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Abstract

Background: Chemoresistance hinders the curative cancer chemotherapy. MicroRNAs (miRNAs) are key players in
diverse biological processes including the chemoresistance of cancers.

Methods: A RNA-seq-based miR-omic analysis of osteosarcoma (OS) cells was performed to detect the levels of
miR-34a-5p. Bioinformatics analysis revealed that AGTR1 is one of the target genes of miR-34a-5p. The mRNA and
protein levels of AGTR1 were detected in both the miR-34a-5p-mimic transfected G-292 and miR-34a-5p-antagomiR
transfected SJSA-1 cells. The involvement of AGTR1 with OS chemoresistance was validated by the experiments
with siRNA-mediated repression or overexpression of the AGTR1 gene.

Results: We showed that miR-34a-5p promotes the multi- chemoresistance of OS. The angiotensin Il type 1
receptor (AGTR1) gene, is one of the targets of miR-34a-5p in OS and thus negatively correlates with OS
chemoresistance by systematic investigations of a multi-drug sensitive (G-292) and resistant (SJSA-1) OS cell lines.
Down-regulation of the AGTR1 expression by siRNA passivates G-292 cells and suppresses cell apoptosis, while
over-expression of AGTR1 sensitizes SJSA-1 cells and thus promotes the drug-triggered cell death.

Conclusions: The miR-34a-5p and its target gene AGTR1 are the potential targets for an effective chemotherapy of
OS. Our results also provide novel insights into the effective chemotherapy for OS patients.
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Background

MiRNAs are a large group of small non-coding RNAs
that play vital roles in various biological processes [1].
MiRNAs regulate the expression of a variety of target
genes and their dysregulation is closely related to the de-
velopment of diseases including cancer. The abnormal
expression of miRNAs in cancer contributes to almost
every field of tumor pathology [2, 3], including drug
resistance [4], which remains a major obstacle to effective
therapy of patients [5]. The multi-chemoresistance prop-
erty differs dramatically among the cancer patients, even
in the different cancer lesions of a single patient [6].
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Despite of intensive efforts, our knowledge of the multi-
chemoresistance of cancers remains very poor due to the
diverse mechanisms that induce the multi-chemoresistance
[7, 8]. To date, the emerging studies have been focused on
the role of miRNAs in the occurrence of chemoresistance
in different cancers. The prominent examples for bladder
cancer chemoresistance are miR-181, miR-199a-5p,
miR-30d [9] and miR-193a-3p [5, 10]. In hepatocellular
carcinoma (HCC) cells, miR-193a-3p contributes to the
5-FU resistance regulated by the DNA methylation in
particular via repressing SRSF2 expression [10]. In addition,
overexpressed miR-21 in colorectal cancer tissues con-
tributes to the resistance to 5-FU [11]. The expression
of miR-130a is higher in SKOV3/DDP, and suppression
of miR-130a could conquer the cisplatin resistance by
targeting the MDR1/P-gp pathway [12]. The miR-140
participates in the drug resistance to osteosarcoma (OS)
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xenografts by decreased cell proliferation via G- and G2-
phase arrest [13].

The miR-34 family members are down-regulated in a
variety of cancers and the expression of miR-34 is dir-
ectly regulated by the transcription factor p53 [14-16].
Moreover, miR-34a negatively regulates the Delta-like
ligand 1 (DLL1) of the Notch pathway and thus down-
regulates cell proliferation by inducing apoptosis and
neural differentiation in medulloblastoma cells. In gliomas,
miR-34a down-regulates c-Met and CDK®6, suggesting that
miR-34a provides a therapeutic biomarker for brain tu-
mors [17]. Furthermore, miR-34a-5p, derived from miR-
34a, has been found to prevent cell migration and invasion
[18-21], which indicated that miR-34a-5p might involve
in inhibiting tumor development.

OS is the most common malignant primary bone tumor
which is frequently occurred in children and adolescents
[22, 23], and the mechanism for the OS chemoresistance
remains limited. In the present study, we set up a RNA-
seq assay and identified several differentially expressed
genes in a multi-chemosensitive (G-292) versus a resistant
(SJSA-1) OS cell lines. We showed that miR-34a-5p pro-
motes the OS multi-chemoresistance via its repression of
the AGTR1 gene, a new target of miR-34a-5p.

