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Tanshinone IIA combined with adriamycin ® e
inhibited malignant biological behaviors of
NSCLC A549 cell line in a synergistic way
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Abstract

Background: The study was designed to develop a platform to verify whether the extract of herbs combined with
chemotherapy drugs play a synergistic role in anti-tumor effects, and to provide experimental evidence and theoretical
reference for finding new effective sensitizers.

Methods: Inhibition of tanshinone IIA and adriamycin on the proliferation of A549, PC9 and HLF cells were assessed
by CCK8 assays. The combination index (Cl) was calculated with the Chou-Talalay method, based on the median-effect
principle. Migration and invasion ability of A549 cells were determined by wound healing assay and transwell assay.
Flow cytometry was used to detect the cell apoptosis and the distribution of cell cycles. TUNEL staining was used to
detect the apoptotic cells. Immunofluorescence staining was used to detect the expression of Cleaved Caspase-3.
Western blotting was used to detect the proteins expression of relative apoptotic signal pathways. CDOCKER module
in DS 2.5 was used to detect the binding modes of the drugs and the proteins.

Results: Both tanshinone IIA and adriamycin could inhibit the growth of A549, PC9, and HLF cells in a dose- and
time-dependent manner, while the proliferative inhibition effect of tanshinone IIA on cells was much weaker than that
of adriamycin. Different from the cancer cells, HLF cells displayed a stronger sensitivity to adriamycin, and a weaker
sensitivity to tanshinone lIA. When tanshinone lIA combined with adriamycin at a ratio of 20:1, they exhibited a synergistic
anti-proliferation effect on A549 and PC9 cells, but not in HLF cells. Tanshinone IIA combined with adriamycin could
synergistically inhibit migration, induce apoptosis and arrest cell cycle at the S and G2 phases in A549 cells. Both groups
of the single drug treatment and the drug combination up-regulated the expressions of Cleaved Caspase-3 and Bax, but
down-regulated the expressions of VEGF, VEGFR2, p-PI3K, p-Akt, Bcl-2, and Caspase-3 protein. Compared with the single
drug treatment groups, the drug combination groups were more statistically significant. The molecular docking
algorithms indicated that tanshinone lIA could be docked into the active sites of all the tested proteins with H-bond and
aromatic interactions, compared with that of adriamycin.

Conclusions: Tanshinone IIA can be developed as a novel agent in the postoperative adjuvant therapy combined with
other anti-tumor agents, and improve the sensibility of chemotherapeutics for non-small cell lung cancer with fewer side
effects. In addition, this experiment can not only provide a reference for the development of more effective anti-tumor
medicine ingredients, but also build a platform for evaluating the anti-tumor effects of Chinese herbal medicines in
combination with chemotherapy drugs.

Keywords: NSCLC, Tanshinone IIA, Adriamycin, Synergistic effect, A549, VEGF/PI3K/Akt signal pathway

* Correspondence: geh@mail.sysu.edu.cn; mosuilin@mail.sysu.edu.cn
TEqual contributors

'The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080,
People’s Republic of China

Full list of author information is available at the end of the article

- © The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
( B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-016-2921-x&domain=pdf
http://orcid.org/0000-0002-6429-0671
mailto:geh@mail.sysu.edu.cn
mailto:mosuilin@mail.sysu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Xie et al. BMC Cancer (2016) 16:899

Background

Lung cancer is a leading cause of cancer death worldwide,
with a 5-year survival rate of 5-15% [1]. Non-small cell
lung cancer (NSCLC), accounting for approximately 85%
of all lung cancer cases, is the dominant type. Nowadays,
platinum-based chemotherapy is considered the standard
treatment for most advanced NSCLC patients. However,
the tremendous side effects caused by chemotherapy
severely impact the efficacy of treatments as well as the
quality of life [2], indicating there is room for improve-
ment in treatment methods [3, 4].

Adriamycin (ADM) has a broad anti-tumor effect, and
is widely used in the treatment of various cancers. How-
ever, as other single agent treatment, it can cause bone
marrow suppression, alopecia, nausea, and other adverse
reactions. Long-term use of single agent may result in
dose-dependent irreversible cardiomyopathy, causing
severe cardiac toxicity and liver damage. The emergence
of drug resistance and potential side effects highlight the
major limitations for the single agent treatment in the
clinical application [5]. In order to improve the anti-
tumor effects and reduce the adverse reactions of che-
motherapeutics, drug combination treatment is one of
the solutions. Therefore, a search for novel strategies of
combinational usage of agents to increase chemothera-
peutic efficacy, and minimize associated toxicities to
noncancerous tissues, should be at the forefront of
oncology research [6].

Tanshinone IIA (1,6,6-trimethyl-6,7,8,9-tetrahydro-
phenanthro [1,2-b] furan-10,11-dione), whose molecu-
lar formula is C;oH;303; and molecular mass is
294.344420 g/mol. Tanshinone IIA is one of the main
fat-soluble compositions isolated from Salvia miltiorrhiza,
that known as ‘Dan-Shen’ in traditional Chinese medicine
[7]. The compound ID (CID) of tanshinone IIA in
PubChem Compound is 164676.

