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Is cancer a pure growth curve or does it
follow a kinetics of dynamical structural
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Abstract

Background: Unperturbed tumor growth kinetics is one of the more studied cancer topics; however, it is poorly
understood. Mathematical modeling is a useful tool to elucidate new mechanisms involved in tumor growth
kinetics, which can be relevant to understand cancer genesis and select the most suitable treatment.

Methods: The classical Kolmogorov-Johnson-Mehl-Avrami as well as the modified Kolmogorov-Johnson-Mehl-
Avrami models to describe unperturbed fibrosarcoma Sa-37 tumor growth are used and compared with the
Gompertz modified and Logistic models. Viable tumor cells (1×105) are inoculated to 28 BALB/c male mice.

Results: Modified Gompertz, Logistic, Kolmogorov-Johnson-Mehl-Avrami classical and modified Kolmogorov-
Johnson-Mehl-Avrami models fit well to the experimental data and agree with one another. A jump in the time
behaviors of the instantaneous slopes of classical and modified Kolmogorov-Johnson-Mehl-Avrami models and high
values of these instantaneous slopes at very early stages of tumor growth kinetics are observed.

Conclusions: The modified Kolmogorov-Johnson-Mehl-Avrami equation can be used to describe unperturbed
fibrosarcoma Sa-37 tumor growth. It reveals that diffusion-controlled nucleation/growth and impingement
mechanisms are involved in tumor growth kinetics. On the other hand, tumor development kinetics reveals dynamical
structural transformations rather than a pure growth curve. Tumor fractal property prevails during entire TGK.

Keywords: Fibrosarcoma Sa-37 tumor, Diffusion-controlled nucleation/growth mechanisms, Impingement
mechanisms, Isothermal dynamical structural transformation
Background
Asymptotic growth indicates that a system shifts from
positive feedback (which generates exponential growth) to
negative feedback (which produces stabilizing growth).
This shift is known as sigmoidal (“S-curve” or S-shaped
growth). Systems that exhibit S-shaped growth-time be-
havior are characterized by constraints or limits to growth,
as sickle cell disease [1], tumors [2], bacteria and microor-
ganisms [3], among others. Other systems produce S-
shaped transformation-time behavior, as crystals [4, 5].
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Tumor growth kinetics (TGK) is not well understood
so far. TGK has three well-defined stages: the first (Lag
stage) is associated with the establishment of the tumor
in the host. The second (Log or exponential stage) is
related to rapid tumor growth. The third (Stationary
stage) shows slow tumor growth asymptotically conver-
ging to a final volume [2]. It is expected a fourth stage
(Death stage) of TGK, in which tumor dies because the
nutrients are depleted by anorexia of animal or human
host, showing a decline. This fourth stage is not consid-
ered in TGK due to ethical considerations [6, 7]. In
mice, tumor burden should not usually exceed 10% of
the host animal’s normal body weight [6].
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During the last decades, tremendous efforts have been
made by both experimentalists and theoreticians to search
a suitable growth law for tumors, one of the most striking
and interesting issues in cancer research [2, 8–11]. The
Logistic equation has been used to describe TGK and the
interactions among different competing populations with
and without an external perturbation [12, 13]. The
Logistic and von Bertalanffy equations have been re-
ported to provide excellent fits for patients and mice
bearing tumors, respectively [8]. In contrast, Marušic
et al. [9] and Miklavčič et al. [11] show that the
standard Gompertz model outperforms both Logistic and
von Bertalanffy models. Marušic et al. [9] explain this
disparity because the fit is dependent on the applied least
squares fitting method. The Gompertz model is the most
used to describe TGK [2, 8, 10, 11, 14].
The standard Logistic equation (Eq. 1) and the standard

Gompertz equation (Eq. 2) are given by [8–11]:

V tð Þ ¼ K�Voer
�t

K � þ Vo er�t−1ð Þ
ð1Þ

V tð Þ ¼ Voe
α
βð Þ 1−e−βtð Þ ð2Þ

where V(t) represents the untreated tumor volume at
time t and Vo its initial volume at the beginning of obser-
vation (t = 0). Experimentally, Vo (reached in a time to) is
any tumor volume that satisfies the condition Vo ≥Vmeas.
Vmeas is the minimum measurable tumor volume and
reaches in a time, tmeas. The constant r

* defines the growth
rate and K* is the carrying capacity [8, 12]. The parameter
α is the intrinsic growth rate of the unperturbed tumor re-
lated to the initial mitosis rate. The parameter β is the
growth deceleration factor related to the endogenous anti-
angiogenesis processes [11, 15] by an overexpression of
different antiangiogenic molecules (i.e., Angiostatin,
Thrombospondin-1 molecules) [15, 16]. As tumors are
not perturbed with an external agent, this parameter β is
not related to therapy-induced antiangiogenis [12].
Despite the interpretation of the parameter β, authors of
this study believe that this parameter may be related to
other endogenous antitumor processes, as cellular death
processes (apoptosis, necrosis, metastasis and exfoli-
ation) and interactions between tumor cells and im-
mune cells [17]. Further experiments are required for a
correct interpretation of this parameter.
An important part of tumor vital cycle has already

happened long before Vmeas is reached [17] and therefore
it cannot be described with the Eqs. (1) and (2). However,
this part of TGK may be fitted if an effective delay time (τ)
is introduced in the Eqs. (1) and (2) [2, 18–20]. Besides, τ
has been included in these two equations to describe Lag
stage of bacteria- and microorganism growths [3]. τ has a
crucial role in the modeling of biological processes [21].
The interesting question is if in the case with delay the
Logistic model, named modified Logistic model (Eq. 3), or
the Gompertz model, named modified Gompertz model
(Eq. 4), is the best one for describing early tumor growth
as it is believed in the case without delay (Eqs. 1 and 2).
Equations (3) and (4) result of the substitution of t by (t-τ)
in the Eqs. (1) and (2):

