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Abstract

Background: MEKT (MAP2K1) and MEK2 (MAP2K2) are closely related dual-specificity protein kinases which
function by phosphorylating both serine/threonine and tyrosine residues of their substrates ERK1 and ERK2,
controlling fundamental cellular processes that include cell growth and proliferation. To investigate the prognostic
significance of pMEK expression in the nucleus and cytoplasm among patients with locally advanced head and

neck cancer treated with concurrent radiochemotherapy.

Methods: Immunohistochemistry was performed on the retrieved archival tissue of 96 patients to detect pMEK,

p53 and Ki-67.

Results: Sixty-six percent of patients were positive for pMEK expression in the nucleus and 41 % in cytoplasm. On
univariate analysis, high nuclear pMEK was predictive of worse 5y-DFS and 5y-OS, with a trend to significance (26 %
vs. 41 %, p=0.09; 36 % vs. 47 %, p = 0.07). High cytoplasmic pMEK was predictive of better 5-y OS and 5-y DFS
outcomes (61 % vs. 27 %, p=0.01; 46 % vs. 22 %, p = 0.02). On multivariate analysis, low cytoplasmic pMEK and
high nuclear pMEK predicted worse DFS and OS (p=0.01; p=0.04 and p=0.02; p =0.02 respectively).

Conclusions: Subcellular localisation of pMEK has different prognosis in locally advanced head and neck cancer

treated with radiochemotherapy.
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Background

A combination of concurrent radiotherapy and chemo-
therapy (RCT) is the standard treatment for locally ad-
vanced head and neck cancer (LAHNC) [1]. However,
despite the intensification of radiotherapy with chemo-
therapy, the prognosis of these patients is still poor and
involves a considerable increase in toxic effects [2].
Thus, in these patients, it is crucial to investigate new
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molecular targets to improve the therapeutic ratio of
treatment with RCT.

Accelerated proliferation is one of the major causes of
failure in head and neck cancer treated with radiation
and chemotherapy. One mechanism by which tumoural
cells increase the proliferation rate in response to fraction-
ated irradiation in head and neck cancer is EGFR phos-
phorylation and stimulation of the RAS/RAF/MAPK
signalling pathway, a key signal transduction pathway of
growth factor induced signals [3]. Within this pathway,
MEK1 (MAP2K1) and MEK2 (MAP2K2) are closely re-
lated dual-specificity protein kinases that are activated by
different growth factors and cytokines which function by
phosphorylating both serine/threonine and tyrosine resi-
dues of their substrates ERK1 and ERK2, controlling
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fundamental cellular processes that include cell growth
and proliferation [4, 5]. There are data that support the
overexpression of MEK1 as an independent biomarker of
survival in other tumours such as ovarian cancer [6].
However, there are no published investigations that study
the value of pMEK as a prognostic factor in head and neck
cancer.

In this study, pMEK was selected as a possible prog-
nostic factor among patients treated with RCT. We ex-
amined the expression of nuclear and cytoplasmic
pMEK in tumour biopsies of LAHNC treated with RCT
with regard to their response to RCT, overall survival
(OS) and disease free survival (DFS).

Methods

Patient data and specimen characteristics

Between March 2000 and December 2010, 105 patients
with newly diagnosed locally advanced HNSCC (stage III
and IV non-metastatic), who were candidates for radical
treatment, received treatment with concurrent radioche-
motherapy (RCT). Of the 105 patients, 96 were fully as-
sessable in terms of the availability of pathological
specimens. Pretreatment evaluation included physical
examination, endoscopy of the upper aerodigestive tract,
computed tomography of the neck, and chest X-ray. In
the more advanced cases (N3), computed tomography of
the chest was performed. Six to eight weeks after treat-
ment, the response was assessed under RECIST criteria.
After treatment, patients underwent regular clinical and
imaging examinations to assess for the occurrence of
HNSCC relapse or death.