The anti-tumor effects of tanshinone IIA on a broad of
cancer cells have been tested in vitro, including lung [8],
liver [9], stomach [10] and pancreatic cancer cells [11].
Our previous studies showed that tanshinone IIA inhib-
ited the growth of NSCLC A549 cell line by decreasing
VEGF/VEGFR2 expression [12]. It has been documented
that the combination of tanshinone IIA and ADM not
only could exhibit a synergistic effect on HepG2, but also
improve the cytotoxicity of ADM with less cardiotoxicity
[9]. Additionally, it has been found that tanshinone IIA
could protect cardiomyocytes from ADM-induced apop-
tosis in part through Akt-signaling pathways [13]. These
studies indicate that tanshinone IIA may serve as an ef-
fective adjunctive reagent in the treatment of NSCLC.
However, the effect of tanshinone IIA in combination with
ADM on NSCLC cells remains unclear.

In this study, we tried to investigate whether tanshinone
ITA and ADM may present a synergistic anti-tumor effect
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on human NSCLC cell lines A549 and PC9. Furthermore,
the underlying molecular mechanisms of the combination
of both reagents were investigated as well. The evaluation
methods of synergistic effect of agents, virtual screen and
confirmed strategies for the involved target proteins were
applied in our study, which could be a novel strategy for
the evaluation and investigation of combination and inter-
action of anti-tumor drugs.

Methods

Cell lines, culture condition and reagents

The human NSCLC cell line A549 and PC9, and the
Human Lung Fibroblast (HLF) cell line were supplied by
the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China) and cultured in RPMI1640 (Gibco,
Carlsbad, CA, USA), supplemented with 10% fetal bo-
vine serum (Gibco, Carlsbad, CA, USA) in a humidified
incubator at 37 °C, 5% CO, atmosphere. Tanshinone IIA
(Fig. 1a) was purchased from Sigma-Aldrich (St. Louis,
MO, U.S.A.) and prepared as a 10 mM stock solution in
dimethylsulfoxide (DMSO) (St. Louis, MO, USA). The
solution was serially diluted in a RPMI 1640 medium
immediately prior to the experiments. ADM (Fig. 1b)
was purchased from Sigma-Aldrich and prepared as a
10 mM stock solution in normal saline (NS) which was
serially diluted in RPMI 1640 medium immediately prior
to experiments. Pancreatin, penicillin and streptomycin
were purchased from Gibco (Invitrogen Life Technolo-
gies, Carlsbad, CA, USA). All the reagents were of ana-
lytical grade.

Cell viability assay

Cell proliferation was evaluated using the CCKS8
(Dojindo Laboratories, 119 Kumamoto, Japan) according
to manufacturer’s instructions. Briefly, A549, PC9 or
HLF Cells (6 x 10°/90 uL/well) were plated into 96-well
plates in triplicate and cultured for 24 h before onset of
treatment. Then cells were treated with ADM, tanshi-
none IIA and combination of both drugs at a fixed
molar ratio over a broad dose range to establish growth
curves for 48 h. After that, cells were incubated for an
additional 2 h with CCK-8 reagent (100 pl/mL medium).

Fig. 1 The three-dimensional (3D) structure of tanshinone lIA (a) and
ADM (b) (from PubChem compound http://pubchem.ncbi.nlm.nih.gov/)
- J
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The absorbance was determined at 450 nm wavelength
with a reference wavelength of 630 nm using a micro-
plate reader (BioTek, Winooski, 126 VT, USA). The pro-
liferative inhibition rate was measured using the Optical
Density and calculated using the formula: proliferative
inhibition rate = (1-treatment group/control group) x
100%. The ICso (50% inhibitory concentration) value was
calculated by nonlinear regression analysis using Graph-
Pad Prism software (San Diego, CA, USA).

Synergy determination

The isobologram analysis for the combination study was
based upon the Chou-Talalay method to determine
combination indices (CI). The data obtained with the
CCKS8 assay was normalized to the vehicle control and
expressed as % viability. Then, the data was converted to
Fraction affected (Fa; range 0—1; where Fa = 0 represents
100% viability and Fa =1 represents 0% viability) and an-
alyzed with the CompuSyn™ program (Biosoft, Ferguson,
MO) based upon the Chou and Talalay median effect
principle [14, 15]. The CI values reflect the ways of
interaction between two drugs. CI<1 indicates syner-
gism, CI =1 indicates an additive effect, and CI > 1 indi-
cates antagonism [16].

Wound healing assay

A549 cells (1 x10%/1 mL/well) were plated in 6-well
plates and allowed to adhere for 24 h. Confluent mono-
layer cells were scratched by a 200 pL pipette tip and
then washed three times with 1 x PBS to clear cell debris
and suspension cells. Fresh serum-free medium with
different drug treatments were added, and the cells were
allowed to close the wound for 48 h. Photographs (mag-
nification, x100) were taken at 0 h and 48 h at the same
position of the wound. The migration distance was
calculated by the change in wound size during the 48 h
period using Adobe Photoshop CS6 software.

Transwell assay

A549 cells (5x10* were resuspended in 200 pl of
serum-free medium containing different drug treatments
and seeded on the top chamber of the 8 um pore,
6.5 mm polycarbonate transwell filters (Corning, NY,
USA), whose inserts were coated with a thin layer of
0.25 mg/ml Matrigel Basement Membrane Matrix (BD
Biosciences, Bedford, MA). The full medium (600 pl)
containing 10% FBS was added to the bottom chamber.
The cells were allowed to migrate through the filters for
48 h at 37 °C in a humidified incubator with 5% CO,.
The cells attached to the lower surface of membrane
were fixed in 4% paraformaldehyde at room temperature
for 30 min and stained with 0.5% crystal violet. The cells
on the upper surface of the filters were removed by wip-
ing with a cotton swab. The number of stained cells on
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the lower surface of the filters was counted under the
microscope (magnification, x100). A total of 5 fields
were counted for each transwell filter.