V t−τð Þ ¼ K �V τer
� t−τð Þ

K� þ V τ er� t−τð Þ−1ð Þ
ð3Þ

V t−τð Þ ¼ V τe
α
βð Þ 1−e−β t−τð Þð Þ ð4Þ

where V(t-τ) represents tumor volume at time (t-τ),
meaning that the growth at present time t depends on
the previous time (t-τ). Parameters τ and Vτ are the time
and tumor volume corresponding to inflection point of
TGK, respectively. Parameters r*, K*, α and β have been
defined above in Eqs. 1 and 2.
Different findings have been documented in cancer, as:

heterogeneity, anisotropy, fractal property, stiffness, surface
roughening, curved surface, high macroscopic shear elastic
modulus, among others [17, 21–25]. These findings have
been also reported in crystals, despite noticeable dif-
ferences between tumors and crystals, and in their
growth mechanisms [26–30].
The classical Kolmogorov-Johnson-Mehl-Avrami model,

named KJMA model (Eq. 5), and modified Kolmogorov-
Johnson-Mehl-Avrami model, named mKJMA model
(Eq. 6), have been used to fit entire sigmoidal curve of a
crystal [26], given by

p tð Þ ¼ 1−e− Ktð Þn ð5Þ

p tð Þ ¼ 1− 1þ λ−1ð Þ Ktð Þn½ �−1= λ−1ð Þ ð6Þ
With

K Tð Þ ¼ Koe
−Ea=RT Arrhenius equationð Þ ð7Þ

where p(t) is the transformed fraction at t (fraction of
grains that is transformed to crystal phase). n (n ≥ 0),
K(T), λ (λ ≥ 1), Ko, Ea, R and T are the Avrami exponent,
specific rate of transformation process that depends on
temperature, impingement factor, the pre-exponential
factor, effective (overall) activation energy of the transform-
ation (or activation energy barrier to crystal formation),
Boltzmann constant and temperature, respectively. RT
represents the thermic kinetics energy. Arrhenius Eq. (7) is
substituted in the Eqs. (5) and (6) to know Ko and Ea.
In crystals, K is constant, proportional to the trans-

forming volume/surface area and results of unbalanced
diffusion processes (linked to heterogeneity). λ repre-
sents impingement mechanisms, as: capillarity effect,
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interfacial and superficial phenomena, among others. n
is closely related to nucleation mechanisms, the exist-
ence of a lag stage, anisotropy, structural changes,
vacancy annihilation, stiffness, surface roughening,
curved surface, change of shape and high macroscopic
shear elastic modulus of the forming and growing crys-
tal. Additionally, n is inversely proportional to fractal
dimension of the crystal. n ≥ 3 has been related to spher-
ical shape of crystals, formation of micro-clusters of
crystal seeds, high anisotropy and higher vacancies
number [26–30].
On the other hand, nucleation and impingement

mechanisms emerge to eliminate high energetic instabil-
ities (by thermal fluctuation) during forming and grow-
ing crystal structure. Nucleation sites (or vacancy
numbers) disorder the interior of forming and growing
system and need be filled to guarantee their stability and
growth. Deviation from integer value for n has been
explained as simultaneous development of two (or more)
types of crystals, or similar crystals from different types
of nuclei (sporadic or instantaneous). Nucleation is
either instantaneous, with nuclei appearing all at once
early on in the process, or sporadic, with the number of
nuclei increasing linearly with time [26–30].
KJMA and mKJMA models are phenomenological and

not valid when T varies with time [31]. Furthermore,
they are developed for the kinetics of phase changes to
describe the rate of transformation of the matter from
an old phase to a new one, taking into account that the
new phase is nucleated by germ nuclei that already
exists in the old phase. The Eq. (6) can be reduced to
the Eq. (5) when λ tends to 1. Wang et al. [26] report
that KJMA model cannot be applied to crystal growth
when λ > 1 because there are phenomena (i.e., capillarity
effects, vacancy annihilation, blocking due to anisotropic
growth) that may cause violations to KJMA. Conse-
quently, a misinterpretation of the kinetics may be given
if these phenomena are ignored.
We are not aware that KJMA model and mKJMA

model have been used to describe TGK. Nevertheless,
in principle, these two models can be used to fit S-
shaped growth of tumors, taking into account that
“S-curve” is universal, the Eqs. (1, 2, 3, 4, 5 and 6)
are phenomenological and the above-mentioned find-
ings are common for both tumors and crystals. The
application of the Eqs. (5) and (6) may reveal whether
other findings not yet described are involved in TGK.
Elucidating underlying mechanisms in entire TGK is
of great importance for both understanding and plan-
ning antitumor therapies. The aim of this paper is to
use, for the first time, KJMA and mKJMA models to
describe the untreated fibrosarcoma Sa-37 TGK. Also,
KJMA and mKJMA models are compared with modified
Gompertz and Logistic models.
Methods
Mice
Twenty eight male (6–7 week, 18–20 g) BALB/c mice
are studied. Animals are purchased from the National
Center for Laboratory Animals Production (Havana,
Cuba), housed in clear standard polycarbonate cages of
206 mm2 x 12 cm (4 animals/cage) with hard wood-
shavings as bedding and given pellet BALB/c mice diet
and tap water (sterilized and non-chemically treated) ad
libitum under controlled environmental conditions, in-
cluding a temperature of 23 ± 1 °C (Sattigungs thermom-
eter of precision ± 1 °C, Germany), a relative humidity of
55 ± 5% (Fischer Polymeter of precision ± 1%, Germany),
and a 12-h light/darkness cycle (lights on 7:00–19:00).
Bedding and pellets are sterilized by autoclaving. They
are changed daily. During the experiment the animals
are firmly fixed on plastic boards and show uneasy and
quick breathing during fixation. Survival checks for mor-
bidity and mortality are made twice per day. Any animal
found dead or moribund is subjected to gross necropsy.

Tumor cell lines
Fibrosarcoma Sa-37 cell lines are received from the
Center for Molecular Immunology (Havana, Cuba).
Fibrosarcoma Sa-37 ascitic tumor cell suspensions,
transplanted to the BALB/c mouse, are prepared from
the ascitic form of the tumors. Subcutaneous tumors lo-
cated in the right flank of the dorsolateral region of mice
are initiated by the inoculation of 1x105 viable tumor
cells in 0.2 ml of 0.9% NaCl. The viability of the cells is
determined by Trypan blue dye exclusion test and over
95%. Cell count is made using a hematocytometer. In
cell count, a completely random distribution of fibrosar-
coma Sa-37 tumor cells is observed without the presence
of cellular clusters in the cellular suspension.

Tumor growth kinetics
The period of study comprises the time interval from t = 0
(initial moment of tumor cells inoculation in the mice) up
to tumor reaches a volume ≤ 1.5 cm3. Each individual
tumor is observed to verify experimentally the minimum
observable tumor volume, named Vobs (Vobs < Vmeas),
reached at a time given, tobs [2]. Vobs is observable but not
measured. The volume of each individual tumor is calcu-
lated by means of the ellipsoid equation V = L1L2L3/6. L1,
L2 and L3 (L1 > L2 > L3) are three perpendicular tumor
diameters. Measurements of L1, L2 and L3 are made from
tumor reaches Vmeas up to 1.5 cm3. A vernier caliper with
clamping screw (Model 530–104 of 0.05 mm of precision,
Mitutoyo, Japan) is used. Each tumor diameter is mea-
sured three times for each individual tumor and then
averaged, since its edge is not perfectly regular. This
method permits tracking tumor development through the
study with no need to slaughter the animals.
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Mean doubling time (DT) is estimated for each indi-
vidual tumor, once it reaches Vmeas. DT is the time
required for a solid tumor to reach a twofold increase of
its initial volume [17].

