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Abstract

Background: Triple negative breast cancer (TNBC) is a heterogeneous disease that lacks unifying molecular alterations
that can guide therapy decisions. We previously identified distinct molecular subtypes of TNBC (TNBCtype) using gene

expression data generated on a microarray platform using frozen tumor specimens. Tumors and cell lines representing

the identified subtypes have distinct enrichment in biologically relevant transcripts with differing sensitivity to standard
chemotherapies and targeted agents. Since our initial discoveries, RNA-sequencing (RNA-seq) has evolved as a sensitive
and guantitative tool to measure transcript abundance.

Methods: To demonstrate that TNBC subtypes were similar between platforms, we compared gene expression from
matched specimens profiled by both microarray and RNA-seq from The Cancer Genome Atlas (TCGA). In the clinical care
of patients with TNBC, tumor specimens collected for diagnostic purposes are processed by formalin fixation and paraffin-
embedding (FFPE). Thus, for TNBCtype to eventually have broad and practical clinical utility we performed RNA-seq gene
expression and molecular classification comparison between fresh-frozen (FF) and FFPE tumor specimens.

Results: Analysis of TCGA showed consistent subtype calls between 91% of evaluable samples demonstrating
conservation of TNBC subtypes across microarray and RNA-seq platforms. We compared RNA-seq performed on 21-paired
FF and FFPE TNBC specimens and evaluated genome alignment, transcript coverage, differential transcript enrichment
and concordance of TNBC molecular subtype calls. We demonstrate that subtype accuracy between matched FF and
FFPE samples increases with sequencing depth and correlation strength to an individual TNBC subtype.

Conclusions: TNBC subtypes were reliably identified from FFPE samples, with highest accuracy if the samples were less
than 4 years old and reproducible subtyping increased with sequencing depth. To reproducibly subtype tumors using
gene expression, it is critical to select genes that do not vary due to platform type, tissue processing or RNA isolation
method. The majority of differentially expressed transcripts between matched FF and FFPE samples could be attributed to
transcripts selected for by RNA enrichment method. While differentially expressed transcripts did not impact TNBC
subtyping, they will provide guidance on determining which transcripts to avoid when implementing a gene set size
reduction strategy.
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Background

Multi-gene prognostic and predictive gene signatures are
now routinely performed in pathology laboratories to
guide treatment decisions in breast [1], lung [2] and
colorectal cancers [3]. Previously we identified transcrip-
tional heterogeneity and unique molecular subtypes
from patients with triple negative breast cancer (TNBC)
using data from gene expression microarrays [4]. The
TNBC molecular subtypes identified include two basal-
like (BL1 and BL2), an immunomodulatory (IM), a mes-
enchymal (M), a mesenchymal stem-like (MSL), and a
luminal AR (LAR) subtype [4]. Retrospective analysis of
TNBC molecular subtypes was shown to be predictive of
response to neoadjuvant anthracycline and cyclophos-
phamide followed by taxane [5]. Our previous study
showed BL1 had the highest pCR rate (50%) at time of
surgery and BL2 and LAR had the lowest (0% and 10%,
respectively) [5]. The ability to determine TNBC mo-
lecular subtyping may guide treatment decisions for
TNBC patients.

Originally, TNBC molecular subtypes were identified by
correlating gene expression to six centroids comprising
2188 genes representing each subtype [4]. Recently, these
subtypes were further reduced into four tumor intrinsic
subtypes by the removal of the immunomodulatory and
mesenchymal-stem like subtypes due to confounding ex-
pression from infiltrating immune and surrounding stro-
mal cells, respectively [6]. For clinical utility, large gene
signatures require size reduction and need to be generated
using RNA isolated from routine FFPE tissues. Reprodu-
cible subtyping requires careful selection of genes that do
not vary by platform, tissue processing or RNA isolation
methods. Genes that are preferentially degraded in FFPE
or inadequately selected for by poly (A) selection should
be avoided when selecting smaller panels of genes.

Transcriptional profiling by RNA sequencing (RNA-seq)
provides unprecedented sensitivity and quantitative meas-
urement of a diverse range of RNA species [7]. However,
transcriptome composition will differ depending on enrich-
ment protocols. In order to remove the overwhelming ma-
jority of ribosomal RNA (rRNA) transcripts, RNA can be
enriched by poly (A) selection or ribosomal depletion. Poly
(A) enrichment fails to capture non-poly (A) transcripts or
those that are partially degraded and is not compatible with
RNA isolated from formalin-fixed paraffin-embedded
(FFPE) tissues. Fresh-frozen (FF) tissue is ideal for all
methods of transcriptional quantification, however they are
not widely available for routine clinical assays and are costly
to collect and maintain. In contrast, FFPE tissue samples
are routinely collected throughout patient care and yield
relatively low amounts of degraded RNA. Several studies
have demonstrated that RNA-seq using FFPE provides reli-
able gene expression profiling correlating well with FF tis-
sue analyzed by quantitative PCR [2, 8-11].
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In order to determine if RNA-seq would produce high
quality data and permit proper molecular classification of
TNBC, we compared the gene expression and TNBC sub-
type concordance with RNA obtained from 98 matched
FF and FFPE tumors processed on microarray or RNA-
seq platforms, respectively. The feasibility of performing
molecular subtyping on RNA isolated from TNBC speci-
mens was further determined by comparing RNA-seq data
from 21 matched FF and FFPE samples sequenced on ei-
ther Illumina HiSeq or MiSeq platforms. Our analyses
show that the majority of differential transcripts identified
between matched FF and FFPE samples could be attrib-
uted to RNA isolation methods.