Methods

Cell lines and culture

The two cell lines (SJSA-1 (ATCC NO. CRL-2098) [24]
and G-292 (ATCC NO. CRL-1423) [25] used in this study)
were purchased from ATCC. The cells were cultured in
Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad,
CA, USA) implemented with 10% fetal bovine serum and
1% glutamine at 37 °C in 5% CO..

RNA-seq analysis

RNA-seq analysis was performed by BGI-Tech (Shenzhen,
China). Sample preparation and data analysis were done
as reported previously [26].

The transient transfection assays

All the sequences including the antagomiR, mimic, siRNA,
the scramble sequence (negative control, NC) were sup-
plied by Guangzhou Ribobio, China. The expression con-
structs for AGTR1 (EX-A0417-M98-5) fused with a GFP
tag were supplied by Guangzhou Fulengen (Guangzhou,
China). The transfection method mentioned above was
performed according to the manufacturer’s instruction.
The partial sequences used in this study are as follows:

si-ATGR1:
5' CUGUAGAAUUGCAGAUAUU dTdT 3'
3'dTdT GACAUCUUAACGUCUAUAA 5'
hsa-miR-34a-5p
antagomiR: 5ACAACCAGCUAAGACACUGCCA 3'
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mimics:
sense 5UGGCAGUGUCUUAGCUGGUUGU 3'
antisense 5SACAACCAGCUAAGACACUGCCA 3'

Chemotherapeutics and drug resistance profiling

(IC50 determination)

Clinical grades of the following drugs were used, Dox
(Haizheng, Zhejiang, China); Etop (Hengrui, Jiangsu,
China); Carb: carboplatin (Qilu, Shandong, China) and
CDDP (Haosen, Jiangsu, China) [5, 27, 28]. The method
of MTT assay has been described in our previous re-
port [26].

Apoptosis analysis

The annexin V-FITC/propidium iodide (PI) staining
assay was used to detect the apoptosis of G-292 cells
transfected with either 5PM, si-AGTR1 or their corre-
sponding NC. Cells growing to the logarithmic growth
phase were harvested and rinsed after washing with cold
PBS. Then, FITC-labeled enhanced annexinV (3 pl) and
propidium iodide (3 pl, 20 pg/ml) were added to the cell
suspension (100 ul) for labeling (Vazyme, China). After
incubation in the dark for 15 min at room temperature,
the samples were diluted with 50 ul PBS. Apoptotic cells
were then evaluated by gating PI and Annexin V-positive
cells on a FACSCalibur instrument. The results were ana-
lyzed according to the manufacturer’s instructions. The
experiments were performed at least three times inde-
pendently, and a representative is shown.

Luciferase reporter assay

A luciferase reporter assay was performed to test the
binding of miR-34a-5p to AGTRI. The detailed methods
were described previously [29]. The full-length AGTR1
3’-untranslated region (UTR, 894 bp) containing the
target sequence of miR-34a-5p was inserted into the
pGL3 -reporter plasmid to construct pGL3-luc-AGTR1
WT and pGL3-luc-AGTR1 Mut. Cells were seeded into
96-well plates at approximately 1x10* cells per well.
Then the cells were transfected with a mixture of
pGL3-luc-AGTR1 WT or Mut (50 ng), Renilla (5 ng),
mimic or NC nucleotides (5 pmol) using the ribo-
FECT CP transfection kit according to the manufac-
turer’s instruction. After transfection in twenty-four
hours, the cells were assayed by the Dual-Luciferase
Reporter Assay System (Promega) using a Promega
GloMax 20/20 luminometer. The relative luciferase
activities of the UTR construct and pathway reporter
constructs were analyzed as reported previously [5].

