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Abstract

Background: Most cases of colorectal cancer (CRC) are initiated by inactivation mutations in the APC gene, which
is a negative regulator of the Wnt-B-catenin pathway. Patients with familial adenomatous polyposis (FAP) inherit a
germline mutation in one APC allele, and loss of the second allele leads to the development of polyps that will
turn malignant if not removed. It is not fully understood which molecular mechanisms are activated by APC loss
and when the loss of the second APC allele occurs.

Methods: Two FAP human embryonic stem cell (hESCs) lines were derived from APC mutated embryos following
pre-implantation genetic diagnosis (PGD) for FAP. These FAP-hESCs were cultured in vitro and following extended
culture: 1) B-catenin expression was analyzed by Western blot analysis; 2) Wnt-3-catenin/TCF-mediated transcription
luciferase assay was performed; 3) cellular localization of 3-catenin was evaluated by immunoflorecence confocal
microscopy; and 4) DNA sequencing of the APC gene was performed.

Results: We have established a novel human in-vitro model for studying malignant transformation, using hESCs
that carry a germline mutation in the APC gene following PGD for FAP. Extended culturing of FAPT hESCs led to
activation of the Wnt signaling pathway, as demonstrated by enhanced (3-catenin/TCF-mediated activity. Additionally,
B-catenin showed a distinct perinuclear distribution in most (91 %) of the FAP1 hESCs high passage colonies. DNA
sequencing of the whole gene detected several polymorphisms in FAPT hESCs, however, no somatic mutations were
discovered in the APC gene. On the other hand, no changes in 3-catenin were detected in the FAP2 hESGs,
demonstrating the natural diversity of the human FAP population.

Conclusions: Our results describe the establishment of novel hESC lines from FAP patients with a predisposition for
cancer mutation. These cells can be maintained in culture for long periods of time and may serve as a platform for
studying the initial molecular and cellular changes that occur during early stages of malignant transformation.
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Background

Colorectal cancer (CRC) is one of the leading causes of
cancer-related mortality [1]. About 50 % of all CRC pa-
tients will develop metastases and ultimately die from
the disease. Most CRC cases arise from two somatic un-
related events, however, approximately 5 % of CRCs are
initiated by an inherited genetic mutation which inevit-
ably leads to the acquisition of a second somatic muta-
tion. In all cases, progression to carcinoma occurs
through the accumulation of multiple somatic muta-
tions, leading to malignant transformation and develop-
ment of an invasive cancer [1-3].

One of the most critical genes mutated in CRC is
the adenomatous polyposis coli (APC) tumor suppres-
sor gene [1, 2]. APC encodes a large multi-functional
protein [4], and its main role in tumorigenesis lies in
its ability to negatively regulate Wnt signaling by con-
trolling cellular levels of B-catenin [1]. Wnt signalling
is a key developmental pathway involved in embry-
onic development, cell differentiation, cell prolifera-
tion and tissue maintenance in adults [5, 6]. However,
the aberrant constitutive activation of the Wnt path-
way that is caused by APC mutations in many cases
leads to uncontrolled cell proliferation and tumori-
genic transformation, CRC being the most notable
among them [6].

Since APC mutations are detected very early in the
adenoma-carcinoma sequence, the APC protein has
been suggested to act as a "gatekeeper” of colorectal car-
cinogenesis, which means that functional loss of APC is
a prerequisite for the progression towards malignancy.
Around 85 % of all sporadic and hereditary colorectal
tumors show loss of APC function [1]. Individuals af-
fected by familial adenomatous polyposis (FAP) carry a
germline mutation in the APC gene (‘first hit'), and show
autosomal dominant inheritance with essentially 100 %
penetrance (i.e., all will develop cancer [3, 7, 8]). Young
FAP patients start to acquire additional mutations (som-
atic mutations or the 'second hit') in the second allele of
the APC gene, leading to its functional loss and to the
development of adenomatous colon polyps, which in-
variably progress to colon cancer if not removed.

The APC gene includes a mutation cluster region
(MCR) which is prone to mutations. The cell will have a
selective advantage for tumor formation when at least
one of the mutations (germline or somatic) is located
within the MCR region that includes multiple B-catenin
binding sites. Indeed, APC mutations in colorectal tu-
mors are distributed non-randomly within the gene [9],
with the position and type of the somatic APC mutation
depending on the germline mutation [9-16].

Most of our knowledge about the initiation and devel-
opment of CRC came from studies performed in cancer
cells derived from CRC-affected patients [17]. In addition
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to the APC mutation, these already differentiated cells
reportedly carry some other mutations that are only partly
characterized and thus have limitations in providing
necessary data on the initial molecular steps leading to
cancer formation. Another research model for CRC is
genetically manipulated mice with different mutations in
the APC gene. Although most of these APC mutations in
mice are embryonically lethal, the severity of the cancer
predisposition is variable [18]. Numerous APC genetically
altered mice have been generated and serve as models for
colon adenoma and cancer, but their phenotypes are dif-
ferent from the human disease [19]. For example, several
genetic mouse models generate tumors predominantly in
the small intestine, in contrast to human CRC, in which
tumors are found in the colonic epithelium [20]. Carcino-
gen treatment of mice generates colonic neoplasia, but
these mice show specific gene expression patterns that do
not represent the entire development of human CRC [20].
Therefore, although these models are very important for
studying colon carcinogenesis, they are inadequate for the
study of the earliest molecular mechanisms underlying
malignant transformation in humans.

Human embryonic stem cells (hESCs) have already
been proven to be a valuable tool for studying human
genetic disorders [21-25]. Pre-implantation genetic diag-
nosis (PGD), a procedure used to obviate the inheritance
of mutations in affected families, has recently been
established for FAP families as well. In the current study,
we use two FAP hESC lines derived from embryos that
inherited the APC germline mutation following PGD for
FAP carriers (Lis25_FAP1 published in [26]). These cell
lines, to the best of our knowledge, are available solely
in our lab, and they comprise a valuable model for un-
raveling the very early mechanisms leading to malignant
transformation in the colon.

Methods

Derivation and culture of hESC lines carrying APC
mutations

The use of spare in-vitro fertilization (IVF)-derived em-
bryos that have been diagnosed by PGD as genetically
affected for the generation of hESCs was approved by
the Israeli National Ethics Committee (7/04-043). FAP-
affected embryos were cultured to the blastocyst stage.
At day 6-7 of development, the embryos were microma-
nipulated to isolate the inner cell mass (ICM) cells for
derivation of hESCs as previously described [27]. Isolated
clumps of ICM cells were plated on mouse embryonic
fibroblast cells (MEFs: feeder cell layer of mitomycin C—
inactivated treated mouse embryonic fibroblasts) and cul-
tured in hESC media (KnockOut Dulbecco's Modified
Eagle Medium [KO-DMEM, by Gibco] supplemented
with 20 % KO-serum replacement, 1 % nonessential
amino acids, 1 mM l-glutamine, 0.5 % insulin transferrin—
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selenium, 50U/mL penicillin, 50 mg/mL streptomycin,
0.1 mM beta-mercaptoethanol, and 30 ng/mL bFGF). Out-
growth-containing cells were manually cut and propa-
gated, resulting in a stable culture of undifferentiated
hESCs as previously described [28].