Methods

Tumor tissue acquisition

Tumor tissues were acquired from an active clinical trial
and the Vanderbilt Cooperative Human Tissue Network
(CHTN). All patients provided written informed consent
prior to enrollment and were approved by an Independent
Ethics Committee at Vanderbilt University. Tissues from
the CHTN have been obtained from de-identified female
patients. Vanderbilt University Institutional Review Board
(exempt form IRB#090026) was reviewed and determined
that the study does not qualify as “human subject” re-
search per §46.102(f) (2). Tissue was obtained from the
pathology lab before being discarded. No identifiers were
included and there was no contact with donor.

FF RNA isolation and poly (a) capture

FF tissue sections were processed using the RNeasy Mini
Kit (QIAGEN cat. # 74104). Briefly, the samples were dis-
rupted in 350 pL Buffer RLT with dithiothreitol (DTT),
and 0.5 mm glass beads (BioSpec cat # 11079105) on a
Mini-Beadbeater (Bio-Spec cat # 3110BX). The tissue lys-
ate was then purified via RNAeasy column and eluted in
50 pL nuclease-free water. RNA quantity was measured
via Qubit RNA assay (Life Technologies cat # Q32855)
and quality via Agilent 2200 TapeStation R6K ScreenTape
assay (cat # 5067—-5367).

FF samples were enriched for messenger RNA
(mRNA) by treating the total RNA (tRNA) extracted
from tissue sections with NEBNext Magnetic Oligo d
(T)25 Beads (New England Biolabs cat. # E7490S) that
bind to the poly-A tail of mRNA molecules. After re-
peated washes and re-suspension in binding buffer, the
NEBNext beads were combined with tRNA and incu-
bated at 65 °C for 5 min on a thermal cycler before bring
the temperature down to 4 °C in order to denature the
RNA and facilitate binding of the poly-A tailed RNA to
the beads. When the samples reached 4 °C they were re-
moved from the thermal cycler and allowed to incubate
at room temperature for 5 min before being placed on a
magnetic rack for 2 min to separate the poly-A RNA
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bound to the beads from the solution. After removal of
the supernatant, the samples were washed twice to re-
move unbound RNA. The samples were then placed
back on the magnet and the supernatant was removed
after a 2 min incubation at room temperature. The
beads were then re-suspended in the Tris buffer and
mixed thoroughly by pipette before being placed on a
thermal cycler and incubated at 80 °C for 2 min and
then cooled 25 °C to elute the poly-A RNA from the
beads. Tubes were removed from the thermal cycler
when the temperature reached 25 °C. Binding buffer was
added to each sample to facilitate the RNA’s binding to
the beads and they were incubated at room temperature
for 5 min before being placed on the magnetic stand.
After 2 min on the magnet the supernatant was removed
and discarded. The beads were then rinsed twice with
Wash Buffer while off the magnet. The mRNA was then
eluted off the beads by adding 17 ul of the Tris Buffer
and incubating the sample at 80 °C for 2 min before im-
mediately returning the samples to the magnet. After
2 min on the magnet the purified mRNA was collected
by transferring the supernatant to a clean nuclease-free
PCR tube and placing on ice.

FFPE RNA isolation and rRNA reduction

FFPE tissue sections were deparaffinized using deparaffi-
nization solution (QIAGEN cat # 19093) processed with
the RNeasy FFPE kit (QIAGEN cat # 73504). FFPE RNA
was eluted in 25 pL nuclease-free water. RNA quantity
was measured via Qubit RNA assay and quality via Agi-
lent 2200 TapeStation R6K ScreenTape assay (cat #
5067-5367. Due to the lack of RIN numbers for FFPE
samples, the RNA size was qualified by an average base
pair fragment size ranging from 65 to 1000 bp, and
recorded. For FFPE samples, the ribosomal RNA was
removed from the samples using the Ribo-Zero Gold
(H/M/R) - Low input (Epicentre cat # LIG1224) kit. This
was only performed on FFPE samples where an adequate
amount of RNA was extracted from the tissue (0.2—1.0
pg of RNA). Samples with less than 0.2 pg of RNA were
not rRNA depleted but treated with the TotalScript li-
brary preparation protocol described below rather than
the ScriptSeq protocol used on all other samples. Prior
to beginning rRNA depletion, the Ribo-Zero beads were
removed from the storage solution and washed twice
with RNase-Free water (before being resuspended in
Magnetic Bead Resuspension Solution and combined
with RiboGuard RNase Inhibitor) and stored at room
temperature until needed. Next, the total RNA samples
were combined with Ribo-Zero Reaction Buffer and Ribo-
Zero rRNA Removal Solution and incubated at 68 °C for
10 min before a 5 min incubation at room temperature.
This sample mixture was then combined with the washed
magnetic beads that were prepared first and mixed
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thoroughly. After a 5 min incubation at room temperature,
the samples were vortexed at level 5 for 10 s and placed at
50 °C for 5 min. The samples were then placed on the mag-
netic stand for 1 min before the supernatant (containing
the ribosomal depleted RNA) was removed and transferred
to a labeled RNase-Free microcentrifuge tube and purified
using RNAClean XP (Beckman Coulter Cat. No. A63987).

