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Abstract

Background: The related tumour suppressor proteins Deleted in Colorectal Cancer (DCC) and neogenin are absent
or weakly expressed in many cancers, whereas their insertion into cells suppresses oncogenic behaviour. Serine
proteases influence the initiation and progression of cancers although the mechanisms are unknown.

Methods: The effects of environmental (bacterial subtilisin) and endogenous mammalian (chymotrypsin) serine
proteases were examined on protein expression in fresh, normal tissue and human neuroblastoma and mammary
adenocarcinoma lines. Cell proliferation and migration assays (chemoattraction and wound closure) were used to
examine cell function. Cells lacking DCC were transfected with an ectopic dcc plasmid.

Results: Subtilisin and chymotrypsin selectively depleted DCC and neogenin from cells at nanomolar concentrations
without affecting related proteins. Cells showed reduced adherence and increased migration, but after washing they
re-attached within 24 h, with recovery of protein expression. These effects are induced by chymotryptic activity as they
are prevented by chymostatin and the soybean Bowman-Birk inhibitor typical of many plant protease inhibitors.

Conclusions: Bacillus subtilis, which secretes subtilisin is widely present in soil, the environment and the intestinal
contents, while subtilisin itself is used in meat processing, animal feed probiotics and many household cleaning agents.
With chymotrypsin present in chyme, blood and tissues, these proteases may contribute to cancer development by
depleting DCC and neogenin. Blocking their activity by Bowman-Birk inhibitors may explain the protective effects of a
plant diet. Our findings identify a potential non-genetic contribution to cancer cell behaviour which may explain both
the association of processed meats and other factors with cancer incidence and the protection afforded by plant-rich
diets, with significant implications for cancer prevention.
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Background

Expression of the tumour suppressor proteins Deleted in
Colorectal Cancer (DCC) or the structurally related pro-
tein neogenin is reduced in many cancers, the extent of
loss compared with control tissue correlating with degree
of metastasis and with poor patient prognosis [1-8].
Although early work on DCC revealed genetic abnor-
malities such as frequent Loss of Heterozygosity, out-
right mutations have been encountered less frequently
than expected, leading to suggestions that functional
abnormalities of the protein may often be non-genetic
in origin [9, 10]. Experimental inhibition of DCC can
increase proliferation or migration in different cell types
[11-14] while, conversely, insertion of the dcc gene into
cells inhibits proliferation, invasion and metastatic
potential [13-17].

Similarly, low levels of the structurally related protein
neogenin have been linked with an increased propensity
to develop cancer [18-22], while over-expression induces
apoptosis [22, 23]. Reduced neogenin expression has a
particularly prominent association with cancers in the
CNS and mammary tissues [21, 24—26].

Both DCC and neogenin are involved in defining the
balance between cell survival or death and between differ-
entiation and de-differentiation towards an un-regulated,
hyper-proliferative and potentially oncogenic phenotype
[27-29]. They are receptors for the ligand netrin, an extra-
cellular, secreted protein. In the absence of netrin, DCC or
neogenin activate cell death programmes including
apoptosis, leading to the concept that they are “depend-
ence receptors”, regulating cell viability depending on
the ambient concentration of netrin [30-33]. If cells es-
cape from their home tissue by damage, inflammation
or natural turnover, the reduced netrin concentration
unleashes dependence receptor-induced cell death, pre-
venting uncontrolled proliferation in distant tissues. If
DCC or neogenin are absent, however, this mechanism
cannot operate and proliferation or migration will
proceed unchecked [34].

Serine proteases are present in relatively high concentra-
tions in many cancers and can influence cell proliferation
and migration [27, 28, 35—41] while serine protease in-
hibitors can suppress tumour invasion and metastasis
[42-45]. Specific sites and mechanisms of action, how-
ever, remain unclear.

We now report a major link between these two groups
of compounds, showing that nanomolar concentrations
of the serine protease subtilisin, a chymotryptic protease
secreted by the common environmental bacterium Bacillus
subtilis and related organisms, and mammalian chymo-
trypsin itself, deplete the levels of DCC and neogenin in
cells. Expression of a third dependence receptor targeted
by netrin, unco-ordinated-5C [46], is also affected but to a
lesser degree than DCC or neogenin.
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B. subtilis is present in soil, while subtilisin itself is
used to increase tenderness and flavour in some processed
meat products and is present in many cleaning materials.
Since orally acquired live bacteria and spores of B. subtilis
can survive in the intestine of humans and other mam-
mals [47], and the concentrations of chymotrypsin in
tissues and intestinal chyme are similar to those studied
here, their ability to remove DCC and neogenin could
represent a significant factor in the effects of diet and
environment on cancer susceptibility.

We also show that Bowman-Birk inhibitors present in
many food crops including fruit, vegetables and cereals
[48-51] can block these effects of serine proteases, pro-
viding a potential explanation of the protective effects of
a plant-rich diet. The removal or reduction of subtilisin
in the human food chain and cleaning products, and a
plant-based diet rich in Bowman-Birk inhibitors, might
substantially reduce the worldwide incidence of several
forms of cancer.

Methods

Tissue slices

Initial experiments were performed using sections of
adult rat hippocampus which can be maintained for sev-
eral hours without the need for serum or other additives.
These slices are exactly similar to those used routinely
for the electrophysiological recording of synaptic poten-
tials [52, 53]. Briefly, male Wistar rats (100-150 g from
Harlan Olac, UK) were killed using urethane (5 ml/kg)
and cervical dislocation. The brain was removed into ice-
cold artificial cerebrospinal fluid (aCSF) of composition
(in mM): NaCl 115; KH,PO, 2.2; KCl 2; MgSO, 1.2;
NaHCOj; 25; CaCl, 2.5; glucose 10, gassed with 5 % CO,
in air. The hippocampi were chopped into 450pm
transverse slices and allowed to recover for 1-2 h, when
compounds were added for 4 h.

Immunoblotting

Western blots were generated as described previously
[52, 54, 55]. Briefly, tissue slices were homogenised in
RIPA buffer with a Roche complete protease inhibitor
tablet and centrifuged (18000 ¢ 5 min, 4 °C). Supernatant
protein concentration was determined using the Bio-Rad
assay (Bio-Rad, Hemel Hempstead, UK) and normalised
to 10 pg. The protein samples were subsequently loaded
onto NuPAGE Novex 4-12 % Bis-Tris (1.0 mm) gels and
run at 175 volts for 70 min. The separated proteins were
blotted onto Invitrolon polyvinylidene difluoride mem-
branes (35 V, 75 min) after which membranes were rinsed,
blocked for 1 h in a milk solution in Tris-buffered saline
containing 0.05 % Tween (TBST), followed by overnight
incubation at 4 °C with primary antibody. After further
washing and treatment with horseradish peroxidase
(HRP) conjugated secondary antibody, blots were washed
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3 times and visualised using a Pierce Enhanced Chemilu-
minescence 2 detection kit.

Western blot analysis was carried out using the follow-
ing primary antibodies:-

From Santa Cruz, Insight Biotechnology, Wembley, UK:-
Neogenin (goat polyclonal, sc-6536, 1:1000 dilution);
Unc5A (goat polyclonal, sc-67902, 1:1000 dilution);
Unc5C (goat polyclonal, sc-54442 1:500 dilution); Shh
(goat