant genetic variants through pathways other than glucose metabolism traits), expressed via HR
after accounting for mediator; a*b (=C-C') is an indirect effect (cancer risk associated with glucose metabolism-relevant genetic variants
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risk associated with glucose metabolism genetic variants
through pathways other than glucose metabolism traits)
and indirect effects (cancer risk associated with glucose
metabolism genetic variants through pathways mediated
by glucose metabolism traits). This approach allowed us
to test the hypothesis that glucose metabolism-related
genetic variants are associated with increased risk of
cancers and that the relationships depend on impaired
glucose metabolism symptoms (high insulin, glucose,
and HOMA-IR levels).

Given that the association between glucose-metabolism
genetic factors and glucose-metabolism traits could be in-
fluenced by obesity [4, 8, 23, 24, 27-32], and through this
glycemic mechanism, obesity status and related factors are
associated with breast cancer and CRC [15, 27, 33—-36], we
evaluated how the pathway of glucose metabolism genetic
factors, glucose metabolism traits, and cancer is influ-
enced by obesity and obesity-related factors. We examined
whether glucose metabolism genetic variants’ interactions
with obesity and relevant lifestyle factors influence glucose
metabolism traits and whether these changes in traits alter
the association between glucose metabolism traits and
cancer risk. Further, we assessed whether these altered re-
lationships (glucose metabolism gene—glucose metabolism
traits relationship and glucose metabolism traits—cancer
risk relationship) influence the association between
glucose metabolism genetic variants and cancer risk.

Disentangling these complicated gene—phenotype-life-
style interactions will provide insights into the role of
glucose intolerance in the development of obesity-
related breast cancer and CRC and suggest strategies to
reduce cancer risk in postmenopausal women.

Methods

Study population

This study included data from 5379 participants enrolled
in the Women’s Health Initiative (WHI) Harmonized and
Imputed Genome-Wide Association Studies (GWAS),
which is the effort of a joint imputation and
harmonization effort for GWAS within the WHI Clinical
Trials and Observational Studies. Details of this study’s ra-
tionale and design have been described elsewhere [37, 38].
Briefly, WHI study participants were recruited from 40
clinical centers nationwide between October 1, 1993, and
December 31, 1998. Eligible women were 50-79 years old,
postmenopausal, expected to live near the clinical centers
for at least 3 years after enrollment, and able to provide
written consent. For our study, we included only
European-American women. From among the 7835
women who did not have diabetes mellitus (DM) at en-
rollment or later, and had at least 8 hours’ fasting glucose
and/or insulin concentrations available at baseline, we ex-
cluded women who had been followed up for less than 1
year or those diagnosed with any cancer at enrollment,
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resulting in 6748 participants. We excluded another 1369
women whose information on covariates was unavailable,
leaving a final total of 5379 women (80% of the eligible
6748). This study was approved by the institutional review
boards at the University of California, Los Angeles.

Data collection and outcome variables

Standardized written protocols had been used and periodic
quality assurance performed by the WHI coordinating
center to ensure uniform data collection. At baseline,
participants had completed self-questionnaires on demo-
graphic and lifestyle factors and their medical and repro-
ductive histories. Anthropometric measurements, including
height, weight, and waist and hip circumferences had been
obtained at baseline by trained staff. Of 33 variables initially
chosen from a literature review for their associations with
glucose metabolism and breast cancer and CRC, we
selected 29 final variables (Table 1) for this study after per-
forming univariate and stepwise regression analyses and
multicollinearity testing.

Cancer outcomes were determined via a centralized
review of medical charts, and cancer cases were coded
according to the National Cancer Institute’s Surveillance,
Epidemiology, and End-Results guidelines [39]. The
outcome variables were the specific cancer type (breast
cancer and CRC) and the time to develop such cancer.
The time from enrollment to cancer development,
censoring, or study end-point was recorded as the
number of days and then converted into years.