Two FAP hESC lines were examined in this study:
Lis25_FAP1 (FAP1) that we have already described else-
where [26] and Lis30_FAP2 (FAP2) that we have recently
derived. Three non-mutated APC hESC lines were used
as controls: HUES64, HEFX1 and HUES-6 [29-31], The
cells were cultured on mitomycin-C-treated MEFs in hESC
medium. Characterization of hESCs included expression of
OCT4, SSEA-4 and TRA-1-60 by immunofluorescence.
FACS analysis of undifferentiated hESCs was performed
using Alexa Flour-488 SSEA-3 antibodies (BioLegend) and
their respective isotype controls. Samples were analyzed
using a BD FACS Canto flow cytometer (BD Biosciences).

Karyotype analysis was performed as previously described
[22]. The differentiation potential was assessed by teratoma
induction, as previously described [22], and teratoma sec-
tions were stained with eosin and hematoxylin.

Immunofluorescence

FAP1, FAP2 and normal hESC lines were fixed, washed
with PBS, permeabilized with PBS containing 0.1 %
Triton (PBT) and blocked in 1 % BSA and 0.1 % Triton
in PBS for one hour. The cells were then incubated at
room temperature with primary antibodies (rabbit anti-f3-
catenin, Santa Cruz Biotechnology; mouse anti-Rabl1A,
Abcam; mouse anti-TRA-1-60 Santa Cruz Biotechnology;
mouse anti-OCT-3/4, Santa Cruz Biotechnology; mouse
anti-SSEA-4, Santa Cruz Biotechnology) and further incu-
bated with secondary antibodies (goat anti-rabbit and don-
key anti-mouse, Invitrogen). The cell nuclei were stained
with 5 pg/ml 4’,6-diamidino-2-phenylindole (DAPI, Sigma)
or with 5 uM 1,5-bis (2-(di-methylamino)ethylamino)-4,8-
dihydroxyanthracene-9,10-dione (DRAQ5, Cell Signaling).
The slides were visualized by confocal microscopy or by
phase contrast microscopy (Leica SP5, Leica Microsystems,
Bannockburn, IL).

Western blot analysis

Protein was extracted from hESCs grown on matrigel
(1:100 in KO-DMEM), using 100 pl lysis bufferX1
(Promega) with a 1 % protease inhibitor cocktail
(Sigma). Cell lysates were incubated for 20 min on ice,
centrifuged, and the supernatants were separated on
7.5 % SDS-polyacrylamide gel electrophoresis (SDS-PAGE),
followed by transfer to nitrocellulose membranes (0.2 pm,
BIO-RAD) using BIO-RAD Mini Trans-Blot Cell. The
membranes with the proteins were subjected to blocking
solution (0.001 % TWEEN-20 in phosphate buffered solu-
tion (PBS) with 5 % low fat milk, Sigma). They were then
incubated with primary antibody overnight at 4 °C, and
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washed with 0.001 % TWEEN-20 in PBS, followed by incu-
bation for 1 h at room temperature with horseradish
peroxidase-conjugated secondary antibody. After washing,
the membranes were exposed to enhanced chemilumines-
cence detection analysis (EZ-ECL, Biological Industries).
The antibodies used were: rabbit anti -catenin, Santa Cruz
Biotechnology; mouse anti-f-actin, Abcam; peroxidase-
conjugated goat anti-rabbit and peroxidase-conjugated goat
anti-mouse, Jackson Immune Research.

Luciferase reporter gene assay

Transfection of undifferentiated hESCs was carried out
by a jetPRIME® transfection kit (Polyplus) following the
manufacturer's instructions. The cells were seeded on 24-
well plates, cover with matrigel (1:100 in KO-DMEM,) and
grown to 60—80 % confluence. Transfection was carried out
with 0.6 pg of DNA (pGL3-OT (pTOPFLASH) or pGL3-
OF (pFOPFLASH) luciferase reporter constructs containing
three copies of either wild-type (WT) or mutated TCF
binding element, respectively, and a Renilla Luciferase Re-
porter Vectors, to monitor transfection efficiency, mixed
with 1.2 yl jetPRIME reagent for 4 h incubation, and then
replaced by fresh growth medium. The cells were harvested
on ice 48 h later by reporter lysis buffer (Promega) and
their luciferase activity was measured by Lumistar Optima
(BMG LABTECH) following the manufacturer's instruc-
tions. The statistical analysis was performed by Welch's ¢
test. A p value of 0.05 was considered significant.

Single-cell PCR for analyzing APC mutations in FAP
patients
The partners of couples that underwent IVF treatment
for the purpose of PGD of which one of them is a carrier
of a pathogenic mutation in the APC gene and had se-
verely affected relatives or aborted fetuses with FAP. At
day 3 post-fertilization, embryos at the 6-8 cell stage
were biopsied by the aspiration of 1-2 blastomeres from
each. The biopsied blastomeres were then subjected to
single-cell genetic analysis for the specific APC mutation
as well as for 3-6 polymorphic markers flanking the
mutation (as described by us for other monogenic dis-
eases [32]. Multiplex nested PCR was performed in order
to analyze the mutation and the flanking polymorphic
markers. Normal and mutated PCR products were differ-
entially identified by restriction enzymes: Nrul for analyz-
ing the R332X mutation in FAP1 hESCs, and BstNI for
analyzing IVS14+1 G > A mutation in FAP2. Both en-
zymes recognized and cleaved only the WT alleles.
Informative polymorphic markers were analyzed using
Gene Scan (ABI 3130XL Genetic Analyzer). According
to that analysis, embryos diagnosed as carrying the normal
allele were transferred back to the uterus to allow implant-
ation and the development of a pregnancy with a healthy
fetus. Embryos diagnosed as inheriting the germline APC
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mutation were donated by the couple for the derivation of
hESCs after they signed informed consent for the use of
spare PGD embryos for the generation of hESCs, a study
approved by the Israeli National Ethics Committee (7/
04-043) [27]. A protocol similar to the one described
above for single-cell PGD analysis was also used to con-
firm the inheritance of the mutation in the established
FAP hESC lines.