Chemotherapy was administered with Cisplatin, treat-
ment for 70 patients was a 100 mg/m” dose every
3 weeks, whereas 26 patients had 40 mg/m? every week.
Twenty six patients (27 %) received treatment with con-
ventional fractionation, and the other 70 (73 %) were
treated with accelerated fractionation with concomitant
boost. Conventional fractionation was administered daily
in 2 Gy per fraction, 5 days a week, to 70 Gy in 35 frac-
tions over 7 weeks. Accelerated fractionation with con-
comitant boost was delivered daily in 1.8 Gy per
fraction, 5 days a week, to 54 Gy in 30 fractions over
6 weeks to a clinical target volume encompassing the
gross tumour and clinically/radiologically involved nodes
along with regions of potential subclinical and micro-
scopic disease. After 32.4 Gy, a second daily fraction of
1.5 Gy (with an interval of at least 6 h) was delivered to a
clinical target volume including gross tumour and in-
volved nodes for a total of 1.8 Gy in 12 treatment days.
The primary tumour and clinically/radiologically involved
nodes received 72 Gy in 42 fractions over 6 weeks, and
uninvolved nodes received 54 Gy over 6 weeks. Radiation
treatment was planned with three-dimensional conformal
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radiotherapy. The median dose of radiotherapy was
71.4 Gy (70-74 Gy).

Immunohistochemistry
Tumour samples were collected during diagnosis. Im-
munohistochemistry (IHC) was performed on formalin-
fixed, paraffin-embedded (FFPE) tissue. Heat-induced
antigen retrieval was performed using 0.05 mol/L Tris
buffer (pH 10.0) heated to 95 °C in a steamer for 20 min.
Qualitative detection was performed as follows: for p53
(SP5, Ready to Use, MasterDiagnostica, Granada, Spain),
Ki-67 and p16 (CINtec® Histology Kit (MTM Laboratories
AG, Germany), Phospho MEK1/2 (1:100 SER 217/221,
Cell Signalling, Darmstadt, Germany). Slides were incu-
bated with primary antibody and stained according to the
standard EndVision Flex + (Dako, Copenhagen, Denmark)
(K8012). As the chromogen, we used DAB and slides
which were counterstained with hematoxylin. Sections of
tumour tissue known to express the investigated antigens
were used as positive controls. Negative controls were
routinely carried out by substituting the primary antibody
for non-specific IgG. The control sections were treated in
parallel with the samples in the same run.
Immunohistochemical staining was evaluated inde-
pendently by two authors, who were blinded to the clin-
ical data. The ratio between the number of cells that
expressed pl6, Ki-67 (Fig. 1) and p53 (Fig. 2) and the
whole number of tumour cells was calculated. For statis-
tical purposes, accumulation or overexpression of p53 was
considered present if >10 % of tumoural cells showed nu-
clear positivity [7]. Tumours were considered to have a
high proliferative index if Ki-67 was positive in >/= 20 %
of the cells [8]. Expression of p16 was classified dichotom-
ously as either pl6-positive (strong, diffuse staining) or
pl6 negative [9]. Regarding pMEK, patients were divided
considering staining intensity in absence of expression (0),
low intensity (+1), moderate intensity (+2) and high inten-
sity (+3). The expression of pMEK was categorised as
high expression (average intensity of +2 and +3) and
low expression (average intensity of 0 and +1) (Fig. 3).
PMEK positivity was considered when at least 5 % of the
cells presented a high expression of pMEK (average inten-
sity of +2 and +3).

Statistical Analysis

The association between clinical and molecular charac-
teristics and prognostic markers was compared using the
chi-square test and Fisher’s exact test when appropriate.
The end points of interest used in this study were overall
survival (OS), disease-free survival (DFS) and tumour re-
lapse. OS was defined by the time that elapsed from first
treatment until the event of death due to any cause. DFS
was defined by the time that elapsed from the beginning
of RCT to documented relapse, or death for any cause.
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positivity for nuclear staining with Ki-67 (b)

Fig. 1 Tumor cells showing negative staining for p16 and positive staining for Ki-67 (a). Positive immunostaining for p16 with some cells showing

Tumour recurrence was defined as disease recurrence
any time after RCT treatment. The pattern of occur-
rence of the different end points was carried out by esti-
mating Kaplan-Meier survival curves. The threshold for
significance for two-side analysis was set to p>0.05.
Multivariate survival analysis was conducted using a
multivariable Cox regression model. The categorised co-
variates that showed a trend (p<0.1) in the univariate
analysis were put into a back-step multivariate Cox re-
gression analysis. P-values <0.05 were considered signifi-
cant. All analyses were carried out using R and SPSS
version 15.0 software.