Library construction and sequencing

For FF samples, the mRNA isolated using the NEBNext
PolyA Module was incubated at 85 °C for 5 min with
random-hexamer primers linked to capture tags in frag-
mentation solution and then immediately placed on ice
to simultaneously fragment the RNA anneal tagged
¢DNA synthesis primers. FFPE samples were not frag-
mented but were instead annealed to the cDNA synthe-
sis primers by incubating the ribosomal RNA-depleted
samples with tagged random hexamers at 65 °C for
5 min before placing them immediately on ice. For FFPE
samples, the fragmentation solution was then added
along with a cDNA synthesis master-mix and DTT. For
FF samples, only the cDNA synthesis master-mix and
DTT were added. cDNA synthesis was then performed
on both sample types by incubating at 25 °C for 5 min
followed by 42 °C for 20 min and then the temperature
was raised to 37 °C and a Finishing Solution was added.
The samples were then incubated at 37 °C for 10 min
followed by 95 °C for 3 min before the temperature was
reduced to 25 °C and random hexamers linked to a ter-
minal tag and a DNA polymerase were added to apply a
capture tag to the 3' end of the cDNA molecules. The
samples were then incubated at 25 °C for 15 min and
then 95 °C for 3 min before being placed immediately
on ice. FFPE samples were then purified using the MinE-
lute PCR Purification Kit from Qiagen. FF samples were
purified using the Agencourt AMPure XP system from
BeckmanCoulter at a bead to sample volume ratio of
0.9. All samples were then amplified by PCR using
primers that anneal to the capture tags at the 3" and 5’
ends of the cDNA. These sequencing primers also con-
tained Illumina adapter sequences and sample identifier
indexes, enabling the PCR to simultaneously amplify the
c¢DNA library while also applying sequencing adaptors
and indexes. After PCR, all samples were purified using
the Agencourt AMPure XP system from BeckmanCoul-
ter at a bead to sample volume ratio of 0.9 and quality
was assessed using the Agilent 2200 TapeStation D1000
ScreenTape assay. The libraries were then quantified
using the Library Quantification Kit from Kapa and di-
luted to a concentration of 4 nM. Samples analyzed on
the same sequencer run were pooled equally and dena-
tured by incubating in 0.2 N NaOH for five min before
being diluted to 15 pM and sequenced on an illumina
MiSeq instrument using version 3150 cycle kit. All
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sequences generated are deposited in the Sequence Read
Archive under SRP101418.

Sequencing alignment

Raw fastq files were obtained for each sample and
aligned to the Homo sapiens reference using star [12].
The aligned reads were sorted and indexed using SAM-
tools and count tables were generated for each gene or
exon using the HTSeq-count package [13].

Gene expression and pathway evaluation

Differential genes between FF and FFPE (FDR p-value <0.5,
absolute fold change >2 and average read count >4) were
identified using DESeq2 [14]. Differential genes were ana-
lyzed by gene set enrichment analysis (GSEA) using cellular
compartments (C5) and canonical pathways (C2, [15]).

TNBC subtyping of gene expression from TCGA samples
processed on microarray and RNA-seq platforms
RNA-seq and Agilent microarray gene expression data for
TCGA breast cancer (BRCA) study were obtained from the
Broad GDAC Firehose (http://gdac.broadinstitute.org/).
Gene level 3 RSEM mRNA (stddata_ 2016_01_28 run)
and lowess normalized Agilent microarray expression
(stddata__2016_01_28 run) were downloaded and ov-
erlapping TNBC samples were identified by common
participant barcode (TCGA-XX-XXX). RNA-seq and
microarray data were subtyped independently as previ-
ously described [16].

TNBC subtyping of matched FF and FFPE RNA-seq
specimens

TNBC subtyping was performed on FPKM normalized
RNA-seq counts from paired FF and FFPE samples
uploaded in separate batches to TNBCtype website (http://
cbc.mc.vanderbilt.edu/tnbc/) as previously described [16].

Statistical methods

Spearman rank correlation coefficient was calculated on
gene count for all FF/FFPE or HiSeq/MiSeq paired sam-
ples. The significance of correlation difference was per-
formed by Mann-Whitney U test. Clopper-Pearson exact
confidence bound was used to determine confidence
interval for a binomial distribution.

Results

TNBC subtype ‘calls’ are highly concordant irrespective of
data generation platform

To determine if TNBC subtypes that were previously
identified from a meta-analysis of gene expression from
publically available microarray data could be reliably
reproduced with RNA-seq, we evaluated gene expression
data generated from FF TNBC samples available from
The Cancer Genome Atlas (TCGA). We identified 98
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samples with gene expression data generated on both
microarray and Illumina RNA-seq platforms. We per-
formed TNBC subtyping and achieved a similar distribu-
tion of samples in TNBC subtypes as previously
reported [4, 17] with 31% BL1, 18% BL2, 29% M, 18%
LAR and 4% unclassified (Additional file 1: Table S1).
The concordance between microarray and RNA-seq pro-
files was 91% [CI = 83.3%, 95.7%] (89 of 98 identical
calls), with similar agreement to previous comparisons
of prognostic signatures between platforms [4, 18], dem-
onstrating conservation of TNBC subtypes across plat-
forms (Additional file 1: Table S1). Since each sample
receives a subtype correlation to one of the four sub-
type centroids, we compared the correlation of each
sample to each of the subtypes for the microarray and
RNA-seq data. There was a high degree of subtype cor-
relation to each of the subtypes regardless of subtype
call (R* BL1 = 0.87, BL2 = 093, M = 0.97 and
LAR = 0.83), demonstrating conservation of gene ex-
pression across RNA-seq and microarray platforms and
suggesting that subtype discordance were likely due to
other factors (Additional file 2: Fig. S1).