Form factor and curvature radius of the tumor
In order to know how tumor shape changes in time,
form factor (FF, a measure of curved surface) and curva-
ture radius (Rc) are calculated in three perpendicular
planes XY, XZ and YZ. Expressions to calculate FF and
Rc are shown in Table 1. FF and Rc are calculated for
each observation time. In each plane, Rc is calculated in
the ellipse vertices (points where ellipse curvature is
minimized or maximized), named Rc-L1, Rc-L2 and Rc-L3

(see details in Table 1). FF and Rc may be also calculated
via measuring all points of this closed quadric surface.
In this case, the measurements of these points are tedi-
ous and require long time. L1, L2, L3 and planes XY, XZ
and YZ are schematically depicted in Fig. 1a.

Model fitting
Equations (5) and (6) are used for the first time on the
TGK. Below we describe the followed methodology.
First, the non-normalized experimental data are fitted

with the Eqs. (3) and (4) from beginning of TGK (t = 0).
τ and Vτ values are directly obtained in a plot of the first
derivate of tumor volume versus tumor volume, named
V’(t) versus V(t) plot [2]. In addition, TGK is fitted with
the Eqs. (1) and (2) when the first point of the experi-
mental data is Vobs, Voo (tumor volume reaches its diam-
eter of 2 mm) or Vmeas, satisfying their specific initial
conditions V(t = 0) = Vobs, V(t = 0) = Voo or V(t = 0) =
Vmeas, respectively. These three initial conditions are
valid if the respective co-ordinate origin is located at
Table 1 Factor form and curvature radius by planes for the
fibrosarcoma Sa-37 tumor

Planes Form
factor
(FF)

Curvature Radius Rc (in mm)

Rc-L1 Rc-L2 Rc-L3

xy πab/2pab2 b2/a a2/b -

xz πac/2pac2 c2/a - a2/c

yz πbc/2pbc2 - c2/b b2/c

a (a = L1/2), b (b = L2/2) and c (c = L3/2) are the semi-axes of triaxial (or scalene)
ellipsoid tumor on their respective planes. pab, pac and pbc are the ellipse
perimeters on planes xy, xz and yz, respectively. Rc-L1 is the curvature radius in
the point A, Rc-L2 in the point B and Rc-L3 in the point C, as shown in Fig. 1a. It
is important to point that the general expression for ellipse curvature radius
on each plane is not given because the points of the closed curve do not
experimentally measure

pab ¼ π aþ bð Þ 1þ 1
4

a−b
aþb

� �2
þ 1

64
a−b
aþb

� �4
þ 1

256
a−b
aþb

� �6� �

pac ¼ π aþ cð Þ 1þ 1
4

a−c
aþc

� �2
þ 1

64
a−c
aþc

� �4
þ 1

256
a−c
aþc

� �6� �

pbc ¼ π bþ cð Þ 1þ 1
4

b−c
bþc

� �2
þ 1

64
b−c
bþc

� �4
þ 1

256
b−c
bþc

� �6� �
(tobs, Vobs), (too, Voo) or (tmeas, Vmeas). Vobs and Voo are
estimated from interpolation and extrapolation methods
[2]. These analysis are shown in a V(t) versus t plot to
compare the Eqs. (3) and (4), and the Eqs. (1) and (2),
and also to know the values and estimation accuracies
(or parameter error) of their parameters.
Second, as Eqs. (5) and (6) are normalized between 0 and

1, the experimental data is normalized by means of the
normalization criterion p(t) = (V(t)-Vi)/(Vf-Vi). Vi means the
volume fraction of solid tumor at beginning of TGK or
when the first point of TGK is Vobs, Voo or Vmeas. Vf repre-
sents the volume fraction of the solid tumor at the end of
tumor growth. As Vi is very small (Vi tends to 0) this results
in p(t) = V(t)/Vf. Normalized experimental data are fitted
with the Eqs. (1, 2, 3, 4, 5 and 6), in order to know the par-
ameter values and their estimation accuracies for each equa-
tion, as well as to establish a comparison between them.
Third, different graphical strategies are followed, as:

V(t-τ) versus t (for t ≥ 0); V(t) versus t (for t ≥ tobs); p(t)
versus t (for t ≥ 0 and t ≥ tobs); ln(−ln(1-p(t))) versus ln(t)
on a double-logarithmic plot obtained with the Eq. (5)
(for t > 0); ln(−ln((1-p(t)-(λ-1)-1)/(λ-1))) versus ln(t) on a
double-logarithmic plot obtained with the Eq. (6) (for
t > 0); nloc versus ln(t) and nloc versus p(t) for both Eqs.
(5) and (6), and t > 0. nloc (nloc ≥ 0) represents the in-
stantaneous slope of these two equations at any given
p(t). All these simulations are made from the mean
values of n, λ, K and Ea obtained from fitting of nor-
malized experimental data with the Eqs. (5) and (6).
For the Eq. (5), nloc is computed by means of ∂ln(1-
p(t))/∂t. For the Eq. (6), nloc is calculated by means of
∂ln((1-p(t)-(λ-1)-1)/(λ-1))/∂t. These graphical strategies
are suggested by Wang et al. [26].
Fourth, nloc is also estimated from the normalized

experimental data, for KJMA and mKJMA models. For
this, the definition of nloc, for each model, is applied to
the normalized experimental data (p(t) versus t plot)
when the first point of the experimental data is Vobs.
The results of these last three points permit to know if

the Eqs. (5) and (6) can be indistinctly used to describe
TGK and to give a possible biophysics interpretation of
their kinetic parameters.

Criteria for model assessment
Since tumor growth is represented in biological research as
series of volumetric measurements over time, we are pre-
sented with a classic case of least squares curve fitting. To
fit an n-parameter nonlinear equation to tumor volume
measurements, the Marquardt-Levenberg algorithm (an
alternative to the Gauss-Newton algorithm) [14, 32] is used,
which is the most widely used in nonlinear least squares
fitting. Other algorithms have been used, as Nelder-Mead
[33], which is not used because the standard deviation of
the experimental data is small, even for a larger tumor.