Flow cytometric cell cycle analysis

After incubation at 37 °C in an atmosphere of 5% CO,
for 48 h, the treated cells were detached by trypsiniza-
tion, collected, washed twice with cold PBS and fixed in
5 mL 75% cold ethanol at 4 °C for 24 h. The cells were
again washed twice with PBS and incubated with 500 pl
RNase (50 pg/mL) for 30 min at 37 °C, and then labeled
with propidium iodide (PI, 0.1 mg/mL) then incubated
at room temperature in the dark for 30 min prior to
analysis. For each measurement, at least 20,000 cells
were counted. Cell cycle analysis was performed by ana-
lyzing PI staining levels by flow cytometry (Beckman
Coulter, USA). Data was analyzed using ModFit (Verity
Software House, Inc, Topsham, ME).

Flow cytometric apoptosis assay

Cell apoptosis was determined by PI and Annexin
V-FITC staining (KeyGEN Biotech, Nanjing, China). In
brief, the treated cells were incubated for 48 h, washed
twice with ice-cold PBS, the collected cells were then
resuspended in 200 ul of binding buffer and incubated
with 5 ul each of Annexin V-FITC and PI for 15 min in
the dark at room temperature, according to the manu-
facturer’s instructions. The cells were analyzed immedi-
ately after staining, using a FACScan flow cytometer
(Becton-Dickinson). For each measurement, at least
20,000 cells were counted.

TUNEL assay

Apoptosis was detected using the In Situ Cell Death
Detection Kit (Roche Molecular Bioscience, Mannheim,
Germany) following manufacturer’s instructions. Apop-
totic cells were imaged using a fluorescence microscope
(Olympus, Tokyo, Japan). For each sample, three photomi-
crographs of random fields were taken at 400x magnifica-
tion, and cells were scored as apoptotic or viable and
counted. The percentage of apoptotic cells was deter-
mined by counting the TUNEL-positive cells and dividing
the number by the total number of cells.

Immunofluorescence assay

Immunofluorescence assay was applied to detect the
expression of Cleaved Caspase-3. The treated cells were
washed with PBS and then fixed with 4% paraformalde-
hyde for 15 min at room temperature. Permeabilization
was done with 0.3% Triton X-100 for 30 min and then
blocked with 5% normal FBS for 1 h at room
temperature. After that cells were incubated overnight at
4 °C with anti-Cleaved Caspase-3 (1:200, Cell Signaling
Technology, Beverly, MA) primary antibody. Secondary
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anti-mouse (1:500, Alexafluor488, Invitrogen, Carlsbad,
USA) antibody was added for 1 h at room temperature
in the dark. After washing with PBS three times, the
coverslips were mounted on slides by using mounting
medium containing DAPI (Invitrogen) and observed
using a fluorescence microscope (Olympus, Tokyo,
Japan) (magnification, x400).

Western blotting analysis

Western blotting analysis was applied for the re-confirm
via molecular biological method. All the selected
proteins extracts of each group cells were resolved by
10% SDS-PAGE and transferred on PVDF (Millipore,
Bedford, MA, USA) membranes. After blocking, the
PVDF membranes were washed four times for 15 min
with TBST at room temperature and incubated with
primary antibodies. The following primary antibodies
were used: anti-Bax, anti-Bcl-2, anti-Caspase-3, anti-Akt,
anti-phospho-Akt, anti-PI3K, anti-phospho-PI3K (all
1:1000; Cell Signaling Technology, Danvers, MA, USA),
anti-VEGF (1:1000; Abcam, Cambridge, MA, USA), anti-
Cleaved Caspase-3 (1:500; Cell Signaling Technology,
Danvers, MA, USA), anti-VEGFR?2, (1:200; Cell Signaling
Technology, Danvers, MA, USA) and anti-GAPDH
(1:2000; Cell Signaling Technology, Beverly, MA). Fol-
lowing extensive washing, membranes were incubated
with secondary horseradish peroxidase (HRP)-conjugated
secondary antibodies (1:1000; Cell Signaling Technology,
Danvers, MA, USA) for 1 h. After washing 4 times for
15 min with TBST at room temperature once more, the
immunoreactivity was visualized by enhanced chemilu-
minescence (ECL kit, Millipore, Billerica, MA, USA), and
membranes were exposed to KodakXAR-5 films (Sigma-
Aldrich). Relative optical density (ROD, ratio to GAPDH)
of each blot band was quantified by using National
Institutes of Health (NIH) image software (Image ] 1.36b).

Molecular docking algorithm

To predict the possible interaction of small molecules
and the selected proteins, Discovery Studio (DS) 2.5
(Accelrys Software Inc, San Diego, CA) was applied to
the molecular docking algorithm in this study. The
calculation of root mean square deviation (RMSD) was
carried out for the validation of the veracity for the
selection of molecular docking modules in DS 2.5. The
three-dimensional (3D) crystal structures of proteins
were selected from PDB (http://www.rcsb.org/pdb/).The
3D structure of tanshinone IIA was downloaded from
The PubChem Project (http://pubchem.ncbi.nlm.nih.
gov/) with a CID of 164676. The DS 2.5 was run on a
localhost9943 server. The docking procedure includes
the following steps. Firstly, the water molecules in the
proteins were removed and the hydrogen atoms were
added to the proteins. Secondly, small molecules and
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selected proteins were refined with CHARMM. Thirdly,
the active sites of proteins were defined by two methods:
according to internal ligand’s binding site and automatic-
ally with DS 2.5. Lastly, small molecules were docked
into the active sites of the proteins with the appropriate
parameter settings. Through a series of algorithms, 10
different orientations were randomly generated. Each
orientation was subjected to simulated annealing mo-
lecular dynamics simulation. ADM simulation was run
consisting of a heating phase from 300 to 700 K with
2000 steps, followed by a cooling phase back to 300 K
with 5000 steps. The energy threshold for Van der Waals
force was set at 300 K. We further refined the simulation
result by running a short energy minimization, consist-
ing of 50 steps of steepest descent followed by up to 200
steps of conjugate gradient using an energy tolerance of
0.001 kcal/mol.

