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Abstract

Background: Gastric cancer is one of the most common and lethal type of cancer worldwide. Infection with
Helicobacter pylori (H. pylori) is recognized as the major cause of gastric cancer. However, it remains unclear the
mechanism by which Helicobacter infection leads to gastric cancer. Furthermore, the underlying molecular events
involved during the progression of Helicobacter infection to gastric malignancy are not well understood. In previous
studies, we demonstrated that that H. felis-infected Myd88−/− mice exhibited dramatic pathology and an accelerated
progression to gastric dysplasia; however, the MyD88 downstream gene targets responsible for this pathology have
not been described. This study was designed to identify MyD88-dependent genes involved in the progression
towards gastric cancer during the course of Helicobacter infection.

Methods: Wild type (WT) and Myd88 deficient mice (Myd88−/−) were infected with H. felis for 25 and 47 weeks and
global transcriptome analysis performed on gastric tissue using MouseWG-6 v2 expression BeadChips microarrays.
Function and pathway enrichment analyses of statistically significant, differential expressed genes (p < 0.05) were
performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tools.

Results: Helicobacter infection affected the transcriptional profile of more genes in Myd88−/− mice compared to WT
mice. Infection of Myd88−/− mice resulted in the differential expression of 1,989 genes at 25 weeks (1031 up and 958
downregulated). At 47 weeks post-H.felis infection, 2,162 (1140 up and 1022 downregulated) were differentially expressed.
The most significant differentially upregulated gene during Helicobacter infection in Myd88−/− mice was chitinase-like 4
(chil4), which is involved in tissue remodeling and wound healing. Other highly upregulated genes in H. felis-infected
Myd88−/− mice included, Indoleamine 2,3-Dioxygenase 1 (Ido1), Guanylate binding protein 2 (Gbp2), ubiquitin D (Ubd),
β2-Microglobulin (B2m), CD74 antigen (Cd74), which have been reported to promote cancer progression by enhancing
angiogenesis, proliferation, migration, metastasis, invasion, and tumorigenecity. For downregulated genes, the highly
expressed genes included, ATPase H+/K+ transporting, alpha subunit (Atp4a), Atp4b, Mucin 5 AC (Muc5ac),
Apolipoprotein A-1 (Apoa1), and gastric intrinsic factor (Gif), whose optimal function is important in maintaining gastric
hemostasis and lower expression has been associated with increased risk of gastric carcinogenesis.

Conclusions: These results provide a global transcriptional gene profile during the development and progression of
Helicobacter-induced gastric cancer. The data show that our mouse model system is useful for identifying genes involved
in gastric cancer progression.
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Background
Gastric cancer is one of the most common causes of
cancer-related death worldwide with an estimated
738,000 deaths each year [1]. Recently, H. pylori was rec-
ognized as the foremost cause of gastric cancer [2–7].
With an estimated half of the world’s population being
infected, Helicobacter infection contributes significantly
to the worldwide gastric cancer burden [7, 8]. Recogni-
tion of the factors leading up to the development and
progression towards gastric cancer are critical in deter-
mination of cancer pathology. H. pylori-induced gastric
carcinogenesis involves a multistep progression from
normal gastric mucosa to superficial gastritis, chronic
gastritis, atrophic gastritis, metaplasia, dysplasia, and fi-
nally gastric carcinoma [8, 9]. Molecular events associ-
ated with disease progression to gastric malignancy have
not been elucidated. Considerable amount of confirma-
tory evidence shows that host immune response to H.
pylori is crucial in determining gastric cancer predispos-
ition [10–12]. We have previously shown that a key sig-
nal transduction adaptor protein, myeloid differentiation
primary response gene 88 (MyD88), regulates Helicobac-
ter-induced gastric cancer progression in a mouse model
of gastric cancer [13]. We demonstrated that H. felis-in-
fected MyD88 deficient (Myd88−/−) mice exhibited
severe gastric pathology and an accelerated progression
to gastric dysplasia compared to wild type (WT) mice
[13] However, the MyD88-dependent gene responsible
for this pathology were not described.
MyD88 is a key adaptor molecule that is crucial in

mediating innate immune signals from members of the
toll-like receptor (TLR) and interleukin-1 (IL-1)/IL-18
families leading to downstream activation of nuclear fac-
tor (NF)-κB [14–16]. Consistent with involvement in
these inflammatory pathways, MyD88 signaling has been
associated with cancer progression, which stems from
the understanding that inflammation is linked to cancer
promotion [17, 18]. Studies on the role of MyD88 cancer
progression have been the subject of recent intense in-
vestigations. However, the data are contradictory, which
indicate that the role of MyD88 in the development and
progression of inflammation-associated cancers is com-
plex [19]. Several studies using genetic or chemical
carcinogenesis models involving Myd88 deficient mice
have shown MyD88 to either promote [20–27] or sup-
press [13, 28–34] tumor development. The complex role
of MyD88 in carcinogenesis is best typified by studies in
colon cancer models [22, 24, 29, 35] showing contradict-
ory roles in the same tissue. The mechanistic basis for
these opposing observation is still not fully understood
and could be due to many factors including, the type of
inflammation, the extent of tissue damage, and immune
response elicited [35]. Further, the MyD88 dependent
genes in this accelerated progression to dysplasia remain

unknown. Therefore, this study was performed to iden-
tify potential genes involved in the accelerated progres-
sion of gastric cancer.