Sequencing of the APC gene

DNA was extracted from hESC lines following culture
on matrigel (1:100 in KO-DMEM) using the QIAGEN-
flexigene DNA kit (Cat # 51204, QIAGEN). DNA extrac-
tion was performed according to the manufacturer’s
protocol. Amplification of hESCs DNA was performed
encompassing the MCR region, the APC gene "hot spots”
and the germline mutation. The PCR products were puri-
fied by the QIAquick PCR purification kit (QIAGEN)
following the manufacturer's instructions, and sequenced
using the ABI330XL (Sequencer ABI, Center of the Life
Sciences Faculty in Tel Aviv University).

The entire APC gene was also sequenced using Pronto
Diagnostics kit specifically aimed at sequencing all the
coding sequences of the APC gene. The extracted DNA
was sent to ProntoLab™, Pronto Diagnostics' molecular
services laboratory (Tel Aviv, Israel) which used Multipli-
com's (Neil, Belgium) FAP MASTR™ and MID Dx 1-48
for Illumina MiSeq" kits for library preparation. Illumina’s
(San Francisco, CA) MiSeq Reagent Kit v2 (500 cycle) was
used to run the library on the MiSeq instrument. The FAP
MASTR™ kit enables identification of point mutations by
complete coverage of all coding sequences of the APC
gene. Data analysis was carried out using SeqNext module
v4.1.2 of the Sequence Pilot software (JSI medical systems,
Kippenheim, Germany).

Results and Discussion

Derivation of FAP-hESC lines with different mutations in
the APC gene

The Lis25 FAP1 and Lis30_FAP2 hESC lines were estab-
lished following PGD for FAP patients by means of ap-
proved protocols [26, 27, 33]. All the data on PGD cycles
and the number of diagnosed embryos for each FAP family
are illustrated in Fig. 1. Lis25_FAP1 (FAP1) was derived
from Family 1, in which the father inherited the APC
R332X mutation from his mother (Fig. la). This couple
underwent 3 PGD cycles in which a total of 13 embryos
were diagnosed. Eight affected embryos were donated for
hESC derivation, of which one was plated and the Lis25_-
FAP1 hESC line was established. The APC R332X mutation
led to the expression of a truncated APC protein. The
Lis30_FAP2 (FAP2) was derived from Family 2, in which
the father inherited the mutation from his father. This
couple underwent 8 PGD cycles in which a total of 18
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embryos were diagnosed. Six affected embryos were do-
nated for HESCs derivation, of which one was plated and
the FAP2 hESC line was established (Fig. 1b). It carried the
germline mutation IVS14 + 1G > A coding for a stop codon
in the first nucleotide of intron 14 which led to a splicing
error that resulted in a truncated protein. The molecular
structure of the APC protein with the localization of the
germline mutations of the FAP1 and FAP2 hESC lines is
shown in Fig. 1c. In order to confirm the inheritance of the
mutated APC allele within the FAP hESCs, the specific
sequence of the APC mutations, in addition to 3-6 poly-
morphic markers flanking the mutation, were analyzed with
the same set of primers used for the single-cell PGD
analysis (Fig. 2a; Additional file 1: Figure S1). The region
around the germline mutation in FAP1 was also amplified
and sequenced (Fig. 2b).

Characterization of FAP hESC lines as pluripotent stem
cells

The two FAP hESC lines (FAP1 and FAP2) were propa-
gated for a long period of time (>50 passages) in culture
without losing their pluripotent properties. Both lines
demonstrated a typical morphology of hESCs with a nor-
mal karyotype (Fig. 3; Additional file 2: Figure S2). Using
FACS analysis for quantifying the percent of undifferenti-
ated pluripotent cells, we demonstrated that approxi-
mately 90 % of the FAP1 and FAP2 cells were pluripotent
(Fig. 3c, Additional file 2: Figure S2C). Immunofluores-
cence analysis demonstrated that FAP hESCs expressed a
panel of markers which are specific for undifferentiated
cells, including the surface markers Tra-1-60, SSEA-4 and
the nuclear marker OCT4 (Fig. 3d-f; Additional file 2:
Figure S2D-F). Pluripotency of FAP1 hESCs was also con-
firmed by inducing teratomas following injection of the
cells into immunodeficient mice. Hematoxylin and eosin
staining of paraffin-embedded sections of FAP1 teratoma
developed in mice revealed different structures of differen-
tiated cells (brain like structure, adipose, skeleton muscle,
endothelial progenitors etc.), indicating their pluripotency
(Fig. 3g). Altogether, our results demonstrated that both
FAPland FAP2-hESCs lines inherited their parental muta-
tions and remained pluripotent throughout all passages
used for all experimental procedures.

Analyzing the effect of extended culturing on FAP-hESCs
and APC

Genetic and epigenetic instability have been strongly associ-
ated with various types of cancer. Extended culture of
hESCs has already been shown to be associated with gen-
etic instability [24, 25, 34—36], and some of the most fre-
quent chromosomal changes observed in these cells, such
as trisomies of chromosomes 12 and 17, are similar to those
seen in malignant germ cell tumors [37, 38]. The FAP
hESCs carry a mutation in one allele of the APC gene (the
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Fig. 1 A family tree for couples with FAP who donated their APC-mutated embryos for the derivation of FAP hESC lines. a, b Two couples with
different APC mutations for FAP who underwent PGD. The Lis25_FAP1 line carries the APC mutation R332X (a), and the Lis30_FAP2 line carries
the APC mutation IVS14+1 G > A (b). ¢ The APC protein with the localization of the germline mutations (red circle for FAPT R332X mutation and

germline inherited mutation) that leads to a predisposition
to cancer. Both APC alleles are either mutated or lost in
most colonic adenomas. We therefore hypothesized that
during extended culture, the hESCs will acquire additional
mutations, some of them in the second APC allele, (a sec-
ond APC ‘hit), which will result in complete loss of APC
function and provide the cells with a selective advantage
that will eventually dominate the whole population. In
order to detect the acquisition of the second mutation, we
tested the expression levels and activity of 3-catenin as well
as its subcellular localization, given that mutations in APC

lead to accumulation and nuclear translocation of -catenin
in many cancers [39].

Undifferentiated FAP-HESCs were propagated for >45
passages and the cell extracts of high passages were
compared to those of early passages. In addition, as APC
is extremely difficult to detect in minute tissue samples,
we assayed its most affected downstream counterpart [3-
catenin.