Statistical analysis

All experiments were performed in triplicate and
repeated at least three times, a representative experi-
ment was selected for the figures. Data was presented as
mean value * standard error and was analyzed using
SPSS 15.0 software by one-way ANOVA with Dunnett’s
post hoc test and Turkey’s post hoc test for multi-group
comparisons (except the ICsq values which were calcu-
lated by nonlinear regression analysis using GraphPad
Prism software.). Student’s ¢-test was used for paired
data. A p value of 0.05 or less was considered as signifi-
cant. The drug interactions were assessed using multiple
effect analysis based on the Chou-Talalay method.

Results

Co-treatment of tanshinone IIA and ADM synergistically
decreased cell viability of A549 and PC9 cells

As shown in Fig. 2 and Additional file 1, both ADM and
tanshinone IIA inhibited the proliferation of the tested
cell lines in a time- and dose-dependent manner, with
HLF cells showing a lowest ICs, value of ADM and a
highest ICsy value of tanshinone IIA among the tested
cells. These data hinted that HLF cells displayed a stron-
ger sensitivity to ADM, and a weaker sensitivity to
tanshinone IIA, compared with the NSCLC A549 cell
line and the NSCLC PC9 cell line.

Guided by the ICs, values determined for the single
drugs, the combinations of the ADM and tanshinone
IIA were evaluated at the 1:20 (ADM: tanshinone IIA)
fixed molar ratio for 48 h. Compared to any individual
drug, drug combination exerted a much stronger inhib-
ition of cells growth, except HLF cells. In A549 cells,
drug combination treatment had a synergistic inhibitory
effect (CI <1) when Fa value was <0.67 (Fig. 2b). The
synergism of drug combination treatment (CI <1) was
observed when Fa value was <0.664 in PC9 cells (Fig. 2d).
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Fig. 2 The proliferative inhibition assay of tanshinone IIA, ADM and tanshinone IlIA in combination with ADM on A549, PC9, and HLF cell lines.
Cells were exposed to various concentrations of tanshinone IlA and ADM alone or in combination at 20:1 molar ratio (tanshinone IIA: ADM) for
48 h. Cell viability curves were plotted as viable cell percentage based on the CCK8 assay (a, ¢, e). The synergistic effects between drugs were
shown as Fa-Cl plots calculated with the calcusyn™ software (b, d, f). Each plot (a, ¢, ) shows the average proliferative inhibition rate of three
experiments with triplicate wells. (n=3, mean +SD) *P < 0.05, **P <0.01, or ***P < 0.001 versus the vehicle control

For HLF cells, ADM combined with tanshinone IIA in-
duced significant antagonistic growth inhibition (CI>1)
when Fa value was <0.99 (Fig. 2f) . The summary of CI
value and the concentration of the separate drugs in com-
bination at 50% Fa were shown in Table 1.

Table 1 Summary of Cl value and the concentration of the
separate drugs in combination at 50% Fa

Drug combination Fa=05
A549 PCo HLF
Tan A+ C 0.654+0.1392 0456+0.285 2.028 +£0.3486
ADM .
Regimen
Tan lIA (M) 857470 5.37651 9.76190
ADM (uM) 042873 0.26883 0.48809

Co-treatment of tanshinone IIA and ADM synergistically
inhibited migration and invasion of A549 cells

Since A549 cell line is broadly used in lung cancer research
area, we choose it as the further research object. To identify
a combination that achieved maximal biological function,
the migration and invasion ability in A549 cells were inves-
tigated by wound healing assay and transwell assay. Figure 3
showed that the migration distances and the invasive cell
numbers were significantly decreased after 48 h drug treat-
ment. Meanwhile, the combined simultaneous treatment
showed the least migration distance and the invasive cell
number in the results.

Co-treatment of tanshinone IlA and ADM arrested cell
cycle of A549 cells

After verifying the anti-proliferation effect of tanshinone
ITA and ADM, the distribution of cell cycles were detected
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Fig. 3 Tanshinone IIA and ADM inhibited migration and invasion of A549 cells. Representative images of wound healing assay (a) and transwell
assay (b) after 48 h treatment with 36 uM of tanshinone IIA (48 h ICso value) and 1.5 uM of ADM (48 h ICs, value) alone or in combination. Bar
graphs represent the average migration distance (c) and the number of stained cells (d) respectively, which were calculated from the three independent
experiments with ten fields counted per experiment. Data are presented as the means + SD of three independent experiments. *P < 0.05, **P < 001, or
***P <0001 versus the vehicle control. (magnification, x100. Scale bars, 100 pm)
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by Flow cytometry. As shown in Fig. 4a, the cell
population in G1 phase was decreased in both single
drug treatment groups and drug combination groups,
with the latter showing more deduction. At the same
time, tanshinone IIA group increased the S phase cell
population, the ADM and drug combination groups
increased the G2 phase cell percentage in comparison
with the untreated cells.