Results

Patient characteristics

Of the 96 patients included, the vast majority in both
groups were male with ECOG 0-1 performance status
and stage IV disease at the time of diagnosis. Fifteen pa-
tients (18 % of the total) showed positivity for p16. Of
those, two patients (2 % of the total) were smokers.
Eighty eight, 84 % of the patients, showed nuclear or
cytoplasmic pMEK. Nuclear pMEK staining intensity
was absent (0) in eight patients (8 %), weak (1+) in 31
patients (32 %), intermediate (2+) in 21 patients (22 %),
and high (3+) in 36 patients (38 %). Cytoplasmic pMEK
staining intensity was absent (0) in 12 patients (13 %),
weak (1+) in 45 patients (47 %), intermediate (2+) in 29
patients (30 %) and high (3+) in 10 patients (10 %)
(Fig. 4). Although pMEK positivity was considered when

at least 5 % of the cells presented a high expression of
PMEK (average intensity of +2 and +3), 90 % of the
tumour samples considered as high expression presented
more than 50 % stained cells.

Patients were divided into low pMEK expression (0, 1+)
or high expression (2+, 3+) based on the level of staining
intensity (Fig. 1). At diagnosis, 66 and 41 % of the patients
were categorized as having high pMEK expression in the
nucleus and cytoplasm respectively. Patients with a high
PMEK in cytoplasm intensity were more likely to present
less advanced disease in the neck than patients with a low
expression, with 77 % of patients presenting a NO-1 stage
in the neck compared with 23 % of patients with N2-3
stage (p = 0.02). Characteristics of the patients are shown
in Table 1.

We analysed the possible association between the site
of the primary tumour and pMEK positivity and there
was not a significant correlation between pMEK expres-
sion and tumour location. Thus, 49 of 71 patients (69 %)
with non-oropharyngeal cancer presented nuclear pMEK
positivity compared with 14 of 25 patients (56 %) with
oropharynx cancer (p=0.24). Moreover, 32 of 71 pa-
tients (45 %) with non-oropharyngeal cancer presented
cytoplasmic pMEK positivity compared with seven of 25
patients (28 %) with oropharynx cancer (p = 0.16).

High nuclear pMEK expression was associated with a
higher proliferation rate measured with Ki-67 expression.
56 % of tumours with high nuclear pMEK presented
high expression of Ki-67 and 67 % of tumours with
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expression (3) in nucleus and cytoplasm
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Fig. 3 Immunostaining for pMEK. a Tumours with absence of pMEK expression (0), b low expression (1),c moderate expression (2), d and high

low nuclear pMEK presented low expression (p =0.04).
Furthermore, high nuclear pMEK expression was signifi-
cantly associated with expression of p53: 54 % of tumours
with high nuclear pMEK presented expression of p53
compared with 33 % in tumours with low nuclear pMEK
expression (p = 0.05).

We analysed pl6+ distribution in patients with less or
equal to 50 years compared with less than 50 years old.
The rate of pl6+ in patients less or equal to 50 years old
was 17.6 % (three patients), compared with 18.5 % in pa-
tients older than 50 years (p = 0.94).

EA nuclear
E3 cytoplasmic

% samples

0 1 2 3
PMEK intensity

Fig. 4 Distribution of tumours with absence of pMEK expression (0),
low expression (1), moderate expression (2), and high expression (3)
in nucleus and cytoplasm

Subcellular localisation of pMEK localisation expression is
associated with outcome

With a median follow up of 48 months, the 5-year OS
and DFS were 48 % (median 39 months) and 32 % (me-
dian 19 months) respectively. Table 2 lists the univariate
analysis for DFS and OS for various prognostic factors.
Among the different clinicopathological factors studied,
neck stage (NO-1 vs N2-3) was the only factor with prog-
nostic significance, with a 5-year OS of 49 % in patients
with less advanced neck disease (NO-1) compared with
27 % in more advanced neck disease (N2-3) (p =0.003),
and a 5-year DFS of 46 % in NO-N1 patients compared
with 18 % in N2-3 (p = 0.004).