Western blot analysis of protein extracted from early
and high passages of FAP-hESCs cells as well as from
control hESC lines with non-mutated APC (HEFX1,
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Fig. 2 Confirmation of the APC germline mutation in FAP1 hESCs. a The mutation (R332X) and 3 polymorphic markers flanking the mutation area
(D55941, D553463, D5S529) for showing that the FAP1 cells, indeed, inherited the mutated APC allele from the affected father (mutated allele in
red, normal allele in black). b DNA sequencing of the mutation area showing a thymine (red arrow, R332X mutation) instead of cytosine (normal

HUES64, HUES6-termed control) demonstrated wide fluc-
tuations in [B-catenin levels (Additional file 3: Figure S3).
We therefore decided to perform a more sensitive assay
that measures the activity of B-catenin, Wnt-B-catenin/
TCF-mediated transcription luciferase assay. This assay is
based on the accumulation of nuclear B-catenin which, in
turn, binds T-cell factor (TCF)/lymphoid enhancer factor
(LEF) to activate the transcription of Wnt target genes. In
the absence of the degradation complex (e.g., a truncated
APC protein resulting from a mutation in both alleles), the
[-catenin-mediated signal should increase. Indeed, our
results demonstrated that high passage FAP1 cells showed
enhanced [B-catenin/TCF-mediated activity compared to
control cells (P < 0.05, Welch's ¢ test) (Fig. 4a) and to early
passage (p12) FAP1 cells (Fig. 4b). In contrast, luciferase
activity of FAP2 was not significantly different from the
control lines, even at high passage (Fig. 4a).

Inactive -catenin is usually localized to the membrane
or cytoplasm, however, upon activation it translocates
and accumulates into the nucleus. We therefore analyzed

B-catenin activation also by determining its cellular
localization using an anti-p-catenin antibody and con-
focal laser microscopy. Interestingly, we found that -
catenin was localized to perinuclear structures in most
high passage FAP1 hESCs (Fig. 5a). In contrast, [B-catenin
was localized solely in the membrane in the normal APC
hESC lines and in the FAP2 hESCs. Quantification of the
colonies in which (-catenin had a perinuclear localization
demonstrated that [-catenin exhibited perinuclear
localization in 91 % of the colonies in high passage of
FAP1-hESCs, compared to only 29 % in the early-
passage. Furthermore, a perinuclear localization pattern
was detected in all of the colony cells in colonies in
which B-catenin was perinuclear. These results indicated
that extended culture induced changes in B-catenin sub-
cellular localization, which may indicate the acquisition of
a somatic mutation in the APC gene.

In view of the fact that B-catenin in high passage FAP1-
hESCs is sequestered to yet unknown cellular structures
next to the nucleus, we used RAB11 that was previously
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Fig. 3 Characterization of a FAP1 hESC line. a A colony of FAP1 cells at p54 with a typical morphology of hESCs. b Karyotype analysis. ¢ FACS
analysis for the pluripotent marker SSEA3. d-f Immunostaining for the pluripotent markers (green) Tra-1-60 (d), SSEA-4 (e), OCT4 (f), and the nuclear
marker DAPI (blue) and their overlay. g Hematoxylin and eosin staining of 8-week-old FAP1-derived teratoma sections showing cell different structures

shown to co-localize with B-catenin in similar structures
[40]. Our results demonstrated that, indeed, [-catenin
(green, Fig. 5b) is localized to the same perinuclear struc-
tures as RAB11 in FAP1 cells (red, Fig. 5b). However,
while RAB11 was concentrated mainly in the center of
these structures, p-catenin staining was more diffused. It
is possible that the perinuclear localization of -catenin in
FAP1 hESCs is an indication of regulatory disruption that
resulted in different sub-cellular sequestering. These
results together with the elevated Wnt-B-catenin/TCF

activity may suggest a progressive process in which p-
catenin migrates from the cell membrane to the cytosol
due to the dismantling of the APC complex. B-catenin is
then directed to the nuclear vicinity, where it interacts
with a variety of proteins that stabilize it to the perinuclear
compartment [41]. A similar sub-cellular localization of -
catenin was observed in a squamous carcinoma cell line
(A431 cells) following activation with lysophosphatidic
acid. The activation induced B-catenin translocation to the
perinuclear endocytic recycling compartment that stained



Yedid et al. BMC Cancer (2016) 16:952 Page 8 of 13

(V)
o

16 16
_p<0.05

14 14
12 12
10 10 -
8.
6 6 -
0 i o i i .

E=

Relative luciferase activity
»H 0

N
N

hESC line: FAP1 FAP2 HEFX1 HUES64 HUES6 FAP1 FAP1
Passage: High High High High  High Early High
( J|
Mutated APC Normal APC

Fig. 4 Wnt-3-catenin/TCF-mediated activity in hESC lines. a FAP1, FAP2 and normal APC hESC lines of high passage were transfected with
pTOPFLASH or pFOPFLASH and Renilla (FAP1 passage 82, FAP2 passage 80, HEFX1 passage 45, HUES64 passage 48, HUES6 passage 53,), and their
lysates were measured for luciferase activity. b FAP1 early (passage 12) and FAP1 high (passage 82) were measured for their luciferase activity.
These data describe relative mean values (+STDV) of three independent experiments performed in duplicates. Welch's t-test between each one of

the pairs was performed

positive for RAB11A, a known marker for these structures
[40]. RAB11A is associated primarily with recycling of
endocytosed proteins and regulation of secretory path-
ways. Recycling endosomes are often located near the
nucleus or in the centrosome, and are consequently
referred to as perinuclear or pericentrosomal recycling
endosomes [42]. We hypothesized that the accumulation
of B-catenin trigger a regulatory process that enhances the
compartmentalization and recycling of the latter.

DNA sequencing of the MCR region and hot spot regions
of the APC gene

At this stage we wanted to explore the relationship between
the increased B-catenin levels observed following extended
culture of FAP1 hESCs and APC mutation. It is well
established that the levels of expression and subcellular
localization of B-catenin is regulated by the B-catenin
destruction complex that includes the APC protein. A
mutation in APC will result in a nonfunctional protein
product that will lead to increased P-catenin levels. In
search of the somatic mutations following extended
cultures of FAP1 hESCs, we sequenced the entire MCR
region (codons 1250-1450) and the hot spot regions
(codons 1450 and 1554) within the APC gene in the
FAP1 hESC lines from high passages (Fig. 6a,b). We
were able to identify one difference in the MCR region
of FAP1 hESCs that resulted in a G to C substitution
leading to an E1317Q mutation (glutamic acid to glu-
tamine substitution). In order to verify whether the dif-
ference we had found was inherited (polymorphism) or

a novel somatic mutation, DNA samples from both par-
ents of the donated embryo used for FAP1 derivation
were also examined (Fig. 6¢). Sequencing analysis dem-
onstrated that this G to C mutation (E1317Q) in the
APC gene was inherited from the mother, in addition
to the germline R332X mutation inherited from the
father, thus representing a polymorphism rather than a
somatic mutation. It is important to note that this
E1317Q polymorphism had reportedly correlated with
colorectal neoplasia [43]. Having not been able to iden-
tify any mutations in the MCR region or in the familiar
hot spot regions, we sequenced all the APC coding re-
gions (Table 1). The DNA from high passage FAP1
hESCs was purified and sent to high throughput se-
quencing (ProntoDiagnostics). The results demon-
strated several known polymorphisms, as indicated by
their 50 % coverage (inherited from either the father or
the mother) or 100 % coverage (inherited from both),
but no new mutations indicative of a somatic mutation
in the APC gene were identified (Table 1). We therefore
concluded that activation of Wnt signaling following
extended culture of FAP1 hESCs is probably not a re-
sult of the loss of function of the APC gene.