Co-treatment of tanshinone IIA and ADM induced
apoptosis of A549 cells

Then, we detect the cell apoptosis via Flow cytome-
try. Both single drug treatment and drug combination
increased the proportion of early (dots in the lower
right quadrant) and late apoptosis (dots in the upper
right quadrant) in A549 cells (Fig. 4b). However, there
was no statistical significance among the tested
groups. TUNEL assays were performed to detect the
DNA fragmentation in A549 cells after different drug
treatments. The presence of TUNEL-positive cells
(stained green), showing occurrences of DNA strand
breaks, also indicates apoptosis in cells. Quantification
revealed that all the tanshinone IIA groups, ADM
groups, and drug combination groups increased the
TUNEL-positive cells (Fig. 4d). Taken together, co-
treatment more potently induced apoptosis compared
with single treatment in A549 cells.

Co-treatment of tanshinone IIA and ADM decreased the
activity of VEGF/PI3K/Akt signaling pathway in A549 cells
In order to explore the involved signal pathway, we
performed western blotting to measure the levels of
VEGE VEGER2, PI3K, p-PI3K, Akt, p-Akt, Bcl-2, Bax,
Caspase-3, and Cleaved Caspase-3 upon single drug
treatment groups and drug combination groups in A549
cells. Results revealed that both single drug treatment
and drug combination up-regulated Bax, Cleaved
Caspase-3 expression levels, but down-regulated VEGE,
VEGEFR2, Bcl-2, Caspase-3, p-Akt, and p-PI3K expres-
sion levels, with the total Akt, PI3K, and GAPDH levels
remaining the same (Fig. 5a, b, ¢, d). Immunofluores-
cence assays were performed and the results revealed
that Cleaved Caspase-3 level was consistently elevated
by both single drug treatment and drug combination
treatment in A549 cells (Fig. 5e, f). The effect of drug
combination groups showed significant difference com-
pared with single drug treatment groups in both im-
munofluorescence assay and western blot assay.

Molecular docking algorithm

Molecular docking algorithm was applied to predict the
possible interaction of small molecules and the selected
proteins. First of all, as shown in Table 2, the RMSD of
Akt2 (PDB-ID: 2JDR), Bcl2 (PDB-ID: 41EH), PI3K (PDB-
ID: 4J6I), and VEGFR-2 (3VHE) were 0.6208 A, 1.370 A,
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Fig. 4 Effect of tanshinone IIA and ADM alone and in combination on the cell cycle arrest and apoptosis induction in A549 cells. The cell cycle
distributions after 48 h treatment with 36 UM of tanshinone IIA and 1.5 uM of ADM alone or in combination (@). The apoptosis rate after 48 h
treatment with 36 uM of tanshinone IIA and 1.5 M of ADM alone or in combination (b). Representative photographs of TUNEL staining cells in
various groups (c). Histogram of quantification of TUNEL-positive cells was shown with the percentage of TUNEL-positive nuclei (green) relative to
DAPI-positive total nuclei (blue) (d). All data represent the mean + SD of three independent experiments. *P < 0.05, **P < 0.01, or ***P < 0.001 versus the

0.8333 A, and 0.3568 A, respectively, when CDOCKER
module in DS 2.5 was applied in the algorithms. It pre-
sented the veracity of CDOCKER in the study.

Secondly, as shown in Figs. 6, 7, 8 and 9, tanshinone
ITA could be docked into active sites of all the proteins
with individual binding modes, when compared with
ADM. Tanshinone IIA could form H-bonds with Lys181
and aromatic interactions with Phel63 in the endogen-
ous ligand’s active site of Akt2 (PDB-ID: 2JDR), while
ADM formed H-bonds with Leul58, Glu236, Lys277,
Asp440, Asn280, Thr292, and Asp293, aromatic interac-
tions with Phel63, Vall166, and Met282 (Fig. 6). Tanshi-
none IIA could form H-bonds with Argl05 and
aromatic interactions with Arg66 in the endogenous li-
gand’s active site of Bcl-2 (4IEH), while ADM formed H-
bonds with Ala59, Arg66, Asnl02, and Tryl61, H-bonds
plus aromatic interactions with Glyl04, and Argl05
(Fig.7). Tanshinone IIA could form H-bonds with
Lys890 and aromatic interactions with Met953 in the en-
dogenous ligand’s active site of PI3K (4J6I), while ADM
could only form H-bonds with Val882, Ala885, Asp884,
Thr887, Lys890, Asp950, and Met953 (Fig. 8). Only tan-
shinone ITA could form H-bonds with Cys919, aromatic
interactions with Leu840 and Val848 in the endogenous

ligand’s active site of VEGFR-2 (3VHE) (Fig. 9). Thus,
these results indicated that tanshinone IIA may display
the anti-tumor effect with similar molecular mechanisms
of ADM: to interact with the proteins in the same active
sites, but to interact with different residues.

Discussion

In this study, we found that the combination of tanshi-
none ITA with ADM could suppress cell proliferation,
induce apoptosis, and impair cell repair motility and mi-
gration ability in A549 cells with a synergistic manner.
In addition, our findings indicated that the potential
pro-apoptotic mechanism of tanshinone IIA and ADM
on A549 cell lines may involved the suppression in
VEGEF/PI3K/Akt pathway.