Genotyping and laboratory methods
The WHI imputed GWAS comprises six substudies
(Hip Fracture GWAS, SHARe, GARNET, WHIMS,
GECCO, and MOPMAP) within the WHI study. Partici-
pants provided DNA samples at baseline and genotyping
included alignment (“flipping”) to the same reference
panel and imputation via the 1000 Genomes reference
panels. Single-nucleotide polymorphisms (SNPs) for
harmonization were checked for pairwise concordance
among all samples in the substudies. Initial quality assu-
rance was conducted according to a standardized protocol,
with a missing call rate of <2% and Hardy-Weinberg Equi-
librium of p > 107 Sixteen SNP candidates, available for
this study with 97% R-squared imputation quality scores,
were selected on the basis of their association (p < 5 x 10°%)
with fasting glucose and/or insulin concentrations in a pre-
vious meta-analysis with independent replication [40—42].
Fasting blood samples had been collected from each
participant at baseline by trained phlebotomists and im-
mediately centrifuged and stored at =70 °C. Serum glucose
was measured using the hexokinase method on a Hitachi
747 analyzer (Boehringer Mannheim Diagnostics), with
coefficient of variation of 1.6% and correlation coefficient
of values of 0.99. Serum insulin testing had been
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Table 1 Characteristics of participants, stratified by obesity (measured via BMI)

Characteristic Non-obese group (BMI < 30.0) Obese group (BMI = 30.0)
(n = 3675) (n=1704)
n (%) n (%)

Age in years, median (range) 68 (50-79) 67 (50-71)*
Education

< High school 1272 (34.6) 701 41.1)*

> High school 2403 (65.4) 1003 (58.9)
Family history of diabetes mellitus

No 2714 (73.9) 1122 (65.8)*

Yes 961 (26.1) 582 (34.2)
Family history of cancer

No 1327 (36.1) 567 (33.3)

Yes 2348 (63.9) 1137 (66.7)
Family history of breast cancer

No 3070 (83.5) 1428 (83.8)

Yes 605 (16.5) 276 (16.2)
Family history of colorectal cancer

No 3106 (84.5) 1430 (83.9)

Yes 569 (15.5) 274 (16.1)
Cardiovascular disease ever

No 3161 (86.0) 1430 (83.9)

Yes 514 (14.0) 274 (1e.1)

Hypertension ever

No 2702 (73.5) 1026 (60.2)*

Yes 973 (26.5) 678 (39.8)
High cholesterol requiring pills ever

No 3178 (86.5) 1460 (85.7)

Yes 497 (13.5) 244 (14.3)

Smoking status

Never 1882 (51.2) 897 (52.6)*

Past 1498 (40.8) 705 (414)

Current 295 (8.0) 102 6.0)
Lifetime partner

Have never had sex 56 (1.5) 38 (2.2

Have had sex 3619 (98.5) 1666 (97.8)
Depressive symptom?

<006 3392 (92.3) 1556 (91.3)

2 0.06 283 (7.7) 148 8.7)
METshourweek ' °

<10 1875 (51.0) 1160 (68.1)*

210 1800 (49.0) 544 (31.9
Total HEI-2005 score, median (range)® 68.7 (25.8-90.8) 65.7 (27.9-91.2)*
Dietary total sugars in g, median (range) 916 (4.6-350.2) 949 (10.8-474.5)*
Dietary alcohol per day in g, median (range) 1.506 (0.0-106.7) 0.561 (0.0-148.6)*

% calories from fat®
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Table 1 Characteristics of participants, stratified by obesity (measured via BMI) (Continued)

< 40% 3057

2> 40% 618
Waist circumference in cm, median (range) 81.0
Waist-to-hip ratio, median (range) 0.798
Oral contraceptive use

Never 2448

Ever 1227
History of hysterectomy or oophorectomy

No 2457

Yes 1218
Age at menarche in years, median (range) 13
Age at menopause in years, median (range) 50
Pregnancy history

No 276

Yes 3399
Breastfeeding at least one month

No 1649

Yes 2026
Exogenous estrogen use

No 2224

Yes 1451
Glucose in mg/dl, median (range) 920
Insulin in plU/ml, median (range) 55
HOMA-IR, median (range) 13

(83.2) 1268 (74.4)*

(16.8) 436 (25.6)
(37.5-177.0) 100.0 (69.0-191.8)*
(0341-1.893) 0.849 (0.633-1.696)*
(66.6) 1123 (65.9)

(334) 581 (34.1)