Another explanation for the differences between FAP1
and FAP2 hESCs may be that mutations in other compo-
nents of the Wnt cascade, such as in Axinl or GSK-3f,
may have contributed to the high levels of Wnt
signaling-mediated transcription in FAP1 hESCs but
have not occurred in FAP2 hESC. It has been shown
that mice that express an APC protein which lacks the
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Fig. 5 a Cellular localization of B-catenin in hESC lines. FAP1 hESCs, FAP2 hESCs and two normal APC hESC lines were stained with rabbit
anti-B-catenin antibody followed by the secondary antibody Alexa Flour® 488 goat anti-rabbit (green). The cell nuclei were stained with
DRAQ5 and examined with confocal microscopy. Red arrows show accumulation of 3-catenin in the perinuclear structures in FAP1. Quantification table of
B-catenin localization to the perinuclear structures. Only 29 % of FAP1 hESCs colonies from early passages (24/82; p 12) were stained positive for 3-catenin
next to the nucleus, while all the rest showed only membrane staining. In contrast, 91 % of the high passage colonies (67/73; p82) were stained positive
for B-catenin next to the nucleus. b Colocalization of B-catenin and RAB11. The FAPT hESC line stained with rabbit anti-3-catenin (I) and mouse anti-RAB11
(Il) followed by the secondary antibodies Alexa Flour® 488 goat anti-rabbit (green) and Cye2 sheep anti-mouse (red). The cell nuclei were stained with DAPI
and examined with confocal microscopy. An overlay picture is shown in lll, and the colocalized area is marked in white (V)

armadillo repeat region, develop significantly more
polyps than mice that express this region, very similar
to the differences we observed between FAP1 and FAP2
[44]. The molecular mechanism behind this increased
tumorigenesis remains unknown and we speculate that
this may be due to the fact that the armadillo repeat
region is a protein binding domain that binds a large
number of proteins which may affect signaling path-
ways and tumorigenesis [45].

Another explanation for the increased [-catenin activity
in FAP1 hESCs may be the differentiation state of the cells.
Wnt/B-catenin signaling was shown to maintain self-
renewal under feeder-free conditions in undifferentiated
hESCs [24] while others have reported that Wnt signaling
is involved in the differentiation of hESCs towards various
lineages [36]. In the current study, we showed that Wnt /f3-
catenin signaling is low in undifferentiated FAP hESCs and
that it is activated in extended culture of FAP1 hESCs. Our
results on the undifferentiation state are inconsistent with
those of Kathryn et al. [36] who showed negligible en-
dogenous p-catenin signaling in undifferentiated hESCs.

However, since activation of Wnt signaling is also linked
to cell differentiation, it is possible that Wnt activation in
our system reflects differentiation of at least some of the
cells in culture, although the expression of pluripotent
markers was >95 % in the undifferentiated cells. Interest-
ingly, B-catenin was not activated in the FAP2 hESC line,
demonstrating the diversity of the PGD-derived hESC
lines that mimics the natural diversity of the human FAP
population.

Conclusions

The current study describes the establishment of FAP
hESCs that carry the germline mutation in the APC gene
as a novel human in-vitro model that can be used for
studying the first steps in cancer development. To the
best of our knowledge, this is the first report on PGD-
derived hESC lines that carry mutation in a gene with
predisposition for cancer [46]. Human pluripotent stem
cells that carry tumor-associated mutations were recently
shown to be extremely valuable for our understanding of
pathological mechanisms involved in the development of
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Fig. 6 APC protein and sequencing chromatography results. a The APC protein scheme with the MCR and hot spot regions marked in red and
sequenced area marked in black. b Sequencing results of the APC gene and the hot spots in genomic DNA extracted from FAPT and FAP2 hESC
lines at different passages. ¢ Sequencing of codon 1317 region in the MCR of genomic DNA extracted from FAP1 cells at high passage (p53) as
well as from both of the embryo donors (both maternal and paternal DNA). The mother has one WT allele that is altered to C in the second
allele. The embryo inherited the mutated C allele from her mother and the WT G allele from the father

different cancer types [47, 48]. FAP patients have an inher-
ited germline mutation in one allele of the APC gene and
loss or mutations of the second allele, leading to the devel-
opment of polyps that will turn malignant if not removed.
Thus, establishing a human-based in-vitro model system
of FAP will enable us to study the early molecular mecha-
nisms underlying tumorigenesis transformation in general
and CRC development in particular. To this end, we
derived two FAP hESC lines that were fully characterized
as expressing key pluripotent markers and shown by
karyotype analysis to be normal diploid. Confirmation of

the germline mutation of the established cell lines demon-
strated that they inherited the parental mutated APC al-
lele. Genetic and epigenetic instability have been strongly
associated with various types of cancer. Extended culture
of hESCs has already been shown to be associated with
genetic instability. We therefore hypothesized that during
extended culture, the hESCs will acquire additional muta-
tions, some of them in the wild type APC allele, which will
result in complete loss of APC function and provide the
cells with a selective growth advantage that will eventually
dominate the entire population. Our results demonstrated
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Exon location Position (a.a) Nuc. change Coverage Amino acid change Nuc. name Mutation

ET1 332 C>T (het) 51 % R-> (STOP) 332 c994C>T Germline

E13 486 T->C (het) 50 % Y->Y (486) €.1458 T> C rs2229992 Polymorphism
E15 545 G-> A (het) 52 % A-> A (545) c.1635 G > Ars351771 Polymorphism
E17 1317 G->C (het) 50 % E->Q (1317) €.3949G > A rs42427 Polymorphism
E17 1493 G-> A (het) 48 % T->T (1493) c4479G > A rs41115 Polymorphism
E17 1678 G-> A (het) 51 % G->G (1678) c.5034G > A rs42427 Polymorphism
E17 1755 GTCT- > ATCG (het) 49 % AS-> AS (1755..1756) c.5265_5268delins Polymorphism
E17 1822 T-> A (homo) 100 % V->D (1822) €.5465 T > A rs459552 Polymorphism
E17 1960 G-> A (het) 51 % P-> P (1960) €.5880G > A rs465899 Polymorphism
E17 2401 C->T (het) 53 % L->L (2401) c.7201C > T rs2229994 Polymorphism

E - exone, het - heterozygote, homo - homozygote, Nuc - nucleotide

that [-catenin/TCF-mediated activity is significantly in-
creased following extended culture of FAP1-hESC cells. In
accordance, B-catenin was translocated from the mem-
brane to perinuclear structures. However, sequencing of
the entire APC gene didn’t show the acquisition of a som-
atic mutation in these cells. We therefore concluded that
activation of Wnt signaling following extended culture of
FAP1-hESCs may not always be a result of APC loss of
function, but rather may be due to mutations in other
components of the Wnt cascade, such as in Axinl or
GSK-3p. Another explanation for the observed changes in
[B-catenin activity may be the differentiation state of the
hESCs. It is possible that Wnt activation in our system
reflects differentiation of at least some of the cells in
culture. Interestingly, B-catenin was not activated in the
FAP2 hESC line, demonstrating the diversity of the PGD-
derived hESC lines that mimics the natural diversity of the
human FAP population.