Based on the ICs, values of the CCK8 assay and our
preliminary study results [12], we demonstrated that
both tanshinone IIA and ADM had inhibitory effect on
proliferation of A549, PC9, and HLF cells in a dose-
dependent and time-dependent manner. Compared with
ADM, the inhibitory effect of tanshinone IIA was much
weaker on the tested cell lines. Different from the two
NSCLC cell lines, HLF cells displayed a stronger sensi-
tivity to ADM, while a much weaker sensitivity to
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Fig. 5 Effect of tanshinone IIA and ADM on the inhibition of VEGF/PI3K/Akt signaling pathway in A549 cells. Figures are the expression levels of
VEGF, VEGFR2, PI3K, p-PI3K, Akt, p-Akt, Bcl-2, Bax, Caspase-3, Cleaved Caspase-3, and GAPDH after 48 h treatment with 36 uM of tanshinone IIA
and 1.5 uM of ADM alone or in combination (a). The statistical histogram shows the Relative optical density of the tested proteins by Image J
(b, ¢, d). Representative images show the immunofluorescence detection of Cleaved Caspase-3. Cells were stained with an antibody that can
recognize Cleaved Caspase-3 (green), and then stained with DAPI (blue) to visualize nuclei (e). The statistical analysis of relative fluorescence
intensity shows the expression of Cleaved Caspase-3 in A549 cells (f). Data are presented as the means + SD of three independent experiments.
*P<0.05, **P <001, or **P <0001 versus the vehicle control. (magnification, x400, Scale bars, 50 pum)

tanshinone IIA, which indicated that tanshinone IIA
might have little toxicity to human normal cells, with
ADM showing the opposite effect. As for the drug com-
bination, it exerted synergistic inhibitory effects in A549
cells and PC9 cells, while antagonism effects in HLF
cells. Based on these, we hypothesized that tanshinone
ITA might potentiate the sensibility of chemotherapy for
NSCLC patients while minimizing harm to normal cells.

Our current study also provides insight into the mechan-
ism of the synergistic effect of ADM in combination with
tanshinone IIA on apoptosis and cell cycle distribution by

TUNEL and FCM experiments in A549 cells. However, it is
worth to mention that in FCM results, cells in the lower left
quadrant moved to the upper left quadrant in both ADM
groups and drug combination groups. This may due to the
similar color excitation wavelength of PI and the autofluo-
rescence of ADM.

FCM showed that both drug combination treatment
and single ADM treatment caused G2 phase arrest in
A549 cells, while single tanshinone IIA treatment caused
S phase arrest. Cell population of G1 phase was decreased
in all drug treatment groups, with drug combination
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Table 2 The validation of molecular docking algorithm (RMSD)

Protein CDOCKER RMSD (A) Libdock RMSD (A)
2JDR 06208 46929

4IEH 1370 8.19049

4J6l 08333 41504

3VHE 03568 576

groups showing the statistically significant deduction, which
was consistent with many other researchers’ findings.
Tung’s study found that in the human lung adenocarcin-
oma cell lines (A549, CL1-0, and CL1-5), tanshinone IIA
was likely to slow the progression of S to G2 phases of the
cell cycle [17]. The similar results were found in the renal
cancer cell line 786-O cells, the percentage of cells in S
phase was increased in a dose-dependent manner with the
tanshinone IIA treatment (0, 6.79, 13.59 or 27.18 uM, 24 h)
[18]. Wang’s research team found that co-treatment of
ADM (0.75 pM, 48 h) and itraconazole (6 pM, 48 h)
brought about a notable increase in G2 phase and a
decrease in G1 and S phase in the acute myeloid leukemia
cells KGla [19]. However, the effect of tanshinone IIA on
the cell cycle distribution is still controversial. Ma found
that in NSCLC cell line H1299 cells, a proportion of cells at
the G1 phase increased compared with the control when
treated with tanshinone IIA (4 pM, 48 h) [20].

These findings showed that low dosage tanshinone IIA
might contribute to the cell cycle arrest at G1 phase,
while high dosage tanshinone IIA might lead to an S
phase’s cell cycle blockage in NSCLC cell lines, which
remains to be further explored.
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Meanwhile, the TUNEL assay and Cleaved Caspase-3
immunofluorescence staining results confirmed that
tanshinone IIA and ADM induced cell apoptosis by caus-
ing DNA damage and increasing the expression of the
pro-apoptotic protein Cleaved Caspase-3 expression. We
next explored the possible pathway related to this protein.

As we all known, VEGF is one of the most significant
and specific angiogenesis factors [21], and is a potent
angiogenic catalyst secreted by many types of tumor
cells. VEGF family members bind to the three overlap-
ping VEGFRs, which are activated by their cognate
ligands and modulated by a variety of biological pro-
cesses including dimerization, internalization, degrad-
ation, and receptor presentation [22, 23]. Notably,
VEGEFR?2 plays a key role in the VEGF/VEGFR2 pathway in
regards to angiogenesis and tumor growth [24, 25]. Recent
researches show that VEGF regulates VEGFR2 by forming
directly physical interaction with VEGFR2 [23, 26-31] and/
or induces the phosphorylation of VEGFR2 [27-32]. There
are many studies related to downstream targets of VEGFR2,
such as the PI3K/Akt pathway [33].

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway
is a cascade of events, which plays a critical role in a
broad variety of pathophysiological processes. It is well
established that the pathway is one of the most import-
ant oncogenic pathways in almost all kinds of human
cancers [34], being vital to growth and survival of cancer
cells [35-38], as well as disease initiation and develop-
ment, including tumorigenesis, proliferation, invasion,
cell cycle progression, inhibition of apoptosis, angiogen-
esis, metastasis and chemoresistance in cancer cells [39].