Since TNBC subtype calls are generated from a con-
tinuous scale and can positively correlate to multiple
subtypes as previously seen with overlapping PAMS50
subtype distributions [19], we created a subtype predic-
tion confidence score using the difference in correlation
from the first and second highest subtype correlations
Prediction confidence scores from matched microarray
versus RNA-seq samples were highly correlated
(r* = 0.763) and discordant subtype calls were typically
of low confidence (Fig. la). To determine an accurate
confidence cutoff, we plotted the validation rate as a func-
tion of confidence score for RNA-seq platform (Fig. 1b).
At a difference of 0.2 between the highest and second
highest correlation, the prediction confidence was greater
than 95% between matched microarray and RNA-seq
samples (Fig. 1b). In addition, the prediction accuracy pro-
portionally increased with the correlation strength of each
subtype (Fig. 1c). These data demonstrate that TNBC sub-
type “calls” are highly reproducible between microarray
and RNA-seq platforms when using FF tissue, especially
when samples have high correlations to a single subtype.

Comparison of RNA-seq performed on matched FF and
FFPE TNBC samples

Since the majority of biopsy specimens clinically available,
as part of routine care, are in the form of FFPE tissues, we
evaluated the feasibility, robustness and reproducibility of
molecular subtyping of FFPE-processed TNBC specimens.
We collected matched FF and FFPE tumor RNA from 21
TNBC patients. We performed RNA-seq on total RNA
enriched for the coding transcriptome, (poly-A mRNA se-
lection) for FF tissues or ribosomal depleted RNA for
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Fig. 1 TNBC molecular subtype concordance between matched FF and FFPE samples processed on microarray and RNA-seq improves with increased
prediction confidence. a Scatterplot shows TNBC subtype accuracy between microarray and RNA-seq as a function of prediction confidence in the
TCGA breast (BRCA) cohort. b Plot shows RNA-seq prediction accuracy by confidence score. Vertical line cutoff demarks the prediction confidence score
generating 95% concordance between platforms. ¢ Scatterplot shows the concordance between microarray and RNA-seq platforms by strength of
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FFPE, and sequenced 10 matched pairs of RNA using the
[llumina MiSeq platform and 11 matched pairs of RNA
using the Illumina HiSeq platforms (Additional files 1 and
3: Tables S1 and S2). Comparisons between platforms and
tissue processing were made to evaluate genome align-
ment, transcript coverage, differential transcripts and con-
cordance in TNBC molecular subtype calls.

Genome alignment

Raw reads were aligned to the reference genome (hgl9)
with Ensembl (v75) annotation and read alignment was
evaluated between platforms and tissue processing. The
total number of aligned reads was similar between
matched FF and FFPE samples on the MiSeq (1.30E” vs.
1.36E7, p = 0.63) or HiSeq (8.08E’ vs. 8.53E’, p = 0.55)
platforms, but the HiSeq had on average 6.2 times more
aligned reads (Additional file 4: Fig. S2A and B). The num-
ber of aligned reads to the reference genome tended to
vary by sample rather than sample processing and RNA
isolation method, as demonstrated by lack of significant
difference in the percentage of unmapped reads between
FF and FFPE (8.8% vs. 7.6%, p = 0.5006) (Additional file 4:
Fig. S2C). However, the number of unmapped reads was
significantly increased in older (>10 years) FFPE samples
compared to age matched FF samples (13% vs. 4%,
p = 0.0066) (Additional file 4: Fig. S2D).

Since >80% of total RNA is composed of ribosomal
RNA (rRNA), and 3" RNA degradation is common in
FFPE samples, poly-A transcript selection is not appro-
priate and ribosomal depletion provides a more accurate
transcript estimation for FFPE samples. To determine
the efficiency of ribosomal depletion, we calculated the

ratio of rRNA to total coding RNA transcripts. The frac-
tion of rRNA was less than 0.0011% and 0.0014% for
poly-A selected transcripts from FF tissue processed on
the MiSeq and HiSeq platforms, respectively. This frac-
tion was similar to those obtained by ribosomal depleted
RNA from FFPE on the MiSeq and HiSeq platforms
(0.2169% and 0.0085%, respectively), demonstrating
effective reduction of rRNA species.

Transcriptome coverage

To determine the accuracy of transcript coverage, we
evaluated the on- and off- target reads in each of the
paired FFPE and FF samples. There were no significant
differences between on-target, intergenic and intronic
aligned reads on the MiSeq compared to the HiSeq
platform (Fig. 2a). However, poly-A capture resulted in
significantly more reads aligned to the transcriptome in
the RNA isolated from FF specimens compared to FFPE
specimens analyzed on both the MiSeq (82% vs. 28%,
p < 0.0001) and HiSeq (86% vs. 34%, p < 0.0001) plat-
forms (Fig. 2a). The vast majority of off-target reads
enriched in FFPE samples were aligned to intronic re-
gions, representing nascent unprocessed RNA species
removed from FF samples by poly-A selection (HiSeq
60% vs. 14%, p < 0.0001 and MiSeq 58.4% vs. 10.7%,
p < 0.0001) (Fig. 2a and b). In addition there were sig-
nificantly more reads mapping to intergenic regions in
FFPE compared to FF on both the HiSeq (8% vs. 3%,
p = 0.001) and MiSeq (9% vs. 3%, p = 0.0187) platforms.
The latter could be mitigated by increased coverage as
the percentage of intergenic reads was decreased on the
HiSeq platform.
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Fig. 2 MiSeq and HiSeq platform mapped read comparison from FF-
and FFPE-derived RNA sequences. a Barplot depicts the percentage of
mapped reads that are on-target, or off-target (intronic and intergenic)
for FF and FFPE samples processed on MiSeq and HiSeq platforms. b
Beeswarm box plot shows mapped reads (%) form individual FF (blue)
and FFPE (red) samples processed on the HiSeq

Correlation between FF and FFPE transcriptome profile
Since the major difference between the MiSeq and
HiSeq platforms is the number of total reads sequenced,
we examined if this difference in coverage impacts over-
all transcript correlation between matched FF and FFPE
samples. The correlation between matched FF and FFPE
pairs were significantly (»p < 0.0001) better on the HiSeq
platform compared to the MiSeq platform, for all tran-
scripts, protein-coding transcripts and those belonging
to the TNBC centroid used to define TNBC subtypes,
suggesting that MiSeq platform may not be sufficient for
accurate transcript abundance estimation (Fig. 3).