(66.9) 1006 (59.0)*

(33.1) 698 (41.0)
(£9-217) 12 (£ 9-2 17)%
(20-60) 50 (21-60)

(7.5) 134 (7.9)

(92.5) 1570 (92.1)

(44.9) 812 (47.7)

(55.1) 892 (52.3)

(60.5) 1122 (65.8)*

(39.5) 582 (34.2)
(39.0-369.0) 97.0 (62.0-347.0)*
(0.5-1194) 9.8 (0.3-57.0)*
(0.1-25.1) 24 (0.1-42.3)*

BMI body mass index, HEI-2005 Healthy Eating Index-2005, HOMA-IR homeostatic model assessment-insulin resistance, MET metabolic equivalent

*p < 0.05, chi-squared or Wilcoxon'’s rank-sum test

?Depression scales were estimated by using a short form of the Center for Epidemiologic Studies Depression Scale and categorized with 0.06 as the cutoff to

detect depressive disorders

PPhysical activity was estimated from recreational physical activity combining walking and mild, moderate, and strenuous physical activity
“HEI-2005 is a measure of diet quality that assesses adherence to the U.S. Department of Agriculture’s Dietary Guidelines for Americans. The total HEI score ranges

from 0 to 100, with higher scores indicating higher diet quality

dParticipants were stratified by high-fat diet using 40% as a cutoff value relevant to glucose intolerance [47]

conducted by Sandwich Immunoassay on a Roche Elecsys
2010 analyzer (Roche Diagnostics). The coefficient of vari-
ation and correlation coefficient of values for insulin were
4.9% and 0.99, respectively. HOMA-IR was estimated as
glucose (unit: mg/dl) x insulin (unit: pIU/ml) / 405 [43].

Statistical analysis

Participants’ differences in baseline characteristics,
stratified by obesity status (body mass index [BMI], waist
circumference, and waist-to-hip ratio [w/h]), level of phys-
ical activity, and dietary fat intake, were assessed by using
unpaired two-sample ¢ tests for continuous variables, and
chi-squared tests for categorical variables. If continuous
variables were skewed or had outliers, Wilcoxon’s rank-
sum test was implemented. With the regression
assumptions met, multiple linear regression was per-
formed to produce effect sizes and 95% confidence inter-
vals (ClIs) of the exposure (glucose metabolism-related

SNPs with an additive and dominant model) to predict
the outcomes (fasting glucose, insulin, and HOMA-IR
levels) (Additional file 1: Tables S1.1-6).

The Cox proportional hazards regression model was
used to obtain hazard ratios (HRs) and 95% ClIs for
glucose, insulin, and HOMA-IR levels and glucose
metabolism-related SNPs in predicting breast cancer and
CRC. The proportional hazards assumption was tested
via a Schoenfeld residual plot and rho. The model was
adjusted for covariates (e.g., age, education, family
history of DM and cancer, comorbidity, lifestyle factors
including smoking, physical activity, depression, lifetime
partner, and diet, obesity, and reproductive history).

A direct and total effect size of glucose metabolism-
related SNP (exposure) on breast cancer and CRC (out-
come) was produced from the HR for glucose
metabolism-related SNP on cancer in the Cox model
that included all covariates, with (direct) and without
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(total) glucose, insulin, and HOMA-IR levels (mediator).
The mediation effect size and testing for its significance
(i.e. the pathway of glucose metabolism-SNPs and cancer
risk through insulin, glucose, and HOMA-IR levels) were
produced via the use of two complementary statistical
methods [44—46]: 1) bootstrapping the sampling distri-
bution for standard errors using Mplus software and 2)
the percentage change in the HRs by comparing a model
that includes all covariates with a model that includes all
covariates and the mediator [44, 45]. These two
approaches, differently from traditional Baron-Kenny
steps, enabled us not only to prevent results from being af-
fected by Type II errors but also to estimate the amount
and test the significance of the mediation effect [44]. To
evaluate the role of obesity and correlated lifestyle factors
as an effect modifier on the pathway of glucose metabolism
genetic factors, glucose metabolism traits, and cancer, we
stratified participants by those potential effect modifiers,
and within the strata, compared the proportions of the can-
cer risk contributed by glucose metabolism genetic variants
through the glucose metabolism traits (indirect effect) and
non-glucose metabolism pathways (direct effect). A two-
tailed p-value <0.05 was considered statistically significant.
The R statistical package (v 2.15.1) was used.