RNA analysis

The total RNA was extracted from the cells using Trizol
(Tiangen, China) according to the manufacturer’s instruc-
tions. The mRNAs were analyzed as previously reported
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[29]. The sequences of primers and probes used for the
qRT-PCR analysis are as follows:

HAGTR1 F: 5" -TGCTTCAGCCAGCGTCAG-3’
HAGTR1 R: 5" -GCGGGACTTCATTGGGTG-3'
HAGTR1 probe: 5’ -CY5-CTCACGTGTCTCAGCAT
TGATCGATAC-3’

hACTB F: 5" -GCCCATCTACGAGGGGTATG-3'
hACTB R: 5" -GAGGTAGTCAGTCAGGTCCCG-3’
hACTB probe: 5 -HEX-CCCCCATGCCATCCTGC
GTC-3'

To detect and quantify the expression of miR-34a-5p,
Total RNA was reverse transcribed using a Bulge-Loop™
miRNA qRT-PCR Primer Set (Ribobio) and quantified
by SYBR Green-based real-time PCR analysis. The Ct
values of the target miRs were normalized to the Ct
values of U6 RNA before quantification using the 274*
Ct method.

Protein analysis

Cells were lysed with a lysis buffer [29]. Anti-AGTR1
(25343-1-AP) was purchased from San Ying Biotechnology,
China. The target proteins were then detected with anti-
rabbit IgG peroxidase-conjugated antibody (SA00001-2;
San Ying Biotechnology, China). The target bands were de-
tected by an enhanced chemiluminescence reaction
(Pierce), and the relative density (level) of proteins over the
GAPDH (10494-1-AP; San Ying Biotechnology, China)
band was quantified with the Gel-Pro Analyzer.

In vivo study

The xenograft model on nude mice was generated and
analyzed in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.
The analysis was performed as previously reported [29].
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The expression of AGTR1 protein was measured using
immunochemical analysis. Antigens were retrieved by
pretreating dewaxed sections and processed with the
Super Sensitive Link-Labeled Detection System (Biogenex,
Menarini, Florence, Italy). Pictures were taken using a
LEICA DM 4000B microscope. The animal study proposal
was approved by the Institutional Animal Care and Use
Committee (IACUC) of the University of Science and
Technology of China. All of the mouse experimental
procedures were performed in accordance with the
Regulations for the Administration of Affairs Concerning
Experimental Animals approved by the State Council of
People’s Republic of China.

Statistical analysis

Apoptosis assays, cell viability, quantitative RT-PCR, and
luciferase reporter assays were performed in triplicate,
the data are presented as the means, and the error bars
indicate the S.D. Excel was used to process the data.
The differences were considered statistically significant
at p < 0.05 using Student’s ¢ -test.

Results

AGTR1 negatively regulates the multi-chemoresistance of OS
Our previous result suggested that G-292 and SJSA-1
cell lines are the multi-chemosensitive and multi-drug
resistant OS cell lines, respectively [29]. Indeed, the ICsq
profiling experiments against the following four drugs:
Doxorubicin (Dox), Etoposide (Etop), Cisplatin (CDDP),
Carboplatin (Carb) demonstrated that SJSA-1 cells is more
resistant against all the four drugs. The chemoresistance
index of the SJSA-1 cells is 20.32, which is drastically higher
than that of the G-292 cells (Fig. 1a). To find the mechanis-
tic insights that govern the multi-chemoresistance of OS
cells, we performed an RNA-seq-based miR-omic analysis
of G-292 and SJSA-1 cells, and several related miRNAs

a b
Relative ICs, G-292 SJSA-1 miR-34a-5p SJSA-1 G-292
Dox 1.00 33.87 miR-seq 3.41 1.00
Etop 1.00 31.03 gRT-PCR 186.83 1.00
MTX 1.00 35.44
CDDP 1.00 9.39 Cc Dsisa1 B6292
Carb 1.00 6.98 g 200.00 186.83
Chemoresistance Index 1.00 23.34 E
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°w,: 100.00
g
2
=
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miR-seq qRT-PCR
Fig. 1 The miR-34a-5p expression differs in SISA-1 and G-292 cell lines. Relative ICso values (fold) of the two cell lines to four chemotherapeutics
with the lowest ICsg as a reference (a). The relative miR-34a-5p level (fold) in two cell lines by both miR-seq and gRT-PCR analyses were shown in
Table (b) and by gRT-PCR in plot (c)
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were selected based on a reference survey (Additional file 1:
Figure S1). MiR-34a-5p was selected as our target, which
correlated well with the probe and RNA-seq analyses. The
miR-34a-5p expression is 3.41-fold higher in the SJSA-1
cells than in the G-292 cells by miR-omic and 186.83-fold
higher by qRT-PCR analysis (Fig. 1b and c).