To further establish the prognostic significance of
PMEK, patients were stratified on the basis of nuclear
and cytoplasmic pMEK expression. High nuclear pMEK
was predictive of worse DFS and OS, without reaching
statistical significance. On the other hand, high cytoplas-
mic pMEK was predictive of better OS and DFS out-
comes (Fig. 5). The 5-year OS for high nuclear pMEK
was 36 % compared with 47 % for low nuclear pMEK
(HR 1.70; CI 0.95-3.02; p =0.07), and 5-year DFS was
26 % compared with 41 % respectively (HR 1.58; CI
0.93-2.70; p =0.09). Regarding cytoplasmic pMEK, pa-
tients with high pMEK showed a 5-year OS of 61 %
compared with 27 % when nuclear pMEK was low
(HR 0.48; CI 0.28-0.84; p=0.01), and a DES of 46 %
with high pMEK compared with 22 % with low
pMEK (HR 0.55; CI 0.32-0.92; p=0.02). On multi-
variate analysis, after adjustment for T stage, ECOG,
and pl6, advanced N stage, low cytoplasmic pMEK
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Characteristic Low nuclear pMEK High nuclear pMEK P value Low cytoplasmic pMEK High cytoplasmic pMEK P value

N of patients 33 (34 %) 63 (66 %) 57 (59 %) 39 (41 %)

Age (y) 064 065
<50 6 (18 %) 14 (22 %) 11 (19 %) 9 (23 %)
>/=50 27 (82 %) 49 (78 %) 46 (81 %) 30 (77 %)

Sex 05 0.01
Male 31 (94 %) 61 (97 %) 57 (100 %) 35 (90 %)
Female 2 (6 %) 2 (3%) 0 (0 %) 4 (10 %)

Current smoker 0.78 036
No 2 (6 %) 3(5 %) 2 (4 %) 3 (8 %)
Yes 31 (94 %) 60 (95 %) 55 (96 %) 36 (92 %)

ECOG 0.96 0.71
0-1 31 (94 %) 59 (93 %) 53 (93 %) 37 (95 %)
2-3 2 (6 %) 4 (6 %) 4(7 %) 2 (5%)

Primary tumor 0.24 0.14
Oropharynx 22 (67 %) 49 (78 %) 39 (68 %) 32 (82 %)
Other 11 (33 %) 14 (22 %) 18 (32 %) 7 (18 %)

T classification 0.59 032
T1-2 39 %) 8 (13 %) 5 (9 %) 6 (15 %)
13-4 30 (90 %) 55 (38 %) 52 (91 %) 33 (85 %)

N classification 0.29 0.02
NO-1 9 (27 %) 24 (38 %) 26 (46 %) 30 (77 %)
N2-3 24 (73 %) 39 (62 %) 31 (54 %) 9 (23 %)

P16 045 093
Negative 24 (86 %) 43 (80 %) 41 (82 %) 26 (81 %)
Positive 4 (14 %) 11 (20 %) 9 (18 %) 6 (19 %)

P53 0.05 091
<10 % 22 (67 %) 29 (46 %) 30 (53 %) 21 (54 %)
210 % 11 (33 %) 34 (54 %) 27 (47 %) 18 (46 %)

Ki-67 0.04 034
<20 % 22 (67 %) 28 (44 %) 32 (56 %) 18 (46 %)
220% 11 (33 %) 35 (56 %) 25 (44 %) 21 (54 %)

Abbreviations: ECOG Eastern Cooperative Oncology Group

and high nuclear pMEK predicted worse DFS and OS
(Table 3).