Results
Participants’ baseline characteristics between non-obese
(BMI <30.0) and obese (BMI >30.0) women are presented
in Table 1. Obese women were younger, less educated,
and more likely to have a history of hypertension and a
family history of DM than non-obese women. Also obese
women were less likely to be current smokers, and to
meet the physical activity and dietary guidelines, and they
were more likely to have higher percentages of calories
from dietary fat intake. Further, more obese women
tended to have a history of hysterectomy or oophorec-
tomy and earlier menarche, and they were less likely to
use exogenous estrogen. They also had higher serum
levels of fasting glucose, insulin, and HOMA-IR. We
stratified participants by waist circumference, w/h, level of
physical activity, and dietary fat intake, using a cutoff value
relevant to glucose intolerance, [47] and compared their
characteristics (Additional file 2: Tables S2.1-4). The par-
ticipants had been followed up through August 29, 2014
(a median follow-up period of 16 years), resulting in 326
participants (5% of non-obese and 8% of obese women)
diagnosed with breast cancer, and 364 participants (6% of
non-obese and 8% of obese women) diagnosed with CRC.
Sixteen SNPs were selected from previous GWAS as be-
ing associated with glucose metabolism traits. The allele
frequencies of these SNPs in our population were consist-
ent with frequencies of those in a European population
[48]. No significant differences in allele frequency between
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strata (obesity, physical activity, and high-fat diet) were
observed (Additional file 3: Tables S3.1-5).

Breast cancer risk associated with glucose metabolism-related
SNPs mediated through glucose metabolism traits, stratified
by obesity status (BMI, waist, and w/h), level of physical
activity, and dietary fat intake

We partitioned the total effect of glucose metabolism-
related SNPs on breast cancer risk into indirect (via glucose
metabolism traits) and direct (not via glucose metabolism
traits) effects. Each of these analyses was mediated by fas-
ting glucose (Table 2), HOMA-IR (Table 3), and insulin
levels (Additional file 4: Table S4.1). For each mediator, the
glucose metabolism-SNP—cancer association was evaluated,
stratified by obesity status (BMI < 30 vs. > 30; waist <88 cm
vs. > 88 c¢cm; and w/h < 0.85 vs. > 0.85), level of physical
activity (metabolic equivalent [MET] > 10 vs. < 10), and
dietary fat intake (< 40% vs. > 40% calories from fat).

Of the 16 candidate SNPs, three had significant asso-
ciations with breast cancer risk. The SNP—cancer risk ef-
fect was stronger in each SNP for a direct effect than an
indirect effect regardless of the mediator. Carriers of the
G6PC2 rs560887 T minor-allele were associated with in-
creased breast cancer risk in obese women, stratified by
BMI, waist, w/h, and dietary fat intake (Tables 2 and 3,
and Additional file 4: Table S4.1). Roughly 15% of the
breast cancer risk owing to this genetic variant was me-
diated via glucose metabolism traits in the obese group;
no significant differences in mediation effect were found
between the obese and non-obese women.

Carriers of the IGF1 rs35767 A minor-allele had asso-
ciations similar to those found in the carriers of G6PC2
(Tables 2 and 3, and Additional file 4: Table S4.1). Com-
pared with the carriers in the non-obese group (w/
h < 0.85), in whom no significant association with cancer
was found, the carriers in the obese group (w/h > 0.85)
had an association with increased breast cancer risk; fur-
ther, in this obese group, about 10% of the breast cancer
risk associated with this genetic variant was dependent on
glucose metabolism traits. In addition, no differences were
apparent in mediation effect between women with w/
h < 0.85 and those with w/h > 0.85. Carriers of the GCKR
rs780094 C major-allele had an association with increased
risk of breast cancer in women with w/h > 0.85 (Table 2);
approximately 50% of cancer risk attributable to this vari-
ant was mediated via glucose levels in this obese group.