Fig. 1 Fibrosarcoma Sa-37 tumor. a Schematic representation of its triaxial ellipsoid shape of L1, L2 and L3 diameters. b Time dependences of L1,
L2 and L3. Experimental data (Mean ± standard error) of fibrosarcoma Sa-37 tumor normalized transformed fraction and growth curves fitted with
modified models of Gompertz, Logistic and Kolmogorov-Johnson-Mehl-Avrami, from (c) t = 0 days and (d) t = 8 days
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As the Eqs. (3), (4) and (6) are overparameterized, the
parameter estimation accuracy is also obtained from this
algorithm. Also, as these three equations are multipara-
metric and the experimental data have associated error
bars, it is important to point out that the error on the fit
parameter is calculated multiplying the reported error
on the fit parameters by the square root of the reduced
chi-squared. For both non-normalized and normalized
experimental data, the values and their estimation accur-
acies of the parameters for Eqs. (1, 2, 3, 4, 5 and 6), and
five different fitting quality criteria: the sum of squares
of errors, SSE (Eq. 8); standard error of the estimate, SE
(Eq. 9); adjusted goodness-of-fit coefficient of multiple
determination, ra

2 (Eq. 10) predicted residual error sum
of squares, PRESS (Eq. 11); and multiple predicted
residual sum error of squares, MPRESS (Eq. 12) are
computed from their individual values and used for
model assessment (see details in [4]). These criteria are
given by

SSE ¼
Xn1
j¼1

V̂
�
j −V

�
j

� �2
; ð8Þ

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn1
j¼1

V̂
�
j −V

�
j

� �2
n1−k

vuuuut
; ð9Þ

r2a ¼ 1−
n1−1
n1−k

1−r2
� � ¼ n1−1ð Þ r2−k þ 1

n1−k
ð10Þ
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1−r2 ¼

Xn1
j¼1

V̂
�
j −V

�
j

� �2
Xn1
j¼1

V �
j

� �2
−
1
n1

Xn1
j¼1

V �
j

 !2 ; ð11Þ

PRESS ¼

Xn1−1
j¼1

V̂
�
j

� �
′−V �

j

h i2
n1−k

;

ð12Þ

MPRESS mð Þ ¼

Xn1
j¼mþ1

V̂
�
j

� �
′−V �

j

h i2
n1−m

ð13Þ

where Vj
* is the j-th measured tumor volume at discrete

time tj, j = 1, 2, …, n1, V̂
�
j is the j-th estimated tumor vol-

ume by Gompertz, Logistic, KJMA or mKJMA model. n1
is the number of experimental points (n1 = 11). k is the
number of parameters. r2 and ra

2 are goodness-of-fit and
adjusted goodness-of-fit, respectively. The fitting is con-
sidered to be satisfactory when ra

2 > 0.98. Higher ra
2 means

a better fit. (Vj
*)´ is the estimated value of Vj

* when the
model (Gompertz, Logistic, KJMA or mKJMA model) is
obtained without the j-th observation. MPRESS removes
the last n1 −m measurements. The model is fitted to the
first m measured experimental points (m = 3, 4 or 5) and
then from calculated model parameters the error between
tumor volume estimates and measured values in the
remaining n1 −m points is calculated. Least Sum of
Squares of Errors is obtained when SSE is minimized in
the Marquardt-Levenberg optimization algorithm.

Comparisons between equations
The Eqs. (3) and (4) are compared when TGK begins at t =
0 days, taking as reference the Eq. (4). The Eqs. (1) and (2),
and the Eqs. (2) and (4) are also compared when the first
point of TGK is Vo (Vobs, Voo or Vmeas), being the Eq. (2)
the reference. Furthermore, the Eqs. (5) and (6) are also
compared when the first point of TGK is Vo, using the Eq.
(5) as reference. They are also compared with the Eq. (2)
(when the first point of TGK is Vo) or the Eq. (4) (when
TGK begins at t = 0). Root Means Squares Errors (RMSE)
and maximum distance (Dmax) values are used to compare
these equations [2, 14], given by

Dmax ¼ max Fi−Gijj ð14Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

Fi−Gið Þ2
M

vuut ð15Þ

where M is the total number of points. Gi is the i-th cal-
culated tumor volume with equation choice as reference
(see above). Fi is the i-th calculated tumor volume by
another equation compared.
A computer program is implemented in the MATLAB

software (version R2011a, license number: 625596, San
Jorge University, Zaragoza, Spain) to calculate the values
of tumor volume, first derivate of tumor volume, and
transformed fraction of tumor volume in each time. In
addition, DT; FF; Rc; RMSE; Dmax; SSE; SE; ra

2; PRESS
and MPRESS expressions are implemented in this
program to calculate their values.
Each fit with the Eqs. (1, 2, 3, 4, 5 and 6) is performed

for each animal’s growth curve, for both non-normalized
and normalized data. The mean ±mean standard error
of the parameters L1, L2, L3, tumor volume, first derivate
of the tumor volume, r*, K*, α, β, FF, Rc, τ, Vτ, K, n, λ, Ea,
DT, estimation accuracy, RMSE, Dmax, SSE, SE, ra

2,
PRESS and MPRESS are calculated from their individual
values. Mean standard error is calculated as (standard
deviation)/

ffiffiffiffi
N

p
, where N is the total number of determi-

nations. N = 3 is used for each average tumor diameter
and N = 28 for the other parameters. Besides, this soft-
ware permits performing curve fitting and to visualize
the graphs of the graphical strategies above mentioned.
Results
Unperturbed fibrosarcoma Sa-37 tumor growth kinetics
The fibrosarcoma Sa-37 tumor exhibits a sigmoidal kinet-
ics characteristic for both non-normalized and normalized
experimental data. This S shape is observed when TGK
begins at t = 0 (Fig. 1c) or the first point of TGK is Vobs

(Fig. 1d) up to 1.5 cm3, which is reached at 30 days after
tumor cells are transplanted into BALB/c mice. Vobs is
observed in all tumors between 6 and 9 days. The
higher relative frequency of Vobs is at tobs = 8 days (24/
28 = 85.7%). The Eq. (4) estimates Vobs in 0.000016 cm3

(0.031 cm in diameter) for tobs = 8 days. This equation
estimates Voo (0.00416 cm3) at 9.8 days, in agreement
with the experiment (around 10 days). Vmeas (0.02 cm3)
is observed between 10 and 12 days. The higher relative
frequency of Vmeas is at tmeas = 11 days (21/28 = 75%). The
Eq. (4) estimates Vmeas at tmeas = 10.8 days. From Vmeas,
average DT estimated from non-normalized experimental
data is 1.6 ± 0.4 days.
From Vobs, both tumor and body temperatures remain

practically unalterable (36.5 ± 0.1 °C) for each mouse. As
tumor temperature is 36.5 °C (309.5 °K) and R = 8.3144 J/
mol°K, RT = 2568.85 J/mol. Besides, surface roughening,
compactness and stiffness of the fibrosarcoma Sa-37
tumor increase over time as its volume also increases,
verified by both palpation and clinical observation.
Average values of L1, L2 and L3 values versus time are

shown in Fig. 1b, corroborating that the tumor growth is
anisotropic (prevails one preferential direction of growth,
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major diameter, named L1). In each mouse, shape changes
of fibrosarcoma Sa-37 tumor are observed during entire
TGK. Fibrosarcoma Sa-37 tumor grows spherically (L1 ≅
L2 ≅ L3) between 6 and 10 days after tumor cells are inoc-
ulated in BALB/c mice; then ellipsoidal with slightly ir-
regular border and three different orthogonal well-defined
axes (L1 > L2 > L3, from 11 up to 17 days); and lastly
irregular-shaped, but three diameters of the tumor are still
defined and measurable (from 18 up to 30 days). Seven-
teen days is the time that lapses so that solid tumor
reaches 1 cm3. Complete loss of the fibrosarcoma Sa-37
tumor ellipsoidal shape (three diameters of the tumor are
not well defined) starts from 30 days post-inoculation, as
observed. This and ethical reasons [6] justify why the
study period is up to 30 days.
The values of τ (15 ± 2 days) and Vτ (0.5 ± 0.05 cm3)

are obtained from V’(t) versus V(t) plot (results not
shown). The higher relative frequency of (15 days,
0.5 cm3) is observed for 57.1% (16/28) of tumors. As a
result, in a first approximation, τ = 15 days and Vτ =
0.5 cm3 are introduced in the Eqs. (3) and (4) for the
simulations.