Results
Gene expression and analysis
Prior to differential gene analysis, all data from 23,015
genes with a standard deviation of less than 0.1 were
used for multiple dimensional scaling (MDS) analysis
(Fig. 1) to verify that Myd88−/− and WT samples were
differentiated according to gene expression in each sam-
ple with a relative p-value. Each sample is represented
with distance between each one reflecting their approxi-
mate degree of correlation [36]. All genes included in
the analysis had a minimum standard deviation of less
than 0.1. The analysis showed that all uninfected mice
were clustered together irrespective of genetic back-
ground or time point. For infected mice, WT and Myd88
−/− mice clustered distinctively separate indicating differ-
ential expression of their genes.
Statistical analysis of all 23,015 genes that went

through the filtering process identified a total of 286
genes in WT and 4,151 in Myd88−/− mice in response to
H. felis infection with more genes differentially expressed
at 47 than 25 weeks (Table 1). Comparing the number of
upregulated genes between Myd88−/− and WT at
47 weeks post infection, there were more upregulated
genes (1140) in Myd88−/− mice compared to WT mice
(189 genes). A similar trend was observed for upregu-
lated genes at 25 weeks and for downregulated genes at
both time points, with more genes differentially
expressed in Myd88−/− than WT mice in response to H.
felis infection. The number of differentiated genes at
each time point in comparison to uninfected controls is
illustrated in Fig. 2. Most genes overlapped between time
points, however, there were a substantial number of
genes that were unique to each set of time points that
were differentially regulated (Fig. 2).
Scatterplot depiction of differentially expressed genes

shows significantly (P < 0.05) up- and downregulated
genes in Myd88−/− mice in response to H. felis infection
(Fig. 3). A majority of genes were altered after 25 weeks
of H. felis infection. Some of the new additional genes at
47 weeks post-H. felis infection included the ring finger
protein 213 (Rnf213) and Furin, which have been re-
ported to be involved in angiogenesis [37, 38] and cancer
progression [39], respectively indicating their role in
advanced stages of cancer progression.

Analysis of differentially expressed genes
Tables 2 and 3 show a list of the top 50 up- and down-
regulated genes in Myd88−/− mice at 25 and 47 weeks
post-H. felis infection compared to uninfected controls.
The most highly upregulated gene during H. felis
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infection in Myd88−/− mice included Chitinase-like
(chil4), which is involved in tissue remodeling and
wound healing [40–42]. Many of the upregulated genes
in both 25 weeks and 47 weeks post-H. felis infection in-
volved genes in the H2 Complex (murine major MHC),
particularly the class I heavy chains, H2-K and H2-D.
The light chain for this MHC complex consists of the
β2-Microglobulin (B2m) [43]. MHC class II antigen
presentation including the CD74 antigen (Cd74) was an-
other gene that was upregulated in response to H. felis
infection. High expression of Cd74 has been linked to
chronic inflammation and carcinogenesis in the gastro-
intestinal tract [44]. Another highly expressed gene was
Indoleamine 2,3-Dioxygenase 1 (Ido1), which is sug-
gested to play a role in immune tolerance and high ex-
pression in colorectal cancer and is correlated with a
poor clinical outcome (reviewed in [45]. The entire list

of altered genes in response to infection with H. felis in-
cluding those in WT mice have been submitted and can
be uploaded as an excel file in Additional files 1: Table
S1 (inf vs uninfectd charts.xlsx).
STRING summary networks depicting protein- protein

interactions among the top differentially expressed genes
(DEGs) for both up- and downregulated genes in Myd88
−/− mice are shown in Figs. 4 and 5 for 25 and 47 weeks,
respectively. Thicker lines connecting the genes indicate
a stronger association between the genes. A confidence
score of at least 0.70 (high) was used. One of the key
central nodes in the top DEGs in Myd88−/− mice at both
25 and 47 weeks post-infection was guanylate-binding
protein 2 (Gbp2), which is considered a potential marker
for esophageal squamous cell carcinoma [46].