CRC risk associated with glucose metabolism-related SNPs
mediated through glucose metabolism traits, stratified by
obesity status (BMI, waist, and w/h), level of physical
activity, and dietary fat intake

We also split the total effect of the CRC risk—glucose
metabolism SNP relationship into direct and indirect
effects through fasting glucose (Table 4), HOMA-IR
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(Table 5), and insulin levels (Additional file 4: Table
S4.2). For each mediator, those effects were stratified by
obesity status (BMI, waist, and w/h), level of physical
activity, and dietary fat intake. Overall, the direct effect
of glucose metabolism SNPs on increased CRC risk
accounted for a majority of the total effect, suggesting a
minimal influence of indirect effect on the total effect.
In addition, the indirect effects mediated via glucose
metabolism traits were not apparently different between
obesity strata.

Carriers of the GCK rs4607517 G major-allele had an
association with decreased CRC risk in non-obese women
with BMI < 30 and MET =10, and in obese women with
>40% calories from fat (see total effect in Tables 4 and 5).
Compared with the total effects, the direct effects of
glucose metabolism-related SNP on CRC risk, after
accounting for glucose (Table 4) or HOMA-IR (Table 5),
decreased slightly but were no longer statistically signifi-
cant; it suggested existence of glucose metabolism traits’
mediation effects (roughly, 10%) on the SNP—cancer risk.
Similarly, carriers of the CRY2 rs11605924 C major-allele
had an association with decreased CRC risk in women
with BMI < 30 and waist <88 cm (Tables 4 and 5); after
accounting for glucose (Table 4) or HOMA-IR (Table 5),
the direct effects were no longer significant, indicating po-
tential mediation effects (roughly 5%) on the SNP-CRC
risk association. In addition, carriers of the G6PC2
rs560887 T minor-allele had an association with decreased
CRC risk in women with waist <88 cm, and the mediation
effect of glucose on the SNP-CRC risk association in
these non-obese carriers resulted in the decreased direct
effect (roughly 15%) of CRC risk in relation to G6PC2
carriers (Table 4).

In contrast, carriers of the FADSI rs174550 T major-
allele, the ADRA2A rs10885122 G major-allele, and the
SLC30A8 rs11558471 A major-allele had associations with
increased CRC risk in obese women (BMI > 30, waist
>88 c¢m for FADSI carriers; w/h > 0.85 for ADRA2A car-
riers; and >40% calories from fat for SLC30A8 carriers)
(Tables 4 and 5, and Additional file 4: Table S4.2).
Roughly, less than 10% of the CRC risk due to each
genetic variant was mediated via glucose, HOMA-IR, or
insulin in the relevant obese groups. No significantly
different mediation effects were found between obesity
strata. Likewise, carriers of the DGKB/TMEMI95
rs2191349 G minor-allele had an association with in-
creased risk of CRC in obese women (BMI > 30, waist
>88 c¢cm, and w/h > 0.85) (Table 5 and Additional file 4-
Table S4.2). The insulin effect as a mediator in these obese
carriers was minimal (15%) (Additional file 4: Table S4.2).
On the contrary, the HOMA-IR mediator effect in this
group (Table 5) accounted for approximately 50% of the
total effect. This resulted in the elevated and significant
direct effect of SNP—CRC risk (i.e. from total effect after
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accounting for the mediators); it suggests a positive effect
of HOMA-IR on the total effect of the SNP-CRC
association.

Discussion

In this retrospective study of data from a large cohort of
postmenopausal women, by using 16 glucose metabolism-
related SNPs previously associated with glycemic metabolic
traits, [40—42] we partitioned the total effect of glucose me-
tabolism genetic variants on breast cancer and CRC into
direct (cancer risk associated with SNPs mediated through
pathways other than glucose metabolism traits) and indirect
(cancer risk associated with SNPs mediated by glucose me-
tabolism traits) effects. By stratifying data via obesity status
and obesity-relevant lifestyle factors, we also assessed how
those effects differed between strata. There have been rela-
tively few population-based epidemiologic studies between
glucose metabolism genetic variants and breast cancer and
CRC risk [16-22]. To our knowledge, this is the first study
to evaluate the association between glucose metabolism
genetic variants and breast cancer and CRC risk by parti-
tioning the glucose metabolism genetic variants’ effects on
the risk for those cancers into direct and indirect effects.
Additionally, we assessed the role of obesity and related
factors as effect modifiers.