Taken together, these results demonstrate that our
FAP-ESC lines are a unique human in vitro model with
a mutation predisposition for cancer that can serve to
study the early molecular and cellular events leading
from such a single mutation into colorectal cancer.

In the cancer literature several other mutations like TP53
were also shown to cause a predisposition for cancer. TP53
function is frequently compromised during tumorigenesis
as a result of homozygous somatic mutations, which are
seen in more than 50 % of human cancers [47]. Single-copy
mutation in TP53 has been implicated as the driver muta-
tion for chemotherapy failure and poor prognosis in several
specific cancers ([48—51]. Amir 2015 have recently shown
that mutant clones of hESCs containing a single-copy dele-
tion of TP53 exhibit significantly increased proliferation,
enhanced colony formation and decreased levels of apop-
tosis upon exposure to chemotherapy drugs [52]. This
study show that similarly, single-copy mutation that is
present in the FAP1-hESCs may be sufficient for initiating
cellular changes associated with tumorogenesis.

Using CRISPR/Cas9 genome engineering we are cur-
rently inducing mutations in the second copy of the
APC gene as found in human CRC, mimicking normal
progression of the disease. Using these innovative ap-
proaches with the FAP-hESCs studies here, will enable
us to study in vitro, in a human based model, the earliest
cellular and molecular events directly caused by the
inactivation of APC and how this might lead to cancer
initiation in otherwise normal cells. Furthermore, the de-
velopment of an in vitro model system to study CRC
from its earliest stages onward could greatly accelerate
efforts toward the development of therapeutics and pro-
vide a platform for testing preventative strategies.

Additional files

Additional file 1: Figure S1. (corresponding to Fig. 2). Confirmation of
the APC germline mutation in FAP2 hESCs. (A) Amplification of the
IVS14 4+ 1 G > A germline mutation area (178 bp) in the FAP2 line and in
the WT hESC line. The BstNI differs between the WT allele (cut into 155 bp
lengths) and the mutated allele (uncut 178 bp). (B) The mutation (IVS14 +
1G> A) and 6 polymorphic markers flanking the mutation area D552051
and another five markers designed by us (M11, M1, M4, M14, M15) are
shown in FAP2 hESCs that inherited the mutated APC allele from the
affected father (mutated allele in red, normal alleles in black). (TIF 1990 kb)

Additional file 2: Figure S2. (corresponding to Fig. 3). Characterization
of the FAP2 hESC line. (A) A colony of FAP2 cells at p29 with a typical
morphology of hESCs. (B) Karyotype analysis. (C) FACS analysis for the
pluripotent marker SSEA3. (D-F) Immunostaining for the pluripotent markers
(green) Tra-1-60 (D), SSEA-4 (E), OCT4 (F) and the nuclear marker DAPI (blue)
and their overlay. (TIF 1597 kb)

Additional file 3: Figure S3. Western blot analysis of 3-catenin in FAP
and in normal APC hESC lines. (A) Western blot analysis of 3-catenin
expression in FAP1 early (p12), FAP1 high (p82), FAP2 high (p80), HEFX1
high (p45), HUES64 high (p48) and HUES6 high (p53). B-actin served as a
loading control. A representative gel is shown. (B) Densitometry analysis
of three different western blotting experiments compared to the 3-actin
control using the "image J" software. All data were normalized to values
obtained for the HUES6 line. (TIF 1800 kb)
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stem cells; ICM: Inner cell mass; IVF: In-Vitro fertilization; LEF: Lymphoid enhancer
factor; MCR: Mutation cluster region; MEFs: Mouse embryonic fibroblast cells;

PBS: Phosphate buffered solution; PBT: PBS containing 0.1 % Triton;

PGD: Preimplantation genetic diagnosis; SDS-PAGE: SDS-Polyacrylamide
gel electrophoresis; TCF: T-Cell factor; WT: Wild-type

Acknowledgements

Esther Eshkol is thanked for editorial assistance. This manuscript was
designed by Prof. Ben-Yosef in collaboration with Dr. Rosin-Arbesfeld. Nofar
Yedid is a MSc student and was responsible for acquisition of data, analysis
and interpretation of data. Prof. Amit and Dr. Kariv were responsible for
provision of patients, and Dr. Malcov for PGD analysis. Dr. Kalma and Dr.
Caspi helped with acquisition of data, analysis and interpretation of data.

Funding

Source(s) of funding for each author - YN — MSc student in TAU, KY — Stem cell
researcher in TASMC, MM — PGD lab director in TASMC, AA — Director of IVF Unit
in TASMC, KR - Head of Service for Gastrointestinal Malignancies, Department of
Gastroenterology & Liver Disease in TASMC, RAR - PI, Researcher in TAU, BD - P,
Researcher, Director of IVF lab and Wolfe PGD Stem Cell research lab in TASMC.
This study was supported by internal funding of TASMC.

Availability of data and materials
All datasets on which the conclusions of the manuscript rely on, are
presented in the tables and figures that are part of our main manuscript.

Authors’ contributions

All authors have read and approved the manuscript. YN - acquisition of data,
analysis and interpretation of data; manuscript writing; KY - acquisition of
data, analysis and interpretation of data. MM - acquisition of data (PGD for
FAP patients). AA - Provision of patients. KR - Provision of patients, interpretation
of data. CM - acquisition of data, analysis and interpretation of data. R-AR -
conception and design; interpretation of data, manuscript writing; final
approval of manuscript. B-YD - conception and design; interpretation of
data, manuscript writing; final approval of manuscript.

Competing interests
The authors declare that they have no competing interest.

Consent for publication

The families donated their embryos diagnosed by PGD to inherit the mutated
APC allele after signing an informed consent (approved in 04/043) for the
generation of hESC lines and for studying this mutation. The illustration of the
family tree is completely anonymous.

Ethics approval and consent to participate

The Israeli National Ethics Committee (04-043) approved the use of spare
IVF-derived embryos that have been diagnosed by PGD as genetically affected,
for the generation of hESCs and their study.