Fig. 6 The structure of Akt2 (2JDR) and binding site: Fig. 6a shows the 3D structure of crystal structure of human Akt2 with an endogenous
ligand (PDBID:2JDR). The solid ribbon is the 3D structure of crystal structure of human Akt2 with a 2.3 A resolution. In the centre of 2JDR is an
endogenous ligand (yellow) bound in the interface. Figure 6b shows ten poses of tanshinone IIA docked into the endogenous ligand's (yellow)
active site of 2JDR. Figure 6¢ shows ten poses of ADM docked into the endogenous ligand's (vellow) active site of 2JDR. Figure 6d shows the
binding model of tanshinone IIA in Akt2: at least two residues involved in the interactions in ten random poses, one is Lys181 (H-bond), another
is Phe163 (aromatic interactions). Fig. 6e shows the binding model of ADM in Akt2: at least ten residues involved in the interactions in ten
random poses, Leu158, Glu236, Lys277, Asp440, Asn280, Thr292 and Asp293 (H-bonds), Phe163, Val166, and Met282 (aromatic interactions).
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Fig. 7 The structure of Bcl2 (4IEH) and binding site: Fig. 7a shows the 3D structure of crystal structure of human Bcl2 with an endogenous
ligand (PDBID: 4IEH). The solid ribbon is the 3D structure of crystal structure of human Bcl2 with a 2.1 A resolution. In the centre of 4IEH is an
endogenous ligand (yellow) bound in the interface. Figure 7b shows ten poses of tanshinone IIA docked into the endogenous ligand's (yellow)
active site of 4IEH. Figure 7c shows ten poses of ADM docked into the endogenous ligand's (yellow) active site. Figure 8d shows the binding
model of tanshinone IIA in Bcl-2: at least two residues involved in the interactions in ten random poses, Arg105 (H-bonds), and Arg66 (aromatic
interactions). Figure 8e shows the binding model of ADM in Bcl-2: at least six residues involved in the interactions in ten random poses, Ala59,
Arg66, Asn102, and Try161 (H-bonds), Gly104, and Arg105 (H-bonds plus aromatic interactions)

Fig. 8 The structure of PI3K (4J6l) and binding site: Fig. 8a shows the 3D structure of crystal structure of human PI3K with an endogenous

ligand (PDBID: 4J6l). The solid ribbon is the 3D structure of crystal structure of human PI3K with a 2.9 A resolution. In the centre of 4J6l is an
endogenous ligand (yellow) bound in the interface. Figure 8b shows ten poses of tanshinone IIA docked into the endogenous ligand's (yellow)
active site of 4J6él. Figure 8c shows ten poses of ADM docked into the ligand's (yellow) active site of 4J6l. Figure 8d shows the binding model of
tanshinone IIA in 4J6l: at least two residues involved in the interactions in ten random poses, one is Lys890 (H-bond), another is Met953 (aromatic
interaction). Figure 8e shows the binding model of ADM in 4J6l: at least seven residues involved in the interactions, Val882, Ala885, Asp884,

Thr887, Lys890, Asp950, and Met953 (H-bonds)
J
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Fig. 9 The structure of VEGFR-2 (3VHE) and binding site: Fig. 9a shows the 3D structure of crystal structure of human VEGFR-2 (PDBID: 3VHE). The
solid ribbon is the 3D structure of crystal structure of 3VHE with a 1.55 A resolution. In the center of 3VHE is a kinase domain inhibitor bound in
the interface. Figure 9b shows ten poses of tanshinone IIA docked into the endogenous ligand's (vellow) active site of 3VHE. Figure 9¢ shows the binding
model of tanshinone IIA in 3VHE: at least three residues involved in the interactions, Cys919 (H-bond), Leu840, and Val848 (aromatic interactions)

LEU840

VAL848

\
cyse19

PI3-kinase is activated by a variety of growth factors
binding to their receptors. Such as fibroblast growth fac-
tors, epidermal growth factor, VEGE hepatocyte growth
factor, IL-8 and so on, which are known to induce angio-
genesis [40, 41]. As PI3K/Akt signaling becomes a major
downstream intracellular pathway that mediate the
biological effects of VEGF [42], a substantial number of
studies have been conducted to support the important role
of VEGEF/PI3K/Akt signaling in tumor progression [43—47].

Our western blot results revealed that the drugs treat-
ment gave rise to distinctly high expressions of Cleaved-
Caspase-3 and Bax, but low expressions of VEGE,
VEGFR2, Bcl-2, Caspase-3, p-PI3K and p-Akt proteins,
with total PI3K and Akt proteins expression remaining
nearly the same. The effects of the drug combination
treatment showed more significant difference compared
with single drug treatment.

In light of this, we hypothesized that drugs induced
pro-apoptotic process was likely associated with the
down-regulation of the VEGF/PI3K/Akt signaling path-
way. Bax and Cleaved Caspase-3 were up-regulated,
suggesting that the mitochondrial apoptotic pathway
[48-50] was also involved in Tan IIA-induced A549
cell death, which are consistent with many other sci-
entists’ research [33, 51, 52].

These findings showed some similarities with some re-
cent studies by other scientists [53-56]. Li found that
tanshinone IIA could inhibit the angiogenesis and
growth of human breast cancer xenografts in nude mice
and inhibit VEGF expression in breast cancer cells via
mTOR/p70S6K/RPS6/4E-BP1 signaling pathway. Xing
found that tanshinone IIA had a negative effect on cell
proliferation, migration and tube formation of human
umbilical vascular endothelial cells (HUVEC) via the
simultaneous inhibition of the VEGF/VEGFR2 signaling
pathway.