Functional enrichment analysis of differentially expressed
genes (DEGs)
To gain insights into the biological meaning and func-
tion of the differentially expressed genes, enrichment
analysis was performed using the database for annota-
tion, visualization and integrated discovery (DAVID) on-
line analytical tools [47–49]. Annotation according to
tissue expression, molecular function, cellular compo-
nent and biological processing was done using Gene
Ontology (GO) [49]. Enrichment analysis was performed
to identify pathways, processes and gene categories that
are over-represented in the list of DEGs compared to

Table 1 Summary of microarray-based analysis of DEGs

Strain UP DOWN TOTAL

WT 25 weeks 7 3 10

WT 47 weeks 189 87 276

Myd88−/− 25 weeks 1031 958 1989

Myd88−/− 47 weeks 1140 1022 2162

Number of differentially regulated genes at 25 weeks and 47 weeks in Myd88
−/− and WT mice infected with H. felis compared to their matched uninfected
controls. In total 23,015 genes were analyzed in both mouse backgrounds.
Totals depict number of DEGs, both up and downregulated

Fig. 1 Multi Dimensional Scale Plot of all H. felis infected and control samples from WT and Myd88−/− mice. Samples were separated using 8 RNA
SEQ libraries based on sample relations of 23,015 genes with a standard deviation/ mean >0.1 Groups separated into infected Myd88−/−, infected
WT and uninfected samples
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Fig. 2 Venn diagram of differentially expressed genes. The number of changed genes following infection with H. felis in WT and Myd88−/− mice
at 25 and 47 weeks (p < 0.05) is shown. The relationship between these DEGS is also shown

Fig. 3 Scatterplot of Differentially Expressed Genes in H. felis- infected Myd88−/− samples at (a) 25 and (b) 47 weeks. Scatterplot represents a
summary of t-tests for individual genes, depicting the Log2 fold changes and their corresponding –log10p-values of all differentially expressed
genes from microarray analysis. Genes were separated into different time points. Negative values of Log2 fold changes indicate downregulated
genes. Positive Log2 fold changes indicate upregulated genes. Genes with a fold change < 2.0 and a p value <0.05 are depicted as red dots and
genes not found to be significantly altered are depicted as black dots. All infected animals were normalized to uninfected control mice at the
same time point
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Table 2 Top 50 most differentially expressed annotated genes in H. felis-infected Myd88−/− mice at 25 weeks compared to
uninfected controls

Symbol Gene Name LogFC Adj. P.Val

Chil4 chitinase-like 4 5.77 4.05E-04

Bpifb1 BPI fold containing family B, member 1 4.90 1.97E-04

Cd74 CD74 antigen (invariant polypeptide of major
histocompatibility complex, class II
antigen-associated)

4.28 4.93E-08

H2-Ab1 histocompatibility 2, class II antigen A, beta 1 4.09 2.35E-07

Ido1 indoleamine 2,3-dioxygenase 1 3.88 1.39E-04

H2-DMa histocompatibility 2, class II, locus DMa 3.34 1.29E-05

H2-DMb2 histocompatibility 2, class II, locus Mb2 3.33 2.22E-06

Igtp interferon gamma induced GTPase 3.29 1.54E-04

H2-Eb1 histocompatibility 2, class II antigen E beta 3.28 2.51E-06

Gbp2 guanylate binding protein 2 3.27 3.49E-05

Sftpd surfactant associated protein D 3.26 3.73E-07

Psmb8 proteasome (prosome, macropain) subunit, beta
type 8 (large multifunctional peptidase 7)

2.92 3.46E-06

H2-K2 histocompatibility 2, K region locus 2 2.78 2.64E-07

H2-K1 histocompatibility 2, K1, K region 2.64 1.04E-06

B2m beta-2 microglobulin 2.59 3.46E-06

Pkp4 plakophilin 4 2.54 2.04E-06

H2-DMb1 histocompatibility 2, class II, locus Mb1 2.52 3.46E-06

Ubd ubiquitin D 2.51 2.90E-04

H2-Aa histocompatibility 2, class II antigen A, alpha 2.47 2.15E-05

Irgm2 immunity-related GTPase family M member 2 2.42 9.04E-05

H2-Q7 histocompatibility 2, Q region locus 7 2.32 2.22E-06

Cxcl9 chemokine (C-X-C motif) ligand 9 2.30 6.23E-05

Irf1 interferon regulatory factor 1 2.23 7.54E-05

Serpina3g serine (or cysteine) peptidase inhibitor,
clade A, member 3G

2.22 5.85E-06

H2-M2 histocompatibility 2, M region locus 2 2.21 5.85E-06

Casp1 caspase 1 2.17 1.86E-04

H2-D1 histocompatibility 2, D region locus 1 2.17 1.07E-06

Ear2 eosinophil-associated, ribonuclease A
family, member 2

2.16 6.91E-04

H2-T23 histocompatibility 2, T region locus 23 2.07 5.85E-06

Psmb9 proteasome (prosome, macropain) subunit, beta
type 9 (large multifunctional peptidase 2)