We found that among thel6 glucose metabolism-
related SNPs evaluated, three were associated with
breast cancer risk, and seven with CRC risk. These
SNPs’ associations with cancer risk differed between
non-obese and obese carriers, indicating that glucose
metabolism-related SNPs’ interactions with obesity and
related lifestyle factors influence cancer risk. For most of
the SNPs we studied, the direct effects on cancer risk
accounted for a majority of the total effect: only roughly
15% of the cancer risk associated with glucose
metabolism-related SNPs was mediated via glucose me-
tabolism traits. This suggests that glucose metabolism
traits are not the main mediators through which glucose
metabolism-related SNPs are associated with increased
risk for breast cancer and CRC. Further, no apparent
differences in the indirect effects (mediated via glucose
metabolism traits) were observed between non-obese
and obese strata. Our findings thus indicate that glucose
metabolism-related genetic variants interact with obesity
and lifestyle factors, resulting in altered cancer risk not
through glucose metabolism traits pathways, but
through different mechanisms.

In relation to breast cancer risk, obese carriers of G6PC2,
IGF1, and GCKR had an association with increased risk.
Expression of the G6PC2 gene (glycolytic inhibitor) is ele-
vated in cancer cells and related to a decreased survival rate
in cancer patients, suggesting its role in glucose metabolism
and cell cycle control in cancer cells [49-51]. The IGFI
and GCKR variants are related to glucose metabolism; both
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are highly expressed in the liver, contributing to hepatic
glucose metabolism [41]. IGFI encodes insulin-like growth
factor I, which is well known to increase cancer risk, and
elevates HOMA-IR levels [22, 40]. Additionally, GCKR
inhibits glucokinase, a key protein in glucose metabolism,
leading to increased hepatic glucose production [41, 52].
These facts support the biological plausibility of the
carriers’ association with increased breast cancer risk.
Further, in this study, the carriers of these variants had
association with breast cancer, but only among the obese
women, suggesting that adiposity plays a strong role in
modulating the effect of these variants on carcinogenesis.
Interestingly, the mediation effects of glucose metabolism
traits accounted for only a small portion of the overall the
G6PC2- and IGF1-cancer associations in both non-obese
and obese women, suggesting that different pathways exist
through which obesity interacts with the G6PC2 and IGF1
genetic variants and breast cancer risk. In contrast, the
GCKR variants effect on cancer was mediated through
glucose by 50% in obese women (but not in non-obese
women), indicating that an adiposity-related carcinoge-
netic pathway in this variant intermingles with the
glucose-intolerance system.

Of the seven SNPs related to CRC risk, three (GCK,
CRY2, and G6PC2) had a lower association with CRC
among non-obese women. GCK opposing G6PC2 encodes
for glucokinsase, and mutation of this gene is related to
DM and glucose metabolism; further, the GCK variant is
associated with prostatic and pancreatic cancers [53, 54].
Our study showed a reduced CRC risk in non-obese female
carriers of this variant, indicating that a cancer-specific
mechanism incorporating glucose metabolism traits and
genes as well as obesity should be investigated. In addition,
mutation of CRY2 results in dysfunction of circadian
rhythms and is associated with tumorigenesis [20, 55]. Our
finding of reduced CRC risk associated with the CRY2
variant in non-obese women warrants further study.

The other four of the seven CRC related SNPs in our
study (FADSI, ADRA2A, SLC30A8, and DGKB/TMEM1195)
had an increased relationship with CRC among obese
women. FADSI1, which encodes fatty acid desaturase 1,
produces arachidonic acid related to increased insulin.
One earlier study [19] reported CRC risk associated
with this genetic variant, and their results are consis-
tent with ours. ADRA2A and SLC30A8 have not been
studied for an association with CRC, but the func-
tional changes that have been reported followed by
mutations (in ADRA2A, modified insulin release by
adrenergic suppression, and in SLC30AS8, altered stor-
age and maturation of insulin in beta cells [40, 56])
support our findings of increased CRC risk in relation
to these variants. Finally, DGKB regulates diacylglyc-
erol and potentiates insulin secretion, indicating that
its mutation influences glucose homeostasis [40]; our
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findings suggest that this genetic variant is related to
carcinogenesis in obese women.