The average Spearman correlation of gene expression
from paired FF and FFPE samples was higher for HiSeq
(0.88 +/- 0.04) samples compared to MiSeq (0.83 +/-
0.08) pairs. However, the MiSeq correlations were
significantly affected by sample age, as four tissue sam-
ples were >10 years from collection. Correlations be-
tween FF and FFPE were significantly better in paired
samples collected more recently (< 4 years) versus older
pairs (> 10 years) (0.88 vs. 0.78, p = 0.0014) (Additional
file 5: Fig. S3). Correlations were similar between HiSeq
and MiSeq when only # < 4 years old samples were eval-
uated in each platform (88% vs. 86%, p = 0.4051), dem-
onstrating a high degree of similarity between gene
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expression profiles of matched FF and FFPE samples,
regardless of platform (Additional file 5: Fig. S3).

FF and FFPE differential transcript identification
To determine the similarity of expression levels for
mapped transcripts between FF and FFPE samples, we
performed hierarchical clustering of all the pairwise
sample correlations on all transcripts (Fig. 4a and b).
Only two pairs clustered together with majority of the
FF and FFPE samples clustering in two groups (Fig. 4a
and b). Principal component analysis (PCA) showed two
groups with differential gene expression originating from
FF and FFPE processing (Fig. 4c). Similar results were ob-
tained with samples on the MiSeq platform (Additional
file 6: Fig. S4). To identify transcripts that differ due to tis-
sue processing and sequencing preparation, we performed
differential gene expression analysis between FFPE and FF
samples. Using a cutoff of 2-fold change (FC) and adjusted
p-value < 0.05, we identified that 43.3% (11,953 of 27,577)
of transcripts were differentially expressed on the HiSeq
platform and 28% (4729 of 17,018) of transcripts differen-
tially expressed on the MiSeq platform (Additional file 7:
Table S3). The increase in differential genes present on
the HiSeq platform is likely from low abundance tran-
scripts that appear due to increased sequencing depth.
Removal of differentially expressed transcripts between
FF and FFPE significantly increased the average pair-wise
correlation on HiSeq (0.879 + 0.03 to 0.957 + 0.01,
p = 3.7E = 6), but not the MiSeq platform (0.83 + 0.07 to
0.89 + 0.06,p = 0.11) (Additional file 4: Fig. S2B). Removal
of differentially expressed genes resulted in better hier-
archical clustering of each matched FF and FFPE pairs,
demonstrating effective removal of transcripts that vary
due to tissue processing and RNA enrichment (Fig. 4c—e).

Differential RNA species enrichment

Since RNA was processed with different methods for FF
and FFPE, we annotated transcript class and examined if
sample processing preferentially enriched for different
RNA species. Majority of the differential transcripts were
enriched in the FFPE samples (78%, 9362 of 11,953) and
most were in non-coding genes that included antisense,
long non-coding RNA (lincRNA), small nuclear RNA
(snRNA), small nucleolar RNAs (snoRNA), microRNA
(miRNA), rRNA, 3’ noncoding (ncRNA) and pseudo-
gene transcripts (Table 1). Protein-coding transcripts
were the least differential class of transcript with 27% of
protein coding differential between FF and FFPE. How-
ever, there was minimal selection bias for protein-coding
genes by tissue processing as both FF (53%) and FFPE
(48%) samples had similar percentages of differentially
expressed protein coding transcripts. The majority of
differential transcripts can be explained by differences in
RNA isolation methodology. We determined that poly-A
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selection with FF samples enriched for coding tran-
scripts and selected against noncoding RNA species.
Similar differential transcripts were observed on the
MiSeq platform (Additional file 3: Table S2).

As anticipated, there was only a small increase in
the number of differential protein coding transcripts

in FF (53%) versus FFPE (48%). To better understand
the differences in mRNA species isolated from
matched FF and FFPE samples, we performed gene
ontology (GO) and pathway analysis on differential
protein coding transcripts that were enriched in FF or
FEFPE. Pathway analysis showed a typical distribution
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of proteins across cellular compartments (GO C5) in
FF samples (Table 2) and an unexpected enrichment
of transcripts coding for plasma membrane proteins in
FFPE samples (Table 3). Canonical pathway (GO C2)
analysis showed an enrichment of genes that encode
for G-Protein Coupled Receptors (GPCR), extracellu-
lar matrix (ECM) proteins and neuronal receptors in
FFPE samples. Since ECM, GPCR and membrane pro-
teins tend to be large molecules, we examined if tran-
script length could account for the enrichment of
plasma membrane proteins in FFPE samples. To de-
termine if the length of protein coding transcripts is
affected by FF or FFPE sample processing, we exam-
ined the base pair (bp) length of all transcripts, non-
differential transcripts and differential transcripts
enriched in FF or FFPE samples. The average tran-
script length in all protein-coding transcripts
(3699 bp) was similar in non-differential transcripts
(4132 bp). However differential transcripts enriched in
FFPE samples were significantly longer than those
enriched in FF (6309 bp vs. 3770 bp p < 2.2e-16) (Fig.
5a and b). To better understand this transcript length
bias, we evaluated exon-level counts for two genes en-
coding very large transcripts, TTN and SYNE1. Exam-
ination of exon level expression showed a 3" transcript
bias for FF samples processed by poly-A selection.
Our data suggest that longer transcripts are more
likely to be under-represented by poly-A selection and
thus may impact gene expression comparisons be-
tween FF and FFPE samples (Fig. 5¢ and d).