Parameters of each equation
Equations (1, 2, 3, 4, 5 and 6) fit well normalized data in
each mouse and provided average values of their kinetic
parameters, when TGK begins at t = 0 (Table 2 and
Fig. 1c) or its first point is Vobs (Table 3 and Fig. 1d). For
Table 2 Mean ±mean standard error of the parameters and criteria
tumor growth data with modified models of Gompertz (Eq. 3), Logis
(Eq. 6) from t ≥ 0 days

Modified models on normalized data

Gompertz

X1 ± SD (0.473 ± 0.053) days−1

X2 ± SD (0.233 ± 0.031) days−1

X3 ± SD -

r2 ± SD 0.995 ± 0.004

ra
2 ± SD 0.995 ± 0.004

SE ± SD 0.022 ± 0.007

SSE ± SD 0.009 ± 0.006

PRESS ± SD 0.0004 ± 0.0003

MPRESS1 ± SD 0.0006 ± 0.0004

MPRESS2 ± SD 0.0006 ± 0.0004

MPRESS3 ± SD 0.0007 ± 0.0004

Ko (days
−1) -

Ea (J/mol) -

RT (J/mol) -

X1 and X2 variables signify the parameters α and β in the modified Gompertz mode
modified Logistic model, respectively. X1 X2 and X3 represent K, n and λ in mKJMA
PRESS, MPRESS and SD are the temperature, pre-exponential factor, activation ener
sum of squares of errors, adjusted r2, predicted residual error sum of squares, multi
respectively. r2 is the goodness-of-fit. Details of SE, SSE, r2, ra

2, PRESS and MPRESS ar
these equations, there is no problem with the convergence
in the fitting of individual tumor growth data when the
Marquardt-Levenberg optimization algorithm is used. This
convergence is rapidly reached. The results are only shown
for Vo =Vobs in order to know in depth the biggest part of
Lag-phase. Comparisons of the Eqs. (1, 2, 3, 4, 5 and 6) are
in agreement with small values of SE, SSE, PRESS and
MPRESS (Tables 2 and 3), RMSE (≤0.001 cm3) and Dmax

(≤0.03 cm3). The mean value ±mean standard error of α,
β, r*, K*, K, Ko, n, λ and Ea parameters and the statistical
criteria are given in Tables 2 and 3. The estimation accur-
acy of the parameters α, β, K*, r*, K, n and λ shown in
Table 2 are 0.025 ± 0.001 days−1, 0.015 ± 0.001 days−1, 0.051
± 0.002 days−1, 0.026 ± 0.002 days−1, 0.002 ± 0.001 days−1,
0.116 ± 0.056 and 0.577 ± 0.041, respectively. The estima-
tion accuracy for these respective parameters shown in
Table 3 are 0.030 ± 0.002 days−1, 0.021 ± 0.002 days−1, 0.070
± 0.005 days−1, 0.030 ± 0.004 days−1, 0.008 ± 0.002 days−1,
0.481 ± 0.022 and 0.444 ± 0.014.
Although the results of the fitting of the experimental

data with Eq. (5) are not shown in Tables 2 and 3, it can
be verified that K = 0.0758 days−1 and n = 2.7503. Esti-
mation accuracies of K and n are 0.004 ± 0.002 days−1

and 0.321 ± 0.087, respectively. On the other hand,
average DT of 1.7 ± 0.2 days is obtained with Eq. (2).
Average DT = 0.9 ± 0.3 days is predicted with Eq. (6). As
expected, these DT values are indistinctly obtained from
non-normalized and normalized data.
for model assessment using in fitting of fibrosarcoma Sa-37
tic (Eq. 4) and Kolmogorov-Johnson-Mehl-Avrami (mKJMA)

Logistic mKJMA

(0.953 ± 0.031) cm3 (0.052 ± 0.003) days−1

(0.425 ± 0.043) days−1 7.599 ± 1.247

- 2.271 ± 0.521

0.989 ± 0.007 0.994 ± 0.004

0.989 ± 0.007 0.994 ± 0.004

0.032 ± 0.009 0.023 ± 0.007

0.019 ± 0.0115 0.010 ± 0.006

0.0008 ± 0.0004 0.0004 ± 0.0002

0.0012 ± 0.0007 0.0006 ± 0.0004

0.0013 ± 0.0007 0.0007 ± 0.0004

0.0014 ± 0.0007 0.0007 ± 0.0004

- 0.056 ± 0.004

- 187.331 ± 157.609

- 2 568.85

l whereas these two variables symbolize the parameters K* and r* in the
model, respectively. RT is the thermal energy calculated. T, Ko, Ea, SE, SSE, ra

2,
gy (activation enthalpy) of the transformation, standard error of the estimate,
ple predicted residual sum error of squares and standard deviation,
e given in [2, 14]



Table 3 Mean ±mean standard error of the parameters and criteria for model assessment using in fitting of fibrosarcoma Sa-37
tumor growth data with modified models of Gompertz (Eq. 2), Logistic (Eq. 1) and Kolmogorov-Johnson-Mehl-Avrami (mKJMA)
(Eq. 6) from t ≥ 8 days

Modified equations on normalized data

Gompertz Logistic mKJMA

X1 ± SD (0.473 ± 0.053) days−1 0.953 ± 0.031 (0.083 ± 0.008) days−1

X2 ± SD (0.233 ± 0.031) days−1 (0.425 ± 0.043) days−1 3.409 ± 0.529

X3 ± SD - - 1.509 ± 0.366

r2 ± SD 0.991 ± 0.005 0.982 ± 0.011 0.991 ± 0.006

ra
2 ± SD 0.990 ± 0.007 0.979 ± 0.013 0.990 ± 0.007

SE ± SD 0.030 ± 0.009 0.044 ± 0.013 0.030 ± 0.009

SSE ± SD 0.009 ± 0.006 0.019 ± 0.010 0.009 ± 0.006

PRESS ± SD 0.0008 ± 0.0005 0.0015 ± 0.0008 0.0007 ± 0.0005

MPRESS1 ± SD 0.0011 ± 0.0007 0.0022 ± 0.0014 0.0010 ± 0.0007

MPRESS2 ± SD 0.0012 ± 0.0008 0.0024 ± 0.0016 0.0012 ± 0.0007

MPRESS3 ± SD 0.0014 ± 0.0009 0.0026 ± 0.0018 0.0013 ± 0.0009

Ko (days
−1) - - 0.109 ± 0.014

Ea (J/mol) - - 706.97 ± 393.15

RT (J/mol) - - 2 568.85

X1 and X2 variables signify the parameters α and β in the modified Gompertz equation whereas these two variables symbolize the parameters K* and r* in the
modified Logistic equation, respectively. X1 X2 and X3 represent K, n and λ in Modified KJMA equation, respectively. RT is the thermal energy calculated. SE:
Standard error of the estimate. SSE sum of squares of errors. ra