2.05 1.54E-04

Psmb10 proteasome (prosome, macropain) subunit,
beta type 10

2.03 5.50E-05

Sgk1 serum/glucocorticoid regulated kinase 1 −2.01 3.48E-04

Apoa4 apolipoprotein A-IV −2.31 2.33E-05

Ttr transthyretin −2.37 2.15E-05

Fabp3 fatty acid binding protein 3, muscle and heart −2.37 1.61E-04

Muc5ac mucin 5, subtypes A and C, tracheobronchial/gastric −2.41 7.14E-04

Smim24 small integral membrane protein 24 −2.61 3.46E-06

Lpl lipoprotein lipase −2.75 8.29E-05

Pdia2 protein disulfide isomerase associated 2 −3.08 3.10E-05
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the mouse genome. GO clustering analysis for biological
processes showed that responses related to immune
system processes were the most upregulated enriched
process in Myd88−/− mice at both 25 and 47 weeks in re-
sponse to H. felis infection (Fig. 6a and c). For molecular
functions, antigen and protein complex binding were the
most enriched processes (Fig. 6b and d). Downregulated
enriched processes in Myd88−/− mice in response to H.
felis infection are presented as supplementary data (Add-
itional files 2: Figure S1). A summary of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
annotation shown in Fig. 7 revealed that the most
enriched pathway was antigen processing and presenta-
tion. This pathway shared the majority of its genes with
the other major pathways and completely engulfed the
other pathways by sharing more than 90% of the genes
annotated. A breakdown of up- and downregulated
KEGG pathway at 25 and 47 weeks in Myd88−/− mice in
response to H. felis infection is presented as supplemen-
tary data (Additional files 3: Figure S2).

Discussion
Gastric cancer develops and progresses through a step-
wise sequence of events from inflammation to atrophy,
metaplasia, dysplasia, and finally to gastric cancer [50].
We previously demonstrated using a mouse model of
gastric that mice deficient in MyD88 signaling exhibited
dramatic pathology and an accelerated progression to
gastric neoplasia in response to H. felis infection [13]. In
the present study, we used microarray gene expression
analysis to identify the genes involved in this progression
to gastric neoplasia. Although previous studies have in-
vestigated differential gene expression in mice stomachs
in response to Helicobacter infection, most have focused
on H. pylori [51–53], which does not result in neoplastic
changes in mice [54, 55]. The few studies that have

examined gene expression profiles in mouse model of
gastric cancer have used the insulin-gastrin (INS-GAS)
transgenic gastric cancer mouse model [56, 57]. These
mice have been shown to spontaneously develop gastric
cancer even in the absence of Helicobacter infection
[58]. We have previously reported that Myd88−/− mice
do not exhibit abnormal pathology in the absence of
Helicobacter infection [13]. The global transcriptional
profiling of mouse gastric tissue identified a large num-
ber of significant differentially expressed genes in H.
felis-infected Myd88−/− mice compared to H. felis-in-
fected WT mice. The most over expressed gene in
Myd88−/− mice during H. felis infection at 25 weeks was
Chil4. Chitinase like proteins (CLPs) have been studied
in relation to other cancers yet little has been investi-
gated in relation to gastric cancer except for our present
study and a couple other studies [57, 59]. Upregulation
of CLPs has been shown in a number of human cancers
including brain, bone, breast, ovaries, lung, prostate,
colon, thyroid, and liver [41, 60]. For gastric cancer stud-
ies, chitinase protein 3 like 1 (Chil1) was upregulated in
INS-GAS mice infected with H. felis, [57]. In our present
study, Chil1 was not upregulated in response to H. felis
infection. However, in addition to upregulation of Chil4,
another CLP, Chil3 was also significantly over expressed
in H. felis-infected mice at both 25 weeks (p = 0.03) and
47 weeks (p = 0.01) (gene not listed in Tables 2 and 3,
only the top 50 are listed). An abundant over expression
of Chil1, Chil4 as well as Chil3 has been reported in
early preneoplastic stage in the epidermis [61]. Overall,
CLPs have been implicated to play a role in chronic in-
flammation, tissue remodeling, and wound healing [40].
Up-regulation of genes involved in tissue remodeling is
noteworthy because chronic inflammation and subse-
quent damage to the gastric epithelium has been sug-
gested to play an important role in cancer development

Table 2 Top 50 most differentially expressed annotated genes in H. felis-infected Myd88−/− mice at 25 weeks compared to
uninfected controls (Continued)

Pnliprp1 pancreatic lipase related protein 1 −3.18 5.76E-04

Gm5771 predicted gene 5771 −3.36 3.53E-04

Hamp2 hepcidin antimicrobial peptide 2 −3.43 1.59E-04

Pnliprp2 pancreatic lipase-related protein 2 −3.44 7.47E-04

Rnase1 ribonuclease, RNase A family, 1 (pancreatic) −3.78 5.55E-04

Try5 trypsin 5 −4.17 7.45E-04

Gm5409 predicted pseudogene 5409 −4.44 4.89E-05

Try4 trypsin 4 −4.87 4.39E-05

Try10 trypsin 10 −5.08 2.69E-06

Amy2a5 amylase 2a5 −6.44 2.22E-06

Chia1 chitinase, acidic 1 −6.68 8.93E-05

Genes with no known annotated name were excluded from the analysis. Genes were considered to be statistically significant when a threshold adjusted p value
< 0.05 and Log FC > 2 were reached
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Table 3 Top 50 most differentially expressed annotated genes in H. felis-infected Myd88−/− mice at 47 weeks compared to
uninfected controls