Discussion

In this study we analyse the expression of pMEK in the
nucleus and cytoplasm in patients with LAHNC treated
with RCT. We show that patients with tumours that
show moderate to high nuclear pMEK intensity present
a lower OS and DFS compared with those who do not.
Proliferation is one of the major causes of failure in head
and neck cancer treated with radiation and chemother-
apy, and the MAPK signal transduction pathway is one
of the most important routes for the proliferation of

head and neck cancer cells. In the MAPK pathway,
MEK1 and MEK?2 are the only activators of ERK2, pro-
cessing inputs from multiple upstream kinases [10]. As a
result, ERK1/2 activates different transcription factors
and protein kinases, controlling the transcription and
translation of genes that promote proliferation. Our re-
sults show that high nuclear expression is significantly
associated with a higher proliferation rate measured with
Ki-67 expression (p = 0.04). Although the negative prog-
nostic impact of pMEK has been described in other tu-
mours [6], to our knowledge there are no studies in the
literature that investigate the prognostic role of pMEK
in head and neck cancer.
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DFS 0S

Variable HR (95 % Cl) P value HR (95 % Cl) P value
Age (<50 vs =50) 1.09 (0.60-1.90) 0.70 124 (0.73-2.12) 043
Oropharynx vs non-oropharynx 1.30 (0.82-2.29) 023 1.20 (0.73-2.10) 040

T stage (T1/2 vs T3/4) 1(043-1.91) 0.79 1.03 (047-2.27) 0.98

N stage (0-1 vs 2-3) 2.03 (1.26-3.28) 0.01 11 (1.20-3.50) 0.01
ECOG performance status (0 vs 21) 1.50 (0.87-2.47) 0.14 1.50 (0.87-2.58) 0.14
P16 1.30 (0.73-2.51) 034 1.36 (0.71-2.59) 035
Ki-67 0.82 (0.51-1.33) 042 0.95 (0.57-1.56) 0.83
P53 0.99 (0.61-1.60) 0.90 1.10 (0.67-1.82) 0.67
Nuclear pMEK 1.58 (0.93-2.07) 0.09 1.70 (0.95-3.02) 0.07
Cytoplasmic pMEK 0.55 (0.32-0.92) 0.02 048 (0.28-0.84) 0.01

Abbreviations: Cl confidence interval; DFS disease-free survival; ECOG Eastern Cooperative Oncology Group; HR hazard ratio; OS overall survival

Our results show that p16 is not a prognostic factor.
The lower pl6 positive prevalence in our patients com-
pared with data from different meta-analysis (22-34 %
in HNSCC and 30-41 % in OPSCC) [11, 12] confirms
the previous results published by our group [9, 13] and
is possibly due to the epidemiologic profile of our popu-
lation, which had a high proportion of heavy tobacco
users. In this study, the vast majority of our patients
were current smokers (95 %), and only two patients were
pl6 positive and non-smokers.

Tumour suppressor protein p53 plays a role in the
regulation of genes involved in cell cycle and growth ar-
rest, apoptosis and DNA repair, maintaining genomic
stability [14, 15]. Mutation of TP53 is one of the most
frequently detectable genetic alterations in HNSCC in tu-
mours associated with tobacco and alcohol consumption
[16], and this mutation generally results in inhibition of
function, limitless proliferation and immortalisation [17].
Our results show that a significantly higher proportion of
tumours with high nuclear pMEK presented expression of

a
— 1997 —— Low Nuclear pMEK 1007 —+- Low nuclear pMEK
] .
Z 80 —— High Nuclear pMEK — 80 == High nuclear pMEK
> s
2 p=0.09 £ p=0.07
9 60 S 601
[
8 @
L 401 s 40
0 [
[} >
201 O 201
o

c T T 1 c T T 1

0 50 100 150 0 50 100 150
Months Months
c d
100+ — Low Cytoplasmic pMEK 1001 - L.ow cytoplasm|lc pMEK

S g0 —— High Cytoplasmic pMEK — 80 = High cytoplasmic pMEK
2 [ =0.01
5 p=0.02 2 P
0 |4
o 601 5 604
o 7
[T =
o 40 S 40
0 o
8 >
S 20- O 201
a

c T T 1 c T T 1

0 50 100 150 0 50 100 150
Months Months
Fig. 5 Kaplan-Meier plots for disease-free survival and overall survival according to low versus high expression of pMEK in the nucleus (a, b) and
cytoplasm (c, d)