Author details

'Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv
Sourasky Medical Center, Tel Aviv, Israel. “Department of Cell and
Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel
Aviv, Israel. Department of Clinical Microbiology and Immunology, Tel-Aviv
University, Tel Aviv, Israel. “Departmant of Gastroenterology, Tel-Aviv
Sourasky Medical Center, Tel Aviv, Israel.

Received: 24 September 2015 Accepted: 23 September 2016
Published online: 23 December 2016

References

1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007.
CA Cancer J Clin. 2007;57(1):43-66.

2. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in
cancer. Biochim Biophys Acta. 2003;1653(1):1-24.

3. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn
G, Stevens J, Spirio L, Robertson M, et al. Identification and characterization
of the familial adenomatous polyposis coli gene. Cell. 1991;66(3):589-600.

4. Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional
tumor suppressor gene. J Cell Sci. 2007;120(Pt 19):3327-35.

22.

23.

24.

25.

26.

Page 12 of 13

van Es JH, Giles RH, Clevers HC. The many faces of the tumor suppressor
gene APC. Exp Cell Res. 2001,264(1):126-34.

Skalka N, Caspi M, Caspi E, Loh YP, Rosin-Arbesfeld R. Carboxypeptidase
E: a negative regulator of the canonical Wnt signaling pathway.
Oncogene. 2012.

Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ,
Preisinger AC, Hedge P, McKechnie D, et al. Identification of FAP locus
genes from chromosome 5g21. Science. 1991;253(5020):661-5.

Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, Koyama K,
Utsunomiya J, Baba S, Hedge P. Mutations of chromosome 5921 genes in
FAP and colorectal cancer patients. Science. 1991,253(5020):665-9.

Lamlum H, llyas M, Rowan A, Clark S, Johnson V, Bell J, Frayling |,
Efstathiou J, Pack K, Payne S, et al. The type of somatic mutation at
APC in familial adenomatous polyposis is determined by the site of the
germline mutation: a new facet to Knudson's 'two-hit' hypothesis. Nat
Med. 1999;5(9):1071-5.

Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJ, Leitao CN,
Fodde R, Smits R. The 'just-right' signaling model: APC somatic mutations are
selected based on a specific level of activation of the beta-catenin signaling
cascade. Hum Mol Genet. 2002;11(13):1549-60.

Burt RW, Leppert MF, Slattery ML, Samowitz WS, Spirio LN, Kerber RA, Kuwada SK,
Neklason DW, Disario JA, Lyon E, et al. Genetic testing and phenotype in a large
kindred with attenuated familial adenomatous polyposis. Gastroenterology. 2004;
127(2):444-51.

Nieuwenhuis MH, Vasen HF. Correlations between mutation site in APC and
phenotype of familial adenomatous polyposis (FAP): a review of the literature.
Crit Rev Oncol Hematol. 2007,61(2):153-61.

Rowan AJ, Lamlum H, llyas M, Wheeler J, Straub J, Papadopoulou A, Bicknell
D, Bodmer WF, Tomlinson IP. APC mutations in sporadic colorectal tumors:
A mutational "hotspot" and interdependence of the "two hits". Proc Natl
Acad Sci U S A. 2000,97(7):3352-7.

Smits R, Hofland N, Edelmann W, Geugien M, Jagmohan-Changur S,
Albuguerque C, Breukel C, Kucherlapati R, Kielman MF, Fodde R. Somatic Apc
mutations are selected upon their capacity to inactivate the beta-catenin
downregulating activity. Genes Chromosomes Cancer. 2000,29(3):229-39.

van der Luijt RB, Vasen HF, Tops CM, Breukel C, Fodde R, Meera Khan P. APC
mutation in the alternatively spliced region of exon 9 associated with late
onset familial adenomatous polyposis. Hum Genet. 1995;96(6):705-10.
Walon C, Kartheuser A, Michils G, Smaers M, Lannoy N, Ngounou P, Mertens
G, Verellen-Dumoulin C. Novel germline mutations in the APC gene and
their phenotypic spectrum in familial adenomatous polyposis kindreds.
Hum Genet. 1997,100(5-6):601-5.

Ben-Yehudah A, Malcov M, Frumkin T, Ben-Yosef D. Mutated human
embryonic stem cells for the study of human genetic disorders. Methods
Mol Biol. 2012,873:179-207.

Heyer J, Yang K, Lipkin M, Edelmann W, Kucherlapati R. Mouse models for
colorectal cancer. Oncogene. 1999;18(38):5325-33.

Taketo MM, Edelmann W. Mouse models of colon cancer. Gastroenterology.
2009;136(3):780-98.

Nandan MO, Yang VW. Genetic and Chemical Models of Colorectal Cancer
in Mice. Curr Color Cancer Rep. 2010;6(2):51-9.

Telias M, Segal M, Ben-Yosef D. Neural differentiation of Fragile X human
Embryonic Stem Cells reveals abnormal patterns of development despite
successful neurogenesis. Dev Biol. 2013;374(1):32-45.

Eiges R, Urbach A, Malcov M, Frumkin T, Schwartz T, Amit A, Yaron Y, Eden
A, Yanuka O, Benvenisty N, et al. Developmental study of fragile X syndrome
using human embryonic stem cells derived from preimplantation genetically
diagnosed embryos. Cell Stem Cell. 2007;1(5):568-77.

Frumkin T, Malcov M, Yaron Y, Ben-Yosef D. Elucidating the origin of
chromosomal aberrations in IVF embryos by preimplantation genetic
analysis. Mol Cell Endocrinol. 2008;282(1-2):112-9.

Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of
pluripotency in human and mouse embryonic stem cells through activation
of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med.
2004;10(1):55-63.

Ben-Yosef D, Boscolo FS, Amir H, Malcov M, Amit A, Laurent LC. Genomic analysis
of hESC pedigrees identifies de novo mutations and enables determination of
the timing and origin of mutational events. Cell Rep. 2013;4(6):1288-302.
Ben-Yosef D, Amit A, Malcov M, Frumkin T, Ben-Yehudah A, Eldar I, Mey-Raz
N, Azem F, Altarescu G, Renbaum P, et al. Female sex bias in human
embryonic stem cell lines. Stem Cells Dev. 2011;21(3):363-72.



Yedid et al. BMC Cancer (2016) 16:952

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

Frumkin T, Malcov M, Telias M, Gold V, Schwartz T, Azem F, Amit A, Yaron Y,
Ben-Yosef D. Human embryonic stem cells carrying mutations for severe
genetic disorders. In Vitro Cell Dev Biol Anim. 2010;46(3-4):327-36.