Gene Symbol Gene Name LogFC Adj. P.Val

Chil4 chitinase-like 4 4.97 1.24E-03

Cd74 CD74 antigen (invariant polypeptide of major
histocompatibility complex, class II antigen-associated)

4.18 7.41E-08

Bpifb1 BPI fold containing family B, member 1 4.02 6.43E-04

H2-Ab1 histocompatibility 2, class II antigen A, beta 1 3.96 4.14E-07

Ido1 indoleamine 2,3-dioxygenase 1 3.78 1.44E-04

Igtp interferon gamma induced GTPase 3.29 1.25E-04

Sftpd surfactant associated protein D 3.24 4.86E-07

H2-DMb2 histocompatibility 2, class II, locus Mb2 3.20 4.43E-06

Psmb8 proteasome (prosome, macropain) subunit, beta
type 8 (large multifunctional peptidase 7)

3.20 1.71E-06

Gbp2 guanylate binding protein 2 3.15 4.53E-05

H2-DMa histocompatibility 2, class II, locus DMa 3.13 2.17E-05

H2-Eb1 histocompatibility 2, class II antigen E beta 3.05 6.39E-06

Ubd ubiquitin D 2.85 8.22E-05

B2m beta-2 microglobulin 2.81 4.14E-07

H2-K2 histocompatibility 2, K region locus 2 2.58 7.37E-07

H2-Aa histocompatibility 2, class II antigen A, alpha 2.56 1.39E-05

Irgm2 immunity-related GTPase family M member 2 2.53 5.62E-05

H2-DMb1 histocompatibility 2, class II, locus Mb1 2.47 5.72E-06

H2-K1 histocompatibility 2, K1, K region 2.40 3.89E-06

Serpina3g serine (or cysteine) peptidase inhibitor, clade A,
member 3G

2.30 4.90E-06

Psmb9 proteasome (prosome, macropain) subunit, beta
type 9 (large multifunctional peptidase 2)

2.30 4.92E-05

Psmb10 proteasome (prosome, macropain) subunit, beta type 10 2.29 1.49E-05

Pigr polymeric immunoglobulin receptor 2.29 2.37E-05

Oasl2 2′-5′ oligoadenylate synthetase-like 2 2.24 6.52E-04

H2-Q7 histocompatibility 2, Q region locus 7 2.22 4.90E-06

Casp1 caspase 1 2.20 1.33E-04

Irf1 interferon regulatory factor 1 2.17 8.33E-05

C3 complement component 3 2.15 4.52E-05

Cxcl9 chemokine (C-X-C motif) ligand 9 2.14 1.04E-04

Pkp4 plakophilin 4 2.11 1.28E-05

Rnf213 ring finger protein 213 2.08 1.59E-04

H2-D1 histocompatibility 2, D region locus 1 2.04 2.78E-06

Ear2 eosinophil-associated, ribonuclease A family, member 2 2.04 9.57E-04

Sst somatostatin −2.01 1.25E-04

Smim24 small integral membrane protein 24 −2.11 3.12E-05

Muc5ac mucin 5, subtypes A and C, tracheobronchial/gastric −2.23 1.14E-03

Lpl lipoprotein lipase −2.32 3.50E-04

Sgk1 serum/glucocorticoid regulated kinase 1 −2.33 8.22E-05

Ckb creatine kinase, brain −2.35 1.02E-04

Gif gastric intrinsic factor −2.36 3.50E-04

Cox7a1 cytochrome c oxidase subunit VIIa 1 −2.49 1.06E-04
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and progression [62]. During chronic inflammation,
the resulting prolonged tissue damage creates a loss of
control over normal tissue repair mechanisms result-
ing in persistent hyper-tissue repair, which is accom-
panied with sustained proliferation [63] and ultimately
advancing to precancerous lesions. Lost tissue is then
replaced with stem and progenitor cells that are under
a continuous stimulus of proliferation, leading to the
accumulation of replacement cells with dysregulated
and altered signaling pathways [63]. Further, studies
investigating associations between chronic inflamma-
tion, tissue repair and carcinogenesis highlight the
potential of these cellular changes in inducing both
pro-oncogenic and tumor suppressor pathways [62,
64–67]. Our study, in addition to the work done by Li
et al. [59] and Takaishi and Wang [57] show a need

for further investigation into the role of CLPs in gas-
tric carcinogenesis.
Other upregulated genes included Cd74, B2m, and

interferon (IFN) induced genes such as GTPases (inter-
feron gamma induced GTPase, lgtp, immune mediated
GTPase family M member 2, lrgm2), Guanylate binding
protein 2 (Gbp2), and transcription factor interferon
regulatory factor 1 (Irf1). Cd74 or invariant chain (Ii)
protein is a chaperone molecule responsible for regulat-
ing antigen presentation of MHC II molecules. It has
been linked to chronic inflammation and carcinogenesis
in the gastrointestinal tract [44]. Further, Cd74 was also
shown to play a role as a receptor for migration inhibi-
tory factor (MIF), a molecule reported to have pro-
carcinogenic effects on gastric epithelial cells [68]. IFNs
are known to activate signal transducer and activator of