2: adjusted r2. PRESS Predicted residual error sum of squares and MPRESS Multiple predicted residual
sum error of squares. SD Standard deviation. Ko is the pre-exponential factor. Ea is the activation energy (activation enthalpy) of tumor cell nucleation. r2 is the
goodness-of-fit. Details of SE, SSE, r2, ra

2, PRESS and MPRESS are given in [2, 14]
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Tables 2 and 3 show that parameters α, β, K* and r* have
equal values. α and β values differ from those reported by
Cabrales et al. [2] in 0.04 and 0.033 days−1, respectively.
Values for α and r* differ in 0.048 days−1, indicating that
α ≅ r*. In addition, Tables 2 and 3 evidence that K values
are one order smaller than α and r* values, and the
values of Ea are smaller than RT. Ko, K and Ea values
shown in the Table 3 are higher than those in Table 2.
Values for n and λ shown in Table 3 are smaller than
those in the Table 2. Although the results are not shown,
it can be verified that Ko, K and Ea values increase, and n
and λ values decrease with respect to those shown in
Table 3 when tumor volume increases regarding to Vobs.
On the other hand, it can be verified that results

shown in Table 3 coincide with those obtained from
fitting of no-normalized data with Eqs. (1, 2, 3 and 4),
when the first point of experimental data is Vobs, Voo or
Vmeas. Nevertheless, when TGK begins for a tumor
volume higher than Vmeas, α, β, K

* and r* change com-
pared with those shown in Table 3 (results not shown).
In addition, Eqs. (3) and (4), and Eqs. (1) and (2) fit well
to no-normalized data in each mouse when TGK begin-
ning at t = 0 and the first point is Vobs, Voo or Vmeas.
Figure 2 shows that FF and Rc depend on time and the

plane XY, XZ or YZ. The higher values of FF and Rc are
observed in plane YZ and L1 diameter (along axis x), re-
spectively. Moreover, this figure reveals that Rc-L1, Rc-L2

and Rc-L3 increase with time, being Rc-L1 > Rc-L2 > Rc-L3.
The graphical strategies for constant temperature
show similar behaviors to those shown in [26] and
therefore, they are not shown in this study. Never-
theless, it can be verified that simulations of
ln(−ln(1-p(t))) versus ln(t) plot and ln(−ln((1-p(t)-(λ-1)-1)/
(λ-1))) plot exhibit linear and non-linear increases, re-
spectively. nloc versus p(t) plot shows that nloc remain con-
stant for KJMA model, whereas nloc non-linearly
decreases as p(t) increases, for mKJMA model. This
non-linearity is noticeable when λ increases. In
addition, simulation of nloc versus ln(t) plot for Eq.
(5) predicts a linear behavior of nloc in the time.
However, this plot for Eq. (6) evidences that nloc
drops exponentially in the time (continue and smooth
curve). This deviation from linearity starts at the very
early stages of the entire TGK, when λ > 1, being
noticeable when λ increases.
The analysis of nloc versus ln(t) plot on the normal-

ized experimental data reveals that nloc drops with
time showing a jump (around 10 days) for both
KJMA and mKJMA models, as it can be seen in Fig. 3.
It is important to point out that this jump coincides
with the shift in the fibrosarcoma Sa-37 tumor from
spherical to ellipsoidal shape. Obtained values for nloc
with mKJMA are higher than those for the KJMA
model. Besides, for both models, nloc > 4 (before
6 days) and 3 ≤ nloc ≤ 4 (between 6 and 10 days) are
observed.



Fig. 2 Shape change of fibrosarcoma Sa-37 tumor. a Tumor factor form (FF) versus time. b Tumor curvature radius versus time on points A, B and C, given
by Rc-L1, Rc-L2 and Rc-L3, respectively. FF, Rc-L1, Rc-L2 and Rc-L3 are given on three perpendicular planes xy, xz and yz. These curves are shown for t≥ tobs
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Discussion
The results of this study are valid for the unperturbed
fibrosarcoma Sa-37 tumor, experimentally transplanted
to BALB/c mice. As shown, parameter nloc is a better
descriptor than n for the entire TGK. The plausibility of
V(t) versus t plot and/or p(t) versus t plot for TGK
analysis is also suggested, in agreement with [34].
Equations (1, 2, 3, 4, 5 and 6) can be used to fit
Fig. 3 nloc versus ln(t) plot on the normalized experimental data for KJMA
normalized experimental data from Sa-37 tumor, as
assessed by the high ra

2 values, low values of SSE, SE,
PRESS, MPRESS as well as overall estimation accuracy.
Each equation has high prediction capability and good
missing data handling. This further supports sigmoid
laws universality [3, 35].
Despite mentioned in the previous paragraph, a

weighted least square minimization in formula (6) may
and mKJMA models, and t ≥ tobs
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be proposed for selection of the best model, taking into
account the uncertainty of the individual measurements
of the tumor volume and the fact that the larger the
volume, the larger the standard deviation. This and other
statistical criteria [33] in tumor volumes with smaller
and larger standard deviations will be included in a
further study.
As obtained, Vo can be indistinctly chosen as Vobs, Voo

or Vmeas since Eq. (2) behaves similarly when any of
them is used in experimental data fitting. Unlike Eqs. (2)
and (4), the parameters of Eq. (6) depend on the first
point of TGK, indicating that it senses the microstruc-
tural changes from beginning of TGK (t = 0).
The good fits yielded by Eqs. (1) and (3) are in con-

trast with [8, 9, 11, 33]. This can be due to the omission
of larger tumors, since mice were slaughtered earlier,
following [6]. That is why, p(t) and nloc do not reach the
values of 1 and 0, respectively. In crystals, p(t) = 1 and
nloc = 0 [26].
Equation (5) should not be used for TGK interpret-

ation, since λ > 1; its parameters differ respect to those
of Eq. (6) (Tables 2 and 3, and Fig. 3) and graphical strat-
egies are noticeably different for these two equations.
This agrees with Wang et al. [26]. Accordingly, results
obtained with Eq. (5) have not been exposed here.
The close relationship between fibrosarcoma Sa-37