However, there are some different outcomes of tanshi-
none IIA’s effect on VEGF expression. Xu found that

tanshinone IIA could promote angiogenesis and up-
regulate VEGF expression in myocardial infarction (MI)
rats [57]. Furthermore, Xu found that the expression of
VEGF was up-regulated in tanshinone IIA-pretreated
flap tissue [58]. We proposed that this might be related
to the protective function of tanshinone IIA in myocar-
dial cells and epithelial skin cells, which is opposite to
cancer cells and HUVEC. Therefore, the effect of tanshi-
none IIA on A549 cells and the underlying mechanisms
need to be further explored.

Furthermore, there are many newly reported re-
searches emphasize on the crucial role of the target
protein VEGFR2 in the VEGF/VEGFR2 mediated
PI3K/Akt signal pathway verified by the VEGER?2,
PI3K and Akt inhibitors [28-31]. However, some sci-
entists thought PI3K may also play an important role
in some occasions [59-63]. These studies provide
deeper research clues and theoretical support for our
current research results.

Considering our previous study [12] along with the
research mentioned above [48], we speculated that tan-
shinone IIA might act as a competitive inhibitor of
VEGER2, forming complexes with VEGFR2 to interdict
the binding of VEGF to VEGFR2 and the phosphoryl-
ation of VEGFR2, sequentially inhibited tumour angio-
genesis, cell migration and tumorigenicity [64].
Combined with the molecular docking analysis results,
tanshinone IIA and ADM could also target the protein
kinase domains of Akt2 (PDB-ID: 2JDR), Bcl2 (PDB-ID:
41EH) and PI3K (PDB-ID: 4J6I), which may contribute
to the inhibition of the downstream PI3K/Akt signal
pathway, which interrupts the phosphorylation of PI3K
and Akt, causing the apoptosis of A549 cells. Besides,
the inactivated Akt could not phosphorylate the pro-
apoptotic proteins such as Bad, Bax and caspase families,
therefore losing the function of inhibiting these pro-
apoptotic proteins. The activated Caspase-3 cascade trig-
gers the mitochondrial-induced apoptotic pathway, with
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the release of cytochrome c from the mitochondria and
Bax translocation to the mitochondria, causing an
increasing ratio of Bax/Bcl-2. The mitochondrial apop-
totic process produced both initiators and effectors of
the apoptotic programmed cell death (Fig. 10).

Therefore, we might conclude that tanshinone IIA and
ADM suppressed the VEGF/PI3K/Akt pathway, induced
mitochondrial dysfunction, triggered the mitochondrial-
induced apoptotic pathway and then gave rise to the cell
apoptosis. Meanwhile, the drugs combination groups
showed synergistic effects in the pro-apoptotic process.

The advantages of methodology, clinical application
prospect: this is the first report on the effect of tanshi-
none IIA in combination with ADM on NSCLC A549
Cell Line. This study established an objective evaluation
system for the efficacy of extracts of Chinese herbal
medicines and chemotherapy drugs used in combin-
ation, and explored its underlying mechanisms. In this
study, we found that tanshinone IIA combined with
ADM presented synergistic effects on proliferation sup-
pression in series of cancer cells, but not in normal cells.
The mechanisms might be through the down-regulation
of VEGF/PI3K/Akt pathway and inducing the mitochon-
dria dependent apoptosis.

These investigations indicated that the inhibition of
the VEGF/PI3K/Akt signaling cascade could be served
as an effective strategy for the treatment of cancers.
Agents (such as tanshinone IIA) targeting the apoptosis
pathway without affecting normal cells might play
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crucial roles as potential drug targets in cancer manage-
ment, which will minimize adverse effects, maximize
clinical outcomes, and help improve the patients’ quality
of life.

The existing problems and future study directions:
to provide further evidence to allow in-depth under-
standing of the synergistic anti-cancer activity of tan-
shinone IIA and ADM. Further study on the probable
molecular mechanisms in VEGEF/PI3K/Akt signal
pathway need to be carried out with antagonist anti-
bodies, and the synergistic anti-cancer activity in vivo
should be verified. Based on the results of this study
we believe tanshinone IIA should be developed fur-
ther as a possible new therapeutic adjuvant treatment
for NSCLC.

Conclusions

Our findings indicated that the combination of tanshi-
none ITA with ADM could inhibit malignant biological
behaviors of NSCLC cell line in a synergistic way.
Tanshinone IIA could be used as a novel agent in post-
operative adjuvant therapy and improve the sensibility of
chemotherapeutics for NSCLC with less side effects. In
addition, this experiment could not only provide a refer-
ence for the development of more effective anti-tumor
medicines, but also build a platform for evaluating the
effects of herbs and chemotherapy drugs used in
combination.

. VEGF

‘ Tanshinone IIA and Adriamycin

Fig. 10 The proposed signal transduction pathway caused by tanshinone IIA and ADM in A549 cells
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Additional file

Additional file 1: Inhibitive effects of Tanshinone IIA and Adriamycin on
A549, PC9 and HLF cells. A549 (A), PC9 (C) and HLF (E) cells were treated
with 8 UM, 4 uM, 2 uM, T uM, 0.5 uM, 0.25 uM, 0 uM of Adriamycin for
24 h, 48 h and 72 h respectively. At the same time, A549 (B), PC9 (D) and
HLF (F) cells were treated with 320 uM, 160 UM, 80 uM, 40 uM, 20 uM,

10 UM, 5 uM, 0 uM of Tanshinone IIA for 24 h, 48 h and 72 h respectively.
Data were derived from three independent experiments. (TIF 747 kb)
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