Table 1 Differential transcript analysis Hi-Seq
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TNBC molecular subtyping of matched FFPE and FF RNA-
seq samples

To determine if TNBC subtyping can be extended to
FFPE samples profiled by RNA-seq, we performed sub-
typing on gene expression data derived from RNA pre-
pared from 21 matched FF and FFPE pairs and
sequenced on a HiSeq or MiSeq. Using the TNBCtype
algorithm on samples sequenced on the HiSeq, we ob-
tained subtype calls for 10 FF and 9 FFPE samples (with
9 sample pairs having calls for both FF and FFPE).

The concordance rate was 67% (6 of 9 pairs) between
FF and FFPE sample sequenced on the HiSeq (Fig. 6a).
Evaluation of the prediction confidence demonstrated
that only those samples with high prediction confidence
(those with >0.2 separation between highest and second
highest subtype call), for both of the samples in a pair
resulted in concordant TNBC subtypes (Fig. 6b). When
samples were restricted to only high confidence pre-
diction samples, then concordance increased to 100%
(6 of 6) for the pairs (Fig. 6a). Samples sequenced on
the MiSeq had greater concordance of sample calls
100% (5 of 5). However, this increased concordance was
the result of decreased ability to generate distinct sub-
type calls with 50% of the samples unclassified. The
amount of unclassified specimens sequenced on the
HiSeq was 14% (3 of 22), similar to previous publica-
tions [4, 16]. This higher rate of unclassified samples
on the MiSeq is reflected in the significantly lower pre-
diction confidence scores (0.22 vs. 0.36, p = 0.048) than
the HiSeq and weaker correlations to each of the

Transcript Type All Transcripts Differential FFPE (%) FF (%)
Transcripts (%)

rRNA 44 42 (95.5%) 40 (95.2%) 2 (4.8%)
Misc RNA 437 412 (94.3%) 412 (100.0%) 0 (0.0%)
snoRNA 326 307 (94.2%) 306 (99.7%) 1 (0.3%)
SNRNA 410 383 (93.4%) 383 (100.0%) 0 (0.0%)
Sense intronic 513 449 (87.5%) 448 (99.8%) 1 (0.2%)
3" overlapping ncrna 8 7 (87.5%) 7 (100.09%) 0 (0.0%)
miRNA 232 194 (83.6%) 192 (99.0%) 2 (1.0%)
mt RNA 10 7 (70.0%) 4 (57.1%) 3 (42.9%)
Pseudogene 3661 2504 (68.4%) 2348 (93.8%) 156 (6.2%)
Antisense 2881 1949 (67.7%) 1906 (97.8%) 43 (2.2%)
Sense overlapping 116 63 (54.3%) 63 (100.0%) 0 (0.0%)
lincRNA 1992 1041 (52.3%) 1009 (96.9%) 32 (3.1%)
Processed transcript 300 138 (46.0%) 129 (93.5%) 9 (6.5%)
Polymorphic pseudogene 17 7 (41.2%) 3 (42.9%) 4 (57.1%)
Protein coding 16,630 4450 (26.8%) 2112 (47.5%) 2338 (52.5%)
Total 27,577 11,953 (43.3%) 9362 (78.3%) 2591 (21.7%)
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Table 2 Differential Pathway Enrichment in FF samples
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Table 3 Differential Pathway Enrichment in FFPE samples

Gene Set Name # Genes  p-value FDR Gene Set Name # Genes  p-value FDR
Overlap g-value Overlap g-value

Cellular Cellular
Compartment C5 Compartment C5
Cytoplasm 391 1.77E-128 4.13E-126 Plasma membrane 197 6.62E-61 1.03E-57
Cytoplasmic part 265 8.87E-90 1.03E-87 Membrane 234 3.30E-59 2.58E-56
Organelle part 228 2.04E-76 1.59E-74 Plasma membrane 173 2.36E-58 1.23E-55
Intracellular 227 4,69E-76 2.73E-74 part
organelle part Membrane part 202 571E-53 2.23E-50
Nucleus 243 3.58E-71 1.67E-69 Intrinsic to 177 2.20E-51 6.87E-49
Macromolecular 193 9.82E-70 381E-68 membrane
complex Intrinsic to plasma 150 2.82E-51 7.35E-49
Mitochondrion 101 3.55E-52 1.18E-50 membrane

) Integral to 173 1.24E-49 2.78E-47
Protein complex 150 3.96E-48 1.15E-46 membrane
Membrane 240 192842 497E-41 Integral to plasma 146 3.29E-49 6.43E-47
Mitochondrial part 55 445E-36 1.04E-34 membrane
Canonical Neuroactive ligand 55 1.12E-25 1.95E-23
Pathways C2 receptor
Huntingtons 7 7.32E-46 6.52E-43 Canonical
disease Pathways C2
TCA cycle and 63 9.81E-46 6.52E-43 Naba matrisome 97 6.19E-18 9.67E-16
electron transport Neuroactive ligand 55 1.12E-25 149E-22
Alzheimers disease 67 1.96E-44 6.53E-42 receptor
Adaptive immune 116 1.96E-44 6.53E-42 Matrisome 97 6.19E-18 411E-15
system Signaling by GPCR 85 244E-15 9.19E-13
Immune system 155 >67E44 1.o1E41 GPCR downstream 78 276E-15 9.19E-13
Oxidative 60 1.88E-43 4.17E-41 signaling
phosphorylation Neuronal system 42 4.12E-15 1.10E-12
Parkinsons disease 59 1.08E-42 2.06E-40 Transmembrane 51 189E-14 420E-12
Metabolism of 111 2.29E-42 3.81E-40 transport
proteins Matrisome 71 187E-13 3.55E-11
Respiratory electron 50 340E-40 5.02E-38 associated
transport Calcium signaling 31 3.00E-13 4.98E-11
Metabolism of RAN 83 2.13E-37 2.83E-35 pathway