tumor spherical shape and nloc ≥ 3 is corroborated in this
study. Similar finding is reported in crystals [28–30].
This tumor spherical shape may be vital for tumor
growth due to a lower surface curvature, in agreement
with [2, 36–38]. Jump of nloc and the change from
spherical to non-spherical shape may be related to a
shift from avascular (before 10 days) to vascular growth
phase (after 11 days). Transition between these two
phases has been previously reported [36, 37]. The ob-
served nloc jump corresponds to a transition of high
(before nloc jump) to low (after nloc jump) value of nloc,
suggesting the occurrence on TGK of two types of
growth mechanisms that happen at different time scales:
nucleation (below 10 days) and pure growth (above
11 days). Nucleation is expected at vascular growth phase,
mainly at its very early stages, by high values of nloc and it
is the stochastic stage of a forming and growing system.
This later may be due to the Brownian motion (a fractal
stochastic process) of thermally fluctuating and energetic-
ally unstable tumor cells in suspension at t = 0.
High energetic instabilities at avascular growth phase

are mitigated by nucleation mechanisms, suggesting a
high micro-anisotropy, confirmed by nloc ≥ 5. Micro-
anisotropy leads to random formation of non-uniform
and energetically unstable cellular micro-clusters, which
establish a space-time competence for nutrients, oxygen
and energy, resulting in high micro-heterogeneities, as
reported in multicellular spheroid models [36–38]. This
may explain the existence of the entropy production [39]
and the diffusion limited aggregation at avascular tumor
growth (mainly at its very early stages of TGK) because
the tumor cells move randomly in Brownian motion,
forming fractal clusters when diffusion is the main trans-
port mechanism. Brownian motion and diffusion limited
aggregation are stochastic rather than deterministic
processes with random fractal dynamics. This diffu-
sion limited aggregation may have an impact in TGK
[40] and result in tumor cells packed in a multicellu-
lar spheroid not yet connected to the host’s blood
supply, in agreement with [36–39, 41].
The formation of these cellular micro-clusters discards

the occurrence of a burst nucleation, which means that
all nucleation sites are immediately saturated at t = 0.
Burst nucleation is reached for K→∞, λ = 1, n→∞
and/or DT→ 0, in contrast with the results of this paper
and with duration of Lag stage of TGK observed in pre-
clinical (several days) and in clinical (several months and
years) studies. Additionally, the existence of cellular
micro-clusters may suggest that a tumor solid seed (or
smallest size of a solid tumor), long before of Vobs, may
be essentially formed via heterogeneous nucleation
mechanisms, as previously hypothesized Cabrales et al.
[2]. This via is confirmed in this study by non-integer
values of n and nloc, as in crystals [28–30].
Nucleation mechanisms may help to form these cellu-

lar micro-clusters by filling the high nucleation sites (or
vacancies), which may correspond with unoccupied sites
of the cancer cells. The existence of these sites may be
justified because nloc ≥ 5; this can lead to a higher num-
ber of heterogeneous sites, making unstable both the
forming cellular system and the cellular micro-
clusters. This process may be stabilized and ordered
by both inter-cellular interactions and the overlapping
of diffusion fields of tumor cells, a matter that agrees
with [19, 36, 41], suggesting the existence of soft impinge-
ment mechanisms during the avascular growth phase.
These mechanisms are also confirmed because λ > 2, as in
crystals [26–28]. Nucleation and soft impingement mecha-
nisms may explain, in part, why a slightly better binding of
cancer cells with less detachment, in agreement with [42].
The filling of vacancies may explain why nloc drops up

to the jump of nloc. After nloc jump, nloc increases prob-
ably because pure growth mechanisms emerge and
prevail over nucleation mechanisms. If pure growth
mechanisms do not emerge, nucleation sites are com-
pletely saturated (nloc tends to 0) in less than 30 days, in
contrast with the results shown in Fig. 3. It should be
expected that nloc tends to 0 for larger tumors (≥3 cm3,
which is reached long past 30 days) because TGK decel-
erates at stationary stage of TGK (cell-production-to-
cell-loss rate is very slow or unalterable). This ratifies
that TGK cannot be linear nor exponential (the host
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cannot fully sustain solid tumors due to their sizes
would be bigger than host size). Accordingly, solid tu-
mors are cooperative boundless systems, in agreement
with the S-shape of tumor growth, and the fact that Eq.
(6) has to level off at both extremes to represent almost
no binding at the beginning of TGK and saturated binding
at the final of TGK.
Heterogeneity and anisotropy of the fibrosarcoma Sa-

37 tumor at vascular growth phase are confirmed by
palpation; time changes of nloc, L1, L2, L3, FF and Rc; ir-
regular border, deformation and surface roughening
[2, 17, 25] and are associated with compactness, stiff-
ness and surface tension of the tumor [23, 24, 43].
Anisotropy produces preferred directions of growth,
minimizing surface tension.
Brownian motion and cellular micro-clusters at very

early stages of TGK; Figs. 1, 2 and 3; and the irregular
border, surface roughening and stiffness of the tumor at
vascular growth phase may suggest that forming, grow-
ing and transforming cellular system along TGK hap-
pens in a fractal space-time; as a consequence the
fractional Hausdorff dimension (DH) is higher than
the topologic dimension (DT), as it corresponds to a
fractal space [44]. This means that although DT = 0
for tumor cells in suspension (considered as a set of
points) at t = 0, 0 < DH < 1. It is expected that the
forming and growing cellular system on TGK pass
through different spatial patterns, starting from
worm-like linear structures (DT = 1 and 1 < DH < 2);
then, fish-like plane structures (DT = 2 and 2 < DH < 3);
spatial solid-like structures (DT = 3 and 3 < DH < 4); and
lastly, space-time structure (DT = 4 and 4 < DH < 5 or
higher dimensions). It is possible that these two later
structure types are reached once the tumor solid seed and
vascular growth phase are formed, respectively. This is in
contrast with [45] and agrees with [46]. Waliszewski and
Konarski [45] obtain that the value of the mean temporal
fractal dimension decreases along the curve approaching
integer value because the fractal structure is lost with
tumor progression. Shim et al. [46] correlate the S-shaped
time increase of tumor fractal dimension, with textural
parameters (i.e., hardness) and the growth in the time of
space-time branching structures (or patterns). These
structures are linked to the abnormal network of blood
vessels, in agreement with the findings of the present
study. This and the inverse relation between p(t) and
nloc (Figs. 1, 2 and 3) may suggest that nloc and the
tumor fractal dimension are inversely related, as it
takes place in crystals [30]. Time changes in DT and
DH may explain, in part, why tumor cells in vitro
form colonies and grow in layers, unlike the normal
cells, which do not form colonies [47].
Fractal properties of tumors have been correlated with its