A given miRNA usually suppresses the expression of vari-
ous target genes and thus regulates related pathways. We
thus proposed the target genes of miR-34a-5p based on the
following websites: TargetScan (http://www.targetscan.org/),
miRDB  (http://mirdb.org/miRDB/) and microRNA.org
(http://www.microrna.org/microrna/getMirnaForm.do). We
subsequently compared the expression pattern of shared
predicted mRNAs between G-292 and SJSA-1 cells by the
RNA-seq based miR-omic analysis. Dozens of genes have
been found that differentially expressed in the two cell lines.
Among them, the AGTR1 gene is one of the most signifi-
cantly differentiated genes that negatively correlate with
miR-34a-5p expression (Additional file 1: Figures SI,
Additional file 2: Figures S2 and Additional file 3:
Figures S3. Consequently, the expression level of AGTR1
was higher in G-292 than SJSA-1 at both mRNA (RNA-
seq based miR-omic: 490.16:1, and qRT-PCR analysis:
28.49:1) and protein level (western blot: 3.21:1) (Figs. 2a
b and 2c). The lower expression of AGTR1 in multi-
chemoresistant cells SJSA-1 suggests that AGTR1 is a
negative regulator of OS multi-chemoresistance.

MiR-34a-5p directly targets the AGTR1 gene in OS cells

The miR-34a-5p level was dramatically higher in SJSA-1
cells than G-292 cells. We found that AGTR1 negatively
correlates with the level of miR-34a-5p. To check whether
AGTR1 is one of the authentic targets of miR-34a-5p, we
detected the AGTRI level in the miR-34a-5p mimic trans-
fected G-292 and the antagomiR transfected SJSA-1 cells
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versus the NC (scramble sequence control) transfected.
The transfection of miR-34a-5p mimic in G-292 cells in-
creased its expression to about 21-fold, whereas the trans-
fection of miR-34a-5p antagomiR in SJSA-1 significantly
decreased its level to 38% (Fig. 3a and b). In agreement
with the changes of the miR-34a-5p level, a miR-34a-5p
mimic transfection decreased the AGTR1 mRNA to 12%
(Fig. 3¢) and protein to nearly 79% (Fig. 3e) compared to
that in the NC transfected G-292 cells. By contrast, miR-
34a-5p antagomiR transfection increased the mRNA level
of AGTRI1 by 1.97 folds (Fig. 3d) and the protein level by
1.46 folds in SJSA-1cells (Fig. 3e).

To further confirm whether AGTR1 is a direct target
of miR-34a-5p, we cloned the wild-type AGTR1 gene at
the downstream of the Renilla luciferase gene in pGL3-
control vector (Promega) to create pGL3-AGTR1 UTR
WT or pGL3-AGTR1 UTR Mut (Fig. 3f). The constructs
pGL3-AGTR1 UTR WT or pGL3-AGTR1 UTR Mut and
pGL3 enhancer control were transfected into G-292 and
SJSA-1 cells respectively, to determine the function of miR-
34a-5p in different OS cells. The pGL3-AGTR1-UTR WT
gave the relative luciferase activities of 0.84 and 0.62 in
SJSA-1 and G-292 cells, respectively (Fig. 3g). The transfec-
tion of miR-34a-5p-mimic into G-292 cells significantly
brought down the luciferase activity of pGL3-AGTR1-UTR
WT construct, whereas the control cells showed almost the
same activity upon the transfection of miR-34a-5p-mimic
(Fig. 3g). Meanwhile, the transfection of miR-34a-5p-antag-
omiR into SJSA-1 cells raised the luciferase activity of
pGL3-AGTR1-UTR WT construct (Fig. 3g). Furthermore,
the mutation of the 3'-UTR showed similar effect as the
wild type with the transfection miR-34a-5p-antagomiR
into SJSA-1 cells. By contrast, the comparable luciferase
activity was detected in the pGL3-AGTR1-UTR Mut with
the transfection of miR-34a-5p-mimic into G-292 cells,
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Fig. 2 The AGTR1 level is higher in G-292 than in SJSA-1 cells. The relative level (fold) of the AGTR1 gene in SJSA-1 versus G-292 cells summarized
in table (a), analyzed by Western analysis (b), by miR-seq and gRT-PCR analyses in plot (c)