Table 3 Top 50 most differentially expressed annotated genes in H. felis-infected Myd88−/− mice at 47 weeks compared to
uninfected controls (Continued)

Ttr transthyretin −2.57 9.85E-06

Dpcr1 diffuse panbronchiolitis critical region 1 (human) −2.57 1.05E-03

Fabp3 fatty acid binding protein 3, muscle and heart −2.61 6.23E-05

Atp4a ATPase, H+/K+ exchanging, gastric, alpha polypeptide −2.95 6.99E-04

Apoa1 apolipoprotein A-I −3.13 1.23E-03

Hamp2 hepcidin antimicrobial peptide 2 −3.45 1.25E-04

Pdia2 protein disulfide isomerase associated 2 −3.57 7.21E-06

Amy2a5 amylase 2a5 −4.09 1.74E-04

Chia1 chitinase, acidic 1 −5.25 6.66E-04

Genes with no known annotated name were excluded from the analysis. Genes were considered to be statistically significant when a threshold adjusted p value
< 0.05 and Log FC > 2 were reached

Fig. 4 Network characterization of selected genes at 25 weeks. STRING gene networks of interactions of DEGs with a STRING interaction
confidence of 0.7 or greater (high confidence) for H. felis-infected Myd88−/− mice at 25 weeks for both upregulated (a) and downregulated (b)
genes. Known interactions are illustrated with light blue string attachments (from curated databases) and light pink/purple strings (experimentally
determined). Co-expression are illustrated with black string attachments
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transcription 3 (STAT3) [69, 70] signaling leading to epi-
thelial proliferation and inhibition of apoptosis [71, 72].
Currently not much is known about IFNs in gastric
cancer. Ubiquitin D (Ubd), which is associated with pro-
gression of colon cancer [73], was also significantly
expressed genes in Myd88−/− in response to H. felis
infection.
For downregulated genes, the significantly expressed

ones included, ATPase H+/K+ transporting, alpha
subunit (Atp4a), Atp4b, Mucin 5 AC (Muc5ac), apolipo-
protein A-1 (Apoa1), and gastric intrinsic factor (Gif ).
The genes, Atp4a and Atp4b encode gastric H+/K + −
ATPase alpha and beta subunits, respectively. Gastric H
+/K + −ATPase alpha and beta subunits are expressed in
parietal cells [74] and their loss has been associated with
gastric dysplasia [58]. We observed downregulation of
Atp4a and Atp4b in response to infection with H. felis,
which may represent a loss of parietal cells that has been
shown to precede gastric dysplasia. These results are in
line with those observed in another fast progressing
gastric cancer model involving the use of INS-GAS mice
[58]. Muc5ac, which encodes gastric M1 mucin [75] has
been reported to play a role in gastric carcinogenesis
[76] was also downregulated in response to infection
with H. felis in Myd88−/− mice. Progression of gastric

lesions has been reported to be associated with the grad-
ual decrease in expression of Muc5ac [57, 77–79] followed
by the transformation of the gastric epithelium [80] result-
ing in gastric dysplasia. Another highly downregulated
gene we found in Myd88−/− mice infected with H. felis was
Apoa1, which was also reported to be downregulated in a
fast progressing gastric cancer mouse model [57]. Proteo-
mics approach in human gastric cancer also showed
downregulation of Apoa1 [81], but its role in gastric
carcinogenesis is unknown. In the lung, downregulation
of Apoa1 was associated with an increased risk of lung
cancer [82]. Data from Apoa1-deficient mice suggest anti-
tumorigenic properties of Apoa1 via modulation of the
immune system [83]. Gastric intrinsic factor (Gif), another
downregulated gene is secreted by parietal cells and is re-
quired for Vitamin B12 absorption [84]. Concomitantly,
the downregulation of Gif results in vitamin B12 defi-
ciency (pernicious anemia). Gastric intrinsic factor was
downregulated in H. felis-infected Myd88−/− mice at both
25 and 47 weeks post-infection. A previous study using
INS-GAS mice infected with H. felis also reported down-
regulation of Gif [57]. In human gastric cancer, Gif was
one of the genes found by SAGE analysis to be downregu-
lated [85]. Further, studies have shown an increased risk of
gastric cancer in pernicious anemic patients [86].