microstructure, microscopic coherent local deformation
processes (or local dynamical rearrangements), mitosis rate,
heterogeneity, anisotropy, complexity degree, spatial-
temporal coherence, self-organization, self-stabilization,
self-symmetry, self-ordering, self-similarity, mechanical
properties (stiffness, compactness and surface roughening),
temporal changes of nontrivial shape and dynamical struc-
tural intrinsic transformations [21, 35, 48–51].
Tumor fractal dimension may suggest that the tumor

is a type of fractal, named space-filling fractal that
continuously attempts to fill in the area leaving no
empty holes. The space-filling pattern is formed by pla-
cing some non-overlapping units of smaller sizes. This
may confirm the existence of annihilation of vacancies,
in agreement with Molski and Konarski [48], confirming
that solid phase of TGK is spatially coherent and there-
fore, all tumor cells co-operate collectively producing
spatial-temporal organization and complex patterns.
The above discussed suggests that TGK is a fractal

from its beginning (t = 0), unprecedented in the litera-
ture. This statement agrees with [52], in which is dem-
onstrated the fractal origin of the Gompertz equation.
Izquierdo-Kulich et al. [52] explain their results because
α and β are connected with morphology of the tumors,
specifically with the fractal character of them.
Small values of Ea and minimal tumor surface tension

[23] may explain time evolution of V(t), p(t), nloc, DT/
DH, shapes of the fibrosarcoma Sa-37 tumor. In addition,
small values of Ea corroborate that vacancies require
small amount of energy for their creations. They have
received insufficient attention and may have an import-
ant role in the carcinogenesis, production/lost rate of
tumor cells, and in mechanics [23, 24] and dielectric
[53] properties of a forming and growing cellular system,
during entire TGK. This may be explained because
vacancies disorder these cellular systems, leading to
structural, morphological and electrical instabilities
[21, 48, 49, 51]. As a result, impingement mecha-
nisms emerge during TGK in order to guarantee the
most efficient space-filling and to stabilize the form-
ing and growing cellular system, in order to maximize
its exchanges of nutrients in the minimum amount of
space and therefore to maximize the tumor growth
and its stabilization. After nloc jump, soft impingement
mechanisms guarantee the growth, stabilization and
survival of the tumor by branching structure (abnormal
vascular network) [14–17], the different abnormal sig-
naling pathways, the interactions that happen in the
tumor and/or other uncontrolled environmental factors
[17, 23, 36, 54, 55]. As a result, the tumor cells do not
multiply in an unregulated manner, as reported in [17],
but they are regulated by the number of vacancies
available to be filled. Furthermore, intrinsic local dislo-
cations lead to dynamical rearrangements of tumor
cells, suggesting that dynamical structural intrinsic
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transformations take place along the entire TGK. This
indicates that the forming and growing cellular system
passes through different dynamical conformational
states or meta-stable configurations. These configura-
tions are rearrangements of the cancer cells that take
place over a wide energy range due to the large number
of stabilized and ordered cellular configurations. This
agrees with Guha [56], who reports that a change of
state takes place if there is an unbalanced force any-
where within the system, or between the system and its
surrounding, leading to variations in pressure or elastic
stress which give rise to the tumor expansion. This
brings about that TGK may be limited and controlled
by vacancies, which are governed by nucleation/growth
and impingement mechanisms, and dynamical struc-
tural intrinsic transformations. As a result, cancer self-
renews constantly and TGK is a highly coordinated
dynamic multi-step process, in agreement with [57].
On the other hand, these dynamical structural intrinsic

transformations may explain, in part, immune resistance
mechanisms and low effectiveness of some antitumor
therapies (i.e., immunotherapy when solely applied), in
agreement with [58]. This may be explained because
these transformations may be responsible for structural
and stereochemical changes on membrane-bound
receptor-ligand immune checkpoints that promote the
tumor activity. As a result, ligand-receptor interactions
are perturbed due to the expression of immune-
checkpoint proteins which are disregulated [58].
The results may evidence that entire TGK is not only

due to imbalance between cell production and cell loss
[17] and other hallmarks of cancer [17, 54, 55], but also
to diffusion-controlled nucleation/growth and impinge-
ment mechanisms, and dynamical structural intrinsic
transformations, which may be the key to understand
how a solid tumor arises and grows. These findings are
often ignored in literature and may indicate that TGK is
about dynamical structural transformations, instead of
pure growth kinetics. They may explain why K is an
order smaller than α/r*; DT value estimated with the Eq.
(6) is smaller than that estimated experimentally and
with the Eq. (2); the differences between the values of K,
n, λ and Ea report in the Tables 2 and 3; and the differ-
ence of nloc versus ln(t) for KJMA and mKJMA models
(Fig. 3). On the other hand, if these findings are not
considered on entire TGK, then pure growth mecha-
nisms prevail in it, meaning that K ≅ α ≅ r* and DT
estimated experimentally and with Gompertz, Logistic
and mKJMA models are equals, in contrast with results
here shown.
Besides, the prevalence of these findings at avascular

growth phase ratify that an important part of vital cycle
of a solid tumor occur before it is clinically detected, in
agreement with [17]. On the other hand, the Eq. (6)
senses the microstructural changes that happen during
the entire TGK, mainly at avascular growth phase, in
contrast to Eqs. (1, 2, 3 and 4).
Many questions may arise, as: how n, nloc, λ and Ea

depend on α, β and DT, which characterize the histo-
logical characteristics of a solid tumor? How an immune-
deficient or immune-competent organism affect n, nloc, λ
and Ea values? Can the Eq. (6) be modified to fit the per-
turbed tumor growth kinetics with an external agent?
among others. This first study cannot give answers to all
these questions. Relevant biological and clinical data may
now be gathered in a systematic manner in order to test
our theory or any other quantitative model derived using
a methodology similar to ours, with the aim of helping to
understand, and potentially handling, the process of
tumor growth. Future studies will provide in-depth experi-
mental findings that permit a best interpretation of the
parameters of mKJMA model in cancer.
Conclusions
In conclusion, modified Kolmogorov-Johnson-Mehl-
Avrami is adequate to describe unperturbed trans-
planted fibrosarcoma Sa-37 tumor growth, which is
not a purely growth kinetics, but kinetics of dynam-
ical structural intrinsic transformation, involving
diffusion-controlled nucleation/growth and impinge-
ment mechanisms. Besides, TGK follows a fractal
nucleation and growth model.
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TGK: Tumor growth kinetics; Vτ: Tumor volume corresponding to inflection
point of TGK; V(t-τ): Tumor volume at time (t-τ); Vmeas: Minimum measurable
tumor volume; Vo: Initial tumor volume; Vobs: Minimum observable tumor
volume; Voo: Tumor volume reaches a diameter of 2 mm; β: The growth
deceleration factor related to the endogenous antiangiogenesis processes
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