Although obesity interacts with these seven SNPs and
influences CRC risk differently between non-obese and
obese carriers, the indirect effects of glucose metabolism
traits on the SNP-CRC risk were minimal and did not
differ between obesity strata (except in the case of
DGKB/TMEM195). Further study is needed to examine
obesity—glycemic gene—CRC mechanisms mediated
through different pathways. In contrast, among obese
women, roughly 50% of CRC risk associated with
DGKB/TMEM195 variant was mediated via HOMA-IR.
This supports the role of adiposity in carcinogenesis
through deregulated glycemic metabolism.

We did not conduct any subtype analyses of breast
cancer cases due to insufficient statistical power (cases
represented less than 3% of each subset). Since we were
using this analysis to generate new hypotheses, we
did not include any multiple-testing adjustments in
our analyses. On the basis of prior findings of 16 loci
associated with glucose metabolism, we tested the
hypothesis that these genetic variants’ interactions
with obesity and lifestyle modifiers influence glucose
homeostasis, resulting in altered cancer risk. The
small indirect effect could be due to measurement
error in the mediators. Since our study was con-
ducted using data from only European-American
postmenopausal women, care should be taken when
generalizing our findings to other populations.

Conclusions

Our results suggest that in postmenopausal women,
glucose intolerance has a potential role in the risk for breast
cancer and CRC. Obesity modulates the glucose metabo-
lism genetic variant—cancer risk association through path-
ways other than glucose metabolism traits. Further studies
are needed to explore these complicated mechanisms. Our
study provides insight into gene-lifestyle interactions and
suggests data on potential genetic targets for use in clinical
trials for cancer prevention and intervention strategies to
reduce the cancer risk in postmenopausal women.

Additional files

Additional file 1: Effect size of glucose metabolism-relevant SNPs on
metabolic biomarkers. Table S1.1.Effect size of glucose metabolism-relevant
SNPs on glucose level in the pathway of glucose metabolism genetic variants,
glucose metabolism traits, and breast cancer risk, stratified by obesity status
and obesity-related factors. Table S1.2. Effect size of glucose metabolism—
relevant SNPs on HOMA-IR level in the pathway of glucose metabolism
genetic variants, glucose metabolism traits, and breast cancer risk, stratified
by obesity status and obesity-related factors. Table S1.3. Effect size of
glucose metabolism-relevant SNPs on glucose level in the pathway of
glucose metabolism genetic variants, glucose metabolism traits, and CRC
risk, stratified by obesity status and obesity-related factors. Table S1.4. Effect
size of glucose metabolism-relevant SNPs on HOMA-IR level in the pathway
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of glucose metabolism genetic variants, glucose metabolism traits, and CRC
risk, stratified by obesity status and obesity-related factors. Table S1.5. Effect
size of glucose metabolism-relevant SNPs on insulin level in the pathway of
glucose metabolism genetic variants, glucose metabolism traits, and breast
cancer risk, stratified by obesity status and obesity-related factors. Table $1.6.
Effect size of glucose metabolism-relevant SNPs on insulin level in the pathway
of glucose metabolism genetic variants, glucose metabolism traits, and CRC
risk, stratified by obesity status and obesity-related factors. (DOC 188 kb)

Additional file 2: Characteristics of participants. Table S2.1.
Characteristics of participants, stratified by obesity (measured via waist
circumference). Table S2.2. Characteristics of participants, stratified by
obesity (measured via w/h ratio). Table $2.3. Characteristics of
participants, stratified by physical activity level. Table S2.4. Characteristics
of participants, stratified by dietary fat intake. (DOC 387 kb)

Additional file 3: Allele frequencies of 16 glucose metabolism-relevant
SNPs. Table S3.1. Allele frequencies of 16 glucose metabolism-relevant
SNPs, stratified by obesity (measured via BMI). Table S3.2. Allele
frequencies of 16 glucose metabolism-relevant SNPs, stratified by obesity
(measured via waist circumference). Table S3.3. Allele frequencies of 16
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