Gomez-Millan et al. BMC Cancer (2016) 16:829

Table 3 Multivariate analysis

Page 7 of 8

DFS 0S
Variable HR (95 % CI) P value HR (95 % Cl) P value
T stage (T1/2 vs T3/4) 0.82 (0.31-2.17) 0.69 0.94 (0.36-2.46) 0.90
N stage (0-1 vs 2-3) 2.34 (1.33-4.04) 0.03 2.15 (1.25-3.70) 0.06
ECOG performance status (0 vs 21) 1.74 (0.93-3.26) 0.08 1.67 (0.93-2.99) 0.09
P16 1.02 (0.53-1.96) 0.95 1.03 (0.54-1.96) 0.92
Nuclear pMEK 1(1.14-4.30) 0.02 212 (1.12-3.99) 0.02
Cytoplasmic pMEK 048 (0.23-0.85) 0.01 0.53 (0.29-0.97) 0.04

Abbreviations: Cl confidence interval; DFS disease-free survival; ECOG Eastern Cooperative Oncology Group; HR hazard ratio; OS overall survival

p53 (54 % in high nuclear pMEK compared with 33 % in
low nuclear pMEK, p =0.05). A link between the muta-
tional status of p53 and activation of the Raf/Mek/Erk cas-
cade has recently been reported in preclinical studies,
showing that in the presence of Ras oncogenes and an in-
active p53/p21 axis, activation of the Raf/Mek/Erk cascade
leads to sustained cell proliferation [18, 19].

Moreover, besides regulation of cell cycle progression,
the RAF/MEK/ERK signalling pathway may induce cel-
lular responses relevant to cancer survival, such as pro-
tection from apoptosis [20, 21]. It is well known that
RAF/MEK/ERK can phosphorylate BAD on S112, allow-
ing Bcl-2 to form homodimers, generating an antiapop-
totic response [22, 23]. Moreover, the association found
between nuclear pMEK and p53 overexpression supports
the suggestion that antiapoptotic response may well be
an important mechanism of resistance to RCT in head
and neck cancer.

Considering the importance that MEKK/1/2 may have
in the induction of proliferation, MEK inhibitors might
be potentially efficacious for the treatment of head and
neck cancer. There has been interest in developing
pharmacologic inhibitors of MEK as a means to blocking
ERK activation in tumours with activating mutations of
MEK1 or MEK2 such as ovarian, melanoma, colorectal
and lung cancer [10]. The MEK inhibitor trametinib has
been shown to increase overall survival in patients with
BRAFV600-mutated melanoma [24] and has recently
been approved for use in metastatic melanoma. In head
and neck cancer, accelerated proliferation in response to
ionising radiation through the activation of proliferative
signalling pathways might be mitigated with MEK inhib-
itors. Trametinib is under investigation in combination
with AKT inhibition in solid tumours including HNSCC
(NCT01725100).

Secondly, we have identified cytoplasmic pMEK as a
promising favourable prognostic factor for OS and DEFS.
Patients with cytoplasmic pMEK present superior OS
and DFS compared with patients who do not express
pMEK. Although pMEK rapidly translocates to the nu-
cleus to exert its action on proliferation, it has been de-
scribed that it remains in the nucleus for a short period

of time due to a rapid export by the NE/Exportin sys-
tem, giving rise to an apparent cytoplasmic localisation
[25, 26] that predominates in resting cells [27]. Thus, al-
though the functions of MEKK shuttling and cytoplas-
mic MEK are not fully understood [28], it might be
hypothesised that the subcellular localisation of pMEK
may determine different functions and may have differ-
ent prognostic implications, with poor survival and an
increase in proliferation markers in nuclear pMEK com-
pared with better survival and decrease in proliferation
markers in cytoplasmic pMEK. Although these finding
must be confirmed, cytoplasmic pMEK may identify a
subgroup of patients with a good prognosis for whom
deintensification therapies might be investigated.

Conclusions

The expression of pMEK is a prognostic factor in LAHNC
treated with CRT. Tumours with nuclear pMEK expression
present a higher proliferation rate, showing unfavourable
survival, whereas tumours with cytoplasmic expression of
PMEK present a lower proliferation rate and favourable
survival. Investigation of MEK inhibitors is needed to
increase the prognosis of LAHNCs that are frequently
not controlled with biologically non-specific treatments
such as RCT. Finally, cytoplasmic pMEK expression
should be explored as a prognostic biomarker in head
and neck cancer.
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