Fig. 5 Network characterization of selected genes at 47 weeks. STRING gene networks of interactions of DEGs with a STRING interaction
confidence of 0.7 or greater (high confidence) for MyD88−/−- H. felis infected at 47 weeks both upregulated (a) and downregulated (b) genes.
Known interactions are illustrated with light blue string attachments (from curated databases) and light pink/purple strings (experimentally
determined). Co-expression are illustrated with black string attachments
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We found a number of new genes in our fast progressing
gastric mouse model, i.e., Myd88−/− mice infected with H.
felis. The genes included up- and downregulated genes,
which had not been previously linked to Helicobacter-re-
lated gastric carcinogenesis including BPI fold containing
family B member 1 (Bpifb1) and proteasome subunit beta 8
(Psmb8). These genes have been linked to cancer-related
processes including, apoptosis and in some cases other can-
cers as well as prognosis indicators [87, 88]. Psmb8 was
shown to be significantly up regulated in cancers such as
bladder, breast, kidney, lung, uterine, and head and neck
[89]. A recent study by Kwon, et al. [90], which was pub-
lished during the writing of our manuscript reported that
Psmb8 may be a potential marker for prognosis in gastric
cancer. Bpifb1 may be involved in the innate immune re-
sponse particularly in response to bacterial exposure. The
protein encoded for by Bpifb1 binds bacterial lipopolysac-
charide (LPS) as well as modulates the cellular response to
LPS [91]. Bpifb1 has been found to be overexpressed in

mucous cells of salivary gland tumors of papillary cystade-
nocarcinoma [87]. Future studies using a gastric culture
organoid system will validate these genes and some of the
important novel genes we identified for their role in rapid
progression of Helicobacter-induced gastric cancer.

Conclusions
In this study, we have identified genes that are involved
in the rapid progression of Helicobacter-induced gastric
cancer that are also potentially regulated by MyD88. The
identification of these important genes could potentially
serve as targets for disease prevention. In addition, we
show that our model is a useful mouse model system to
identify genes involved in gastric cancer progression.

Methods
Animals
Six- to ten- week-old wild type (WT) and MyD88 defi-
cient (Myd88−/−) mice in the C57BL/6 background were

Fig. 6 Profiles of GO enrichment analysis. Enriched Go terms are shown for H. felis-infected Myd88−/− mice at both 25 (a, b) and 47 weeks (c, d).
Biological processes are depicted in figures A and C while molecular functions are depicted in B and D. For the biological processes, the top 20
processes are shown. All scores depicted are relative scores for number of genes in each function/ process relative to the number of total genes
entered into the STRING database
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used in this study. WT mice were purchased from The
Jackson Laboratory (Bar Harbor, ME). Myd88−/− mice
were from our breeding colony originally provided by
Dr. Akira (Osaka University, Japan). All mice were
housed together before infection with H. felis and for the
duration of the study. The Institutional Animal Care and
Use Committee at the University of California, San
Diego, approved all animal procedures and performed
using accepted veterinary standards.

Bacterial growth conditions
Helicobacter felis, strain CS1 (ATCC 49179) was pur-
chased from American Type Culture Collection (Manassas,
VA). H. felis was routinely maintained on solid medium,
Columbia agar (Becton Dickinson, MD) supplemented with
5% laked blood under microaerophilic conditions (5% O2,
10% CO2, 85% N2) at 37 °C and passaged every 2–3 days as
described previously [13, 92]. Prior to mouse infections, H.
felis was cultured in liquid medium, brain heart infusion
broth (BHI, Becton Dickinson) supplemented with 10%
fetal calf serum and incubated at 37 °C under microaero-
philic conditions for 48 h. Spiral bacteria were enumerated
using a Petroff-Hausser chamber before infections.

Mouse infections
A well-characterized cancer mouse model, which in-
volves infecting C57BL/6 mice with H. felis (strain CS1),

a close relative of the human gastric pathogen H. pylori
was used in this study. Mice were inoculated with 109-
organisms in 300 μL of BHI by oral gavage three times at
2-day intervals as previously described [13, 92]. Control
mice received BHI only. At 25 and 47 weeks post-
infection, mice were euthanized and the stomachs
removed under aseptic conditions and processed for as-
sessment of gene expression.

RNA extraction and oligonucleotide microarray
hybridization
Total RNA was extracted from gastric tissue obtained
from H. felis-infected and uninfected WT and Myd88−/−

mice. Stomach tissue sections of 12 mice i.e., two unin-
fected controls and four infected WT (6) and MyD88−/−

(6) per time point (25 and 47 weeks) were analyzed.
RNA was extracted from each section using the RNeasy
miniprep kit (Qiagen) according to the manufacturer’s
instructions followed by digestion with DNase 1 to re-
move genomic DNA. RNA concentration was determined
using a NanoDrop spectrophotometer (NanoDrop Tech-
nologies, Inc., Waltham, MA). Double stranded cDNA
and biotin-labeled cRNA were synthesized following the
recommended Illumina protocol. Integrity of purified
cRNAs was assessed on an Agilent 2100 Bioanalyzer prior
to hybridization. 1.5 μg of labeled cRNA was hybridized to
MouseWG-6 v2 Expression BeadChips genome wide
arrays, which analyzes 25,600 transcripts (Illumina, San
Diego, CA) using recommended Illumina reagents and
protocols.