Qsisa-1 @6-292

500.00 490.16

50.00

1.00

=
>
S

miR-seq qRT-PCR

J



http://www.targetscan.org/
http://mirdb.org/miRDB/
http://www.microrna.org/microrna/getMirnaForm.do

Pu et al. BMC Cancer (2017) 17:45

Page 5 of 9

a miR-34a-5p in G-292 cells miR-34a-5p in SJSA-1 cells

1.20
1.00
25.00 1.00

21.10

20.00 0.80

15.00 0.60
10.00 o0.40

0.20
1.00

Relative expression (fold) &

Relative expression (fold)

0.00 ¥

NC 5PM NC

c AGTRI1 in G-292 cells
120«

AGTRI1 in SJSA-1 cells

1.00 1.97

0.80 o

0.40 o

Relative expression (fold)

Relative expression (fold) c

0.00

--

e
G-292
NC SPM

SPA
i 3Rt
1.00 0.79

1.00 1.46

SJSA-1

GAPDH

1.00 1.00 1.00 1.00

OsJsA-1 BG-292

(=]
*

100 1.00

Relative luciferse activity

(firefly/renilla ratio)
(firefly/renilla ratio)

Relative luciferse activity

WT Mut Vee WT

SJSA-1

Fig. 3 The AGTR1 is a direct target of miR-34a-5p in OS cells. The levels of miR-34a-5p (a and b), the AGTRT mRNA (c and d) and protein (e) in
the miR-34a-5p mimic (5PM) transfected G-292 cells and the miR-34a-5p antagomiR (5PA) transfected SJSA-1 cells versus the negative control
(NQ), determined by gRT-PCR or Western analyses. f The sequences of the wild-type and mutant 3'-UTR region of AGTR1 gene. The perfectly
matched region of AGTR1 3-UTR with miR-34a-5p were marked in shadow. g The relative |uciferase activity (fold) of the reporter with wild-type
(WT) AGTR1-UTR or mutant were determined in the miR-34a-5p mimic (in G-292) or antagomiR (in SISA-1) or Mock transfected OS cells. The
reporter without AGTR1-UTR (Vec) was used as a reference. The Renilla luciferase activity of a co-transfected control plasmid was used to control
the transfection efficacy. The representative results from three independent experiments shown. *P value < 0.05; **P value < 0.01
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suggesting that miR-34a-5p indeed targets the 3’-UTR re-
gion of AGTR1 (Fig. 3g). Getting together, AGTR1 is in-
deed, a direct target of miR-34a-5p and may dedicate the
miR-34a-5p’s promoting effect on the OS drug resistance.

The AGTR1 expression negatively correlates with the

miR-34a-5p’s promoting effect on OS drug resistance

To investigate the role of AGTR1 in the OS chemoresis-
tance, we first transfected si-AGTR1 into G-292 cells and
tested the level of AGTR1. The transfection of si-AGTR1
indeed decreased the level of AGTR1 at both mRNA
(0.78:1) and protein level (0.45:1), compared to the control
cells (Fig. 4a and b). A similar effect was also found with
the transfection of miR-34a-5p-mimic into G-292 cells.
We then compared the cell apoptosis triggered by an ICsq
dosed drug in the miR-34a-5p mimic or si-AGTRI trans-
fected G-292 cells. The transfection of miR-34a-5p mimic

or si-AGTR1 in G-292 cells increased the chemoresis-
tance to some extent against the following four drugs:
Dox, Etop, CDDP, Carb (Fig. 4c). Afterwards, we in-
creased the level of AGTR1 by transfection of miR-34a-
5p antagomiR or overexpression of AGTR1 in SJSA-1
cells. In agreement with the elevated level of AGTR1 in
both mRNA and protein levels (Fig. 4d and e), the cell
survival rate was slightly decreased for all the four drugs,
except for Carb (Fig. 4f). The results correlate well with the
negative regulation of AGTR1 in the multi-drug resistance
of OS cells. In accordance with its negative effect on drug
resistance, a siRNA-mediated AGTR1 repression reduced
the apoptotic cells from 16.2 to 14.2%, indicating an ele-
vated cell survival rate upon the addition of si-AGTR1
into G-292 cells (Fig. 4g, h and i). A similar effect
was also found in the miR-34a-5p-mimic transfected
G-292 cells (Fig. 4g, h and i). Taken together, The