Transmission 28 148E-10 2.18E-08
subtypes, demonstrating increased sequencing depth ~ chemical synapses
can increase prediction confidence and reproducible  GPCRligand 43 361E-10 4.80E-08
binding

subtyping (Fig. 6¢). Correlation (prediction strength) to
a particular subtype with the largest separation from
other subtypes (prediction confidence) was greatest in
FF samples ran on the HiSeq (Fig. 6d).

To determine if differential transcripts identified be-
tween FF and FFPE preparation of tissue affect TNBC
subtype calls, we performed subtyping using only
genes with similar expression between both methods,
resulting in 1685 genes instead of full 2188 genes for
centroid correlation. There were no differences in sub-
type calls between the non-differential genes (1685)
and the full centroid, demonstrating the robustness of
subtype prediction (Additional file 8: Table S4). TNBC
subtypes could be accurately identified in FFPE sam-
ples profiled by RNA-seq and the subtype calls were

not influenced by the 503 genes that are consistently
differentially expressed between FFPE and FF processing.

Discussion

Several gene signatures have been developed that pro-
vide prognostic and predictive value in breast cancer
with differing tissue preparations used for development
and validation. For example, the Endopredict and Onco-
type DX° Recurrence Score® were originally trained,
tested and validated using FFPE derived RNA, where the
MammaPrint® score was trained, tested and validated
using RNA isolated from fresh frozen tissues [1, 20, 21].
The breast cancer intrinsic subtypes that identify four
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biological and clinically distinct subtypes (Luminal A,
Luminal B, HER2 and Basal-like) were developed on
1753 genes from FF samples [22], reduced to a 50 gene-
set (PAM50) as an PCR-based assay using FFPE samples
[23] and then adapted to a nanostring platform as the
PAM50-based Prosigna test [24]. Success of predictive
gene signatures is highly dependent on robust gene sig-
natures that are reproducible across platforms, especially
in the development of clinical assays. We have previ-
ously identified four tumor-derived gene expression sig-
natures from FF samples profiled by microarray that
identify distinct TNBC subtypes and have prognostic
and predictive value for chemotherapy response [5, 6].
Since development, RNA-sequencing has emerged as a
superior technology with increased sensitivity and
limited-to-negligible background.

In order for broad clinical utility, a predictive gene sig-
nature needs to be compatible with RNA isolated from
routine FFPE tissues. While others have demonstrated
that reliable gene expression data can be obtained from
RNA-seq performed on FFPE samples from renal cell

carcinoma [8] and breast cancer [10], few prior studies
have examined gene subtype accuracy between matched
FF and FFPE specimens. In a comparison of an 18-gene
Ras pathway signature between FF and FFPE using five
technologies (Affymetrix GeneChip, NanoString, Illumina
RNA-Seq, Illumina targeted RNA -seq and Illumina
rRNA-depleted stranded RNA-seq), the investigators show
that only the NanoString technology provides an accept-
able translation of the signature from FF to FFPE and is
more forgiving of poor quality RNA inputs attributed with
FFPE tissues [25]. Others have shown that expression
measurements of thousands of genes differed by more
than two-fold in FFPE samples compared with paired FF
samples, however 90% of the relative expression orderings
(REOs) of gene pairs were maintained across FF and FFPE
samples [26]. These studies highlight some of the
difficulties in translating gene signatures between tissue
preparations.

In this study, we used TCGA data to demonstrate that
TNBC subtype classifications are highly conserved between
microarray and RNA-seq platforms. The accuracy of
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subtype prediction was greater than 95% when the sample
distance from the next highest subtype correlation was the
greatest. Using paired matched TNBC samples we show
that gene expression data obtained from matched FF and

FEPE samples using RNA-seq could reliably be used to
identify TNBC subtypes regardless of tissue fixation and
RNA isolation methods. The concordance of TNBC sub-
type calls between FF and FFPE samples was dependent on
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prediction confidence (degree of correlation to a single sub-
type) and only those high confidence samples resulted in
identical calls. There are several variables that can decrease
prediction confidence including intratumoral and tissue
heterogeneity (normal cells, sub-clonal tumor composition)
in addition to biopsy sampling location. Further, we
show that the accuracy of TNBC subtype prediction is
substantially impacted by the age of FFPE samples, as
FFPE blocks from patients isolated from older (>10 y)
samples had a much lower accuracy than newer sam-
ples (<4 y). However, this time-dependent decrease in
accuracy was not observed in FF samples, suggesting
that age and storage of FFPE samples can alter tran-
script levels Therefore, researchers should remain cau-
tious when performing retrospective TNBC molecular
subtype analysis on FFPE tissues until further more in
depth studies are performed on aged specimens.