Identification of differentially expressed genes
Probe profiles (each row corresponding to a given probe
and different columns for each sample) were exported
from Genome Studio v1.8 (Illumina). The resultant tab-
delimited file (Additional file 4, Probe_Profile_f.txt) was
used as input for the Bioconductor lumi v2.18 R package
(http://bioconductor.org/packages/release/bioc/html/lumi.
html) [93]. Sample information is provided in Additional
file 5 (sampleInfotxt.txt). Following quality assessment
[density plot of intensity, cumulative density (CD), MA
(transformed data onto log ratios and mean average) and
pairwise MDS plots], the data were transformed using the
vst (variance-stabilizing transformation) algorithm [94]
then normalized using the Robust Spline Normalization
(rsn) algorithm [94]. A second round of quality control of
the normalized data was done to ensure data quality. After
normalization genes with minimal variance across samples
and genes that were not expressed in any sample (deter-
mined by detection calls) were removed prior to differen-
tial gene expression using linear models as implemented
in limma [95]. We compared gene expression profiles of
uninfected and infected mice at 25 and 47 weeks post in-
fection. All mice used were on the C57BL/6 background.

Fig. 7 Venn Diagram showing distribution of different significantly
enriched KEGG pathways. Pathways with p-value > E-04 are included.
Antigen processing and presentation is the most enriched pathway
overlapping the majority of genes with all other pathways. Notably,
all processes are associated with inflammatory responses of the
immune system
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In addition, after normalization, significantly expressed
genes were identified through volcano plot generation on
the R - platform. Genes exhibiting statistically significant
differential mean expression values (p < 0.05) were sub-
jected to hierarchical clustering.

Enrichment analysis and pathway generation
To analyze KEGG pathway enrichment, official gene
symbols for differentially expressed genes were submit-
ted to DAVID (Database for Annotation, Visualization
and Integrated Discovery) (http://david.abcc.ncifcrf.gov).
This tool allows for identification of over expression
within a set of genes as compared to the entire genome
of a specific animal [47]. In addition, it allows for the
demonstration of Gene Ontology (GO) terms as well as
pathway and functional processes (molecular functions,
biological expression, and cellular expression) enrich-
ment. Functionally enriched gene networks, KEGG Path-
ways and ontology terms were identified. The mouse,
Mus musculus complete genome was used as back-
ground genes. All functionally annotated genes pre-
sented in gene networks or pathways had p values < 0.05.

Gene network analysis
Gene networks were built using data on protein-protein
interactions from EMBL STRING (Search Tool for the
Retrieval of Interacting Genes/Proteins) database (http://
string-db.org). This search tool is used to identify inter-
actions correlated to expression data and/or literature ci-
tations among other criteria [96]. All gene connections
created using STRING had a combined confidence score
higher than 0.7 as previously described [97], Garcia-
Alonso, 2014 #613}.

Statistical analysis
Statistics were done on the R platform using the Limma
package from Bioconductor. To control for multiple
testing, the False Discovery Rate (FDR) method was used
with a cutoff for statistical significance of P values of <
0.05 and a log fold expression of 2. Differentially
expressed genes were determined at 25 and 47 weeks
after removing background differences from both Myd88
−/− and WT mice by comparing infected to uninfected
mice in the same background.

Additional files

Additional files 1:Table S1. Excel file: Data of upregulated and
downregulated genes in Myd88−/− and WT mice at 25 and 47 weeks.
(XLSX 4782 kb)

Additional files 2:Figure S1. Downregulated biological processes and
molecular functions in Myd88−/− mice. Enriched Go terms are shown at
both 25 (A, B) and 47 weeks (C, D). Biological processes are depicted in
figures A and C while molecular functions are depicted in B and D. These
functions were identified using STRING functional annotation tool.

Relative scores were calculated using the number of genes found within
each process relative to the total number of genes entered into the
annotation tool. The top 20 Biological Processes are shown. (PPTX 482 kb)

Additional files 3:Figure S2. KEGG Pathways for both up and
downregulated Genes at 25 and 47 weeks in Myd88−/− mice. KEGG
pathway analysis of up- and downregulated genes in Myd88−/− mice at
25 (Additional files 3: Figure S2a and b) and 47 weeks (Additional files 3:
Figure S2c and d). Significantly enriched pathways (p < 0.05) are
presented in each pie graph. (PPTX 1888 kb)
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analysis of gene expression. (TXT 30459 kb)
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