Eiges R, Schuldiner M, Drukker M, Yanuka O, Itskovitz-Eldor J, Benvenisty N.
Establishment of human embryonic stem cell-transfected clones carrying a
marker for undifferentiated cells. Curr Biol. 2001;11(7):514-8.

Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft
GF, Amoroso MW, Oakley DH, et al. Reference Maps of human ES and iPS
cell variation enable high-throughput characterization of pluripotent cell
lines. Cell. 2011;144(3):439-52.

Cowan CA, Klimanskaya |, McMahon J, Atienza J, Witmyer J, Zucker JP,
Wang S, Morton CC, McMahon AP, Powers D, et al. Derivation of embryonic
stem-cell lines from human blastocysts. N Engl J Med. 2004;350(13):1353-6.
Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y, Cowan
CA, Chien KR, Melton DA. Marked differences in differentiation propensity
among human embryonic stem cell lines. Nat Biotechnol. 2008;26(3):313-5.
Malcov M, Naiman T, Yosef DB, Carmon A, Mey-Raz N, Amit A, Vagman |,
Yaron Y. Preimplantation genetic diagnosis for fragile X syndrome using
multiplex nested PCR. Reprod BioMed Online. 2007;14(4):515-21.

Dvash T, Mayshar Y, Darr H, McElhaney M, Barker D, Yanuka O, Kotkow KJ,
Rubin LL, Benvenisty N, Eiges R. Temporal gene expression during
differentiation of human embryonic stem cells and embryoid bodies. Hum
Reprod. 2004;19(12):2875-83.

Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H,
Baker J, Baker D, Munoz MB, Beil S, et al. Screening ethnically diverse human
embryonic stem cells identifies a chromosome 20 minimal amplicon
conferring growth advantage. Nat Biotechnol. 2011;29(12):1132-44.

Avery S, Hirst AJ, Baker D, Lim CY, Alagaratnam S, Skotheim RI, Lothe RA,
Pera MF, Colman A, Robson P, et al. BCL-XL Mediates the Strong Selective
Advantage of a 20g11.21 Amplification Commonly Found in Human
Embryonic Stem Cell Cultures. Stem Cell Rep. 2013;1(5):379-86.

Davidson KC, Adams AM, Goodson JM, McDonald CE, Potter JC, Berndt JD,
Biechele TL, Taylor RJ, Moon RT. Wnt/beta-catenin signaling promotes
differentiation, not self-renewal, of human embryonic stem cells and is
repressed by Oct4. Proc Natl Acad Sci U S A. 2012;109(12):4485-90.

Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka
TP, Thomson JA, Andrews PW. Recurrent gain of chromosomes 17q and 12 in
cultured human embryonic stem cells. Nat Biotechnol. 2004;22(1):53-4.
Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL, Dalton
S, Stice SL. Preserving the genetic integrity of human embryonic stem cells.
Nat Biotechnol. 2005;23(1):19-20.

Logan CY, Nusse R. The Wnt signaling pathway in development and disease.
Annu Rev Cell Dev Biol. 2004;20:781-810.

Kam Y, Quaranta V. Cadherin-bound beta-catenin feeds into the Wnt
pathway upon adherens junctions dissociation: evidence for an intersection
between beta-catenin pools. PLoS One. 2009;4(2), e4580.

Krieghoff E, Behrens J, Mayr B. Nucleo-cytoplasmic distribution of beta-
catenin is regulated by retention. J Cell Sci. 2006;119(Pt 7):1453-63.
Takahashi S, Kubo K, Waguri S, Yabashi A, Shin HW, Katoh Y, Nakayama K.
Rab11 regulates exocytosis of recycling vesicles at the plasma membrane.
J Cell Sci. 2012;125(Pt 17):4049-57.

Hall MJ, Liberman E, Dulkart O, Galazan L, Sagiv E, Shmueli E, Kazanov D,
Hallak A, Moshkowitz M, Figer A, et al. Risk of colorectal neoplasia
associated with the adenomatous polyposis coli E1317Q variant. Ann Oncol.
2009;20(9):1517-21.

Crist RC, Roth JJ, Baran AA, McEntee BJ, Siracusa LD, Buchberg AM. The
armadillo repeat domain of Apc suppresses intestinal tumorigenesis. Mam
Genome. 2010;21(9-10):450-7.

Morishita EC, Murayama K, Kato-Murayama M, Ishizuka-Katsura Y, Tomabechi
Y, Hayashi T, Terada T, Handa N, Shirouzu M, Akiyama T, et al. Crystal
structures of the armadillo repeat domain of adenomatous polyposis coli
and its complex with the tyrosine-rich domain of Samé8. Structure. 2011;
19(10):1496-508.

Verlinsky Y, Strelchenko N, Kukharenko V, Rechitsky S, Verlinsky O, Galat V,
Kuliev A. Human embryonic stem cell lines with genetic disorders. Reprod
BioMed Online. 2005;10(1):105-10.

Brosh R, Rotter V. When mutants gain new powers: news from the mutant
p53 field. Nat Rev Cancer. 2009;9(10):701-13.

Shindiapina P, Brown JR, Danilov AV. A new hope: novel therapeutic
approaches to treatment of chronic lymphocytic leukaemia with defects in
TP53. Br J Haematol. 2014;167(2):149-61.

50.

52.

Page 13 of 13

Puiggros A, Blanco G, Espinet B. Genetic abnormalities in chronic
lymphocytic leukemia: where we are and where we go. BioMed Res Int.
2014;2014:435983.

Halldorsdottir AM, Lundin A, Murray F, Mansouri L, Knuutila S, Sundstrom C,
Laurell A, Ehrencrona H, Sander B, Rosenquist R. Impact of TP53 mutation
and 17p deletion in mantle cell lymphoma. Leukemia. 2011;25(12):1904-8.
Teoh PJ, Chung TH, Sebastian S, Choo SN, Yan J, Ng SB, Fonseca R, Chng
WIJ. p53 haploinsufficiency and functional abnormalities in multiple
myeloma. Leukemia. 2014;28(10):2066-74.

Amir H. Spontaneous Single-Copy Deletion of chr17p13.1 in Human
Embryonic Stem Cells Improves Cell Survival By Decreasing Expression of
TP53. In: Oral presentation. San Francisco: SRI 62nd Annual Meeting; 2015.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Derivation and culture of hESC lines carrying APC mutations
	Immunofluorescence
	Western blot analysis
	Luciferase reporter gene assay
	Single-cell PCR for analyzing APC mutations in FAP patients
	Sequencing of the APC gene

	Results and Discussion
	Derivation of FAP-hESC lines with different mutations in the APC gene
	Characterization of FAP hESC lines as pluripotent stem cells
	Analyzing the effect of extended culturing on FAP-hESCs and APC
	DNA sequencing of the MCR region and hot spot regions of the APC gene

	Conclusions
	Additional files
	show [abbrev]
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