Using two different sequencing platforms, we demon-
strate that sequencing depth greatly improves prediction
confidence and that the Illumina MiSeq platform does
not provide sufficient depth for accurate prediction
when evaluating the entire transcriptome. However, the
MiSeq platform may be amenable to smaller hybrid
based capture of the TNBC subtype signature composed
solely of 2188 gene centroid or reduced subset of the
signature. Using paired FF and FFPE TNBC samples we
demonstrated significant differences in transcript type
abundance. These were largely attributed to RNA isola-
tion methods. While Poly-A of FF samples yields a
higher degree of on-target reads compared, poly-A selec-
tion has inherent 3" selection bias, resulting in an under-
representation of longer protein coding transcripts
compared to ribosomal depleted FFPE samples. Since
poly-A selection is not possible for heavily degraded
FFPE tissues, RNA isolation by ribosomal depletion
must be performed and in a higher degree of off-target
reads that map to intergenic or intronic regions from
nascent unprocessed transcripts. In addition, ribosomal
depletion needed for FFPE sample processing results in
the retention of a significant amount of non-poly (A)
transcripts such as miRNA, InRNAs, snoRNAs and
snRNAs. Therefore, investigators should be cautious in
reducing large gene signatures to smaller clinically feas-
ible assays and applying these tests between FF and
FFPE tissues. In general, large transcripts and non-poly
A RNA species should be avoided to yield similar results
between tissue preparations. We anticipate these differ-
ences would be diminished when FF samples are isolated
with similar methods.

Interestingly, while nearly 23% of the TNBC subtype
genes were differentially expressed between matched FF
and FFPE due to differing RNA enrichment methods,
overall subtype calls were not affected. Since large gene
signatures are not practical for clinical assay development,
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the TNBC subtype predictor will require gene set size re-
duction as to accommodate easier development of clinical
diagnostic tools. This comparative study of matched FF
and FFPE samples defines differentially expressed genes
that should be avoided when performing future gene set
reduction to smaller, clinically achievable signatures.

Conclusions

In this study, we determined that TNBC subtype tran-
script classifications were reproducible between micro-
array and RNA-seq platforms. Further, using matched FF
and FFPE samples, we demonstrated that TNBC subtypes
could reliably be identified from FFPE samples with
greater prediction confidence in samples less than <4 y
old and samples sequenced at higher depth. TNBC sub-
type calls between FF and FFPE samples were identical
when evaluating high-confidence samples. While there
were consistent differentially expressed genes between FF
and FFPE, the majority of these transcripts were the result
of different RNA isolation methods. However, the know-
ledge of differential gene transcript representation due to
RNA isolation methods can identify transcripts that
should be excluded f when applying gene set size reduc-
tion strategies required for clinical implementation.
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Additional file 1: Table S1. TCGA microarray and RNA-seq comparison.
TCGA analysis of TNBC subtype using gene expression obtained from
matched fresh-frozen specimens profiled by microarray and RNA-seq.
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Additional file 2: Figure S1. TNBC subtype correlation between RNA-
seq and microarray. Correlations to TNBC subtypes do not differ with data
sets generated from microarray or RNA-seq platforms. Correlations to TNBC
subtypes do not differ with data sets generated from microarray or RNA-seq
platforms. Scatterplots show the gene expression correlation values to TNBC
subtypes (A) BL1 (B) BL2 (C) M and (D) LAR for paired samples processed by
microarray and RNA-seq platforms. (TIFF 1568 kb)

Additional file 3: Table S2. Samples sequenced. Sample type,
processing and sequencing. (XLSX 51 kb)

Additional file 4: Figure S2. Comparison of read alignment for FF- and
FFPE-derived RNA samples sequenced on MiSeq and HiSeq. Comparison of
read alignment for FF- and FFPE-derived RNA samples sequenced on MiSeq
and HiSeq. Distribution of unmapped, on-target and off-target (intronic and
intergenic) reads for individual FF and FFPE paired samples sequenced on
the (A) HiSeq or (C) MiSeq. Boxplots shows the number of mapped reads
from FF an FFPE samples sequenced on the (B) HiSeq or (D) MiSeq. (E)
Boxplot show distribution of unmapped reads (%) from FF and FFPE
samples obtained from new (<4 y) or old (>10'y) samples. (TIFF 833 kb)

Additional file 5: Figure S3. Specimen age correlation. Tumor
specimen age decreases transcript correlation of sequenced FF- and
FFPE-derived RNA samples. Tumor specimen age decreases transcript cor-
relation of sequenced FF- and FFPE-derived RNA samples. Boxplots show
correlation (Spearman) for (A) all transcripts or (B) non-differential tran-
scripts between matched FF and FFPE specimens by sequencing method
and age of sample (New <4y, Old >10y). (TIFF 606 kb)

Additional file 6: Figure S4. Differential expression of paired samples
using MiSeq. Comparison of gene expression from paired FF- and FFPE-
derived RNA samples before and after differential transcript removal.
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samples before and after differential transcript removal. Heatmap displays
(A) unsupervised hierarchical clustering, (B) sample-wise correlation coefficients
and (Q) principal component analysis (PCA) for all transcripts (n = 27,577)
or (D) hierarchical clustering (E) sample-wise correlation coefficients
and (F) PCA for transcripts remaining after removal of differentially
expressed genes between FF and FFPE (n = 15,624). (TIFF 3206 kb)

Additional file 7: Table S3. Differential gene expression. Differentially
expressed genes between 21 paired FF- and FFPE-derived RNA samples
from TNBC tumors. (XLSX 2255 kb)

Additional file 8: Table S4. TNBC subtype comparisons after removal of
differentially expressed genes. TNBC subtype comparison between FF
and FFPE samples after differential gene removal. (XLSX 21 kb)
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