Pu et al. BMC Cancer (2017) 17:45

Page 6 of 9

AGTRIin G-292 b

- : I:: ’l'—‘ ’A‘—’ X 143
g 100 100 NC SI'AGTRI § ™ 135 126 129
< '2 121 X
Aé 030 0.65 - D e—— AGTRl E 20 190 P w 10 I Ey
§ 060 E 1.00
) 1.00 0.45 =
9040 8
E E 0.60
% 0.20 | — GAPDH é 0.40
2000 0.20
NC SPM si-AGTR1
0.00 —
1 '00 1 '00 Dox Etop CDDP Carb
d f X ENC @5PA OGFP-AGTRI
NC SPA GFP-AGTRI Wy >< X
[
AGTRIinSJSA-1 i 1 03
40KD‘ | N ‘ GF-AGTRI T

g 185 8 5 082 0sg
é E 0.67
;o 60KDJ. :
Pl o
oy 8

3
E 0.80 .‘E
" 040 <
3 &
& T T

- , , , EGAPDH
NC 5PA GFP-AGTRI1

ENC B5PM Osi-AGTRI

Dox Etop CDbDP Carb

9 h
NC  24.00£4.10 §™
5PM 1580£2.36  f ,,
NC 16204312 % w

StAGTRI __ 14.20+1.93

NC 5PM si-NC

si-AGTR1

dosed drug-triggered cell death of SJSA-1

original. (¥, P < 0.05)

Fig. 4 The effects of forced reversal of miR-34a-5p or AGTR1 levels on the chemoresistance of G-292 and SJSA-1 cells. a The mRNA level of AGTR1
detected by gRT-PCR in the 5PM-, or siRNA- versus the NC-transfected G-292 cells. b The levels of AGTR1 protein detected by Western analysis in
the siRNA- versus the NC-transfected G-292 cells. ¢ The ICs, dosed drug-triggered cell death of G-292 cells transfected with miR-34a-5p mimic
(5PM) or the gene specific siRNAs versus the negative control (NC). d The level of AGTR1 by gRT-PCR in the 5PA, or GFP-AGTR1 versus the NC
transfected SJSA-1 cells. e The levels of AGTR1 protein by Western analysis in the GFP-AGTR1 versus the NC transfected SISA-1 cells. f The ICsq
cells transfected by miR-34a-5p mimic (5PA) or GFP-AGTR1 versus the negative control (NC). g, h and

i The effects of the forced reversal of both miR-34a-5p and AGTR1 levels on the apoptosis by FACS analysis of G-292 cells in plot and in the

3 4 s 2 3 4 s 2 3 4 s 2 3 4 s
w0t 0 0 10 w0 o 0 10 w o owt o 10 w0 w0

NC SPM si-NC si-AGTR1

AGTR1 gene does contribute a great deal to the miR-
34a-5p’s promoting effect on the OS drug resistance.

MiR-34a-5p promotes both growth and Dox drug resistance
of the G-292 and SJSA-1-derived tumor xenografts in nude
mice

Recently, miR-34a-5p was shown to promote Dox che-
moresistance of OS in tumor xenografts of nude mice by
repressing its target gene CD117 [29]. In this study, we
semi-quantified the levels of AGTR1 protein by immuno-
histological analysis in the same section of mice tumor
tissues that were injected with either Dox or PBS. The

intratumoral injection of miR-34a-5p’s agomiR into G-292
decreased AGTR1 expression. By contrast, the injection of
miR-34a-5p’s antagomiR into SJSA-1 increased AGTR1
expression in Dox- or PBS-treated mice (Fig. 5). The re-
sults further confirmed that miR-34a-5p has a significant
positive effect on both the growth and chemoresistance of
OS cells in vitro and cell-derived tumor xenografts in
nude mice (Additional file 4: Figures S4).

Discussion
As the well studied miRNA, the miR-34a has been asso-
ciated with different types of cancer, including Ewing’s
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Fig. 5 The AGTR1 level (immunohistochemical staining) in tissue slides of the miR-34a-5p agomiR-injected G-292 and miR-34a-5p
antagomiR-injected SJSA-1 tumor xenografts versus the NC-injected tumor xenografts. The levels of AGTR1 protein in each group

sarcoma [30]; colorectal cancer [31] and etc. MiR-34a has
several direct targets, such as Notch, c-Myc, c-Met, c-Kit
and etc. [32]. The miR-34a targets Notchl and Notch2 in
glioblastoma and medulloblastoma [17]. The miR-34a
suppresses invasion of cervical carcinoma and choriocar-
cinoma cells by targeting Notchl and Jaggedl [33]. Be-
sides, evidence showed that miR-34a is also involved in
cancer drug resistance [34—36], which correlates well with
our present work. Here we showed that miR-34a-5p also
involves in the multi-drug resistance of OS [29]. We per-
formed a RNA-seq assay of SJSA-1 and G-292 cell lines
and found that the expression of a dozen of genes vary
dramatically, including the AGTR1 gene that negatively
correlates with the OS drug resistance (Fig. 2). In addition,
we systematically performed experiments in cultured cells
and tumor xenografts to address the role and mechanism
of the AGTRI gene in the context of OS drug resistance.
AGTRI1 was reported to be involved in diverse can-
cers, and is a potential therapeutic target for anticancer
treatment. For example, inhibition of the AGTR1 ex-
pression in human epithelial ovarian carcinomas reduces
cell survival and angiogenesis by repressing the level of
VEGF [37]. AGTRI1 is also involved in the invasion, mi-
gration or tumorigenesis of endometrial carcinoma and
breast cancer via the up-regulation of VEGF [38-40].
Up-regulation of AGTR1 expression by nuclease do-
main containing-1 promotes cell invasion and migration,
which in return activates the ERK signaling pathway in

hepatocellular carcinoma [41]. All these studies suggest
that AGTR1 might serve as a target for the above men-
tioned cancers. In agreement with the previous findings,
here we demonstrated that the expression of AGTRI is as-
sociated with the multi-drug resistance of OS cell lines.
However, the detailed mechanism for the AGTRI-
mediated OS drug-resistance remains to be clarified.

Conclusion

In this work, we identified that AGTR1 is a direct target
of miR-34a-5p, and negatively regulates the multi-drug
resistance of OS. We conclude that increased expression
of miR-34a-5p in the OS cells can be potentially used as
an indicator of chemoresistance and for relapse in serious
OS patients. Targeting miR-34a-5p and its target gene
miR-34a-5p through novel therapeutics may provide an
important strategy to overcome OS chemoresistance.

Additional files

Additional file 1: Figure S1. The interested miRNA and mRNA genes
based on the websites and RNA-seq analysis. A dozen of miRNAs were
differentially expressed in the multi-chemoresistant OS cells SISA-1 and the
multi-chemosensitive OS cells G-292 and MG63.2 based on the websites, and
the ratio over 2 of SISA-1/G-292 based on RNA-seg-based miR-omic analysis
were showed in descending order, has-miR-34a-5p was one of them (A).
Reference to similar methods, the downstream genes of has-miR-34a-5p were
also showed, the ratio of G-292/SJSA-1 based on RNA-seq analysis were
showed in descending order, AGTR1 is located (B). (TIF 88.5 mb)
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Additional file 2: Figure S2. The 410 differentially expressed miRNAs
were showed through the miR-omic analysis between SJSA-1 and G-292
cells, the ratio of G-292/SJSA-1 was also presented. The target gene
miR-34a-5p located in. (PDF 284 kb)

Additional file 3: Figure S3. The 17030 differentially expressed mRNAs
were showed through the RNA-seq analysis between SJSA-1 and G-292
cells, the ratio of G-292/SJSA-1 was also presented, and the target gene
AGTR1 also located in. (PDF 11.3 mb)

Additional file 4: Figure S4. The protein level of p53 detected by western
in NC, 5PA, GFP, GFP-AGTR1 transfected SJSA-1 cells, and the NC, 5PM, NC,

si-AGTR1 transfected G-292 cells. (TIF 17.8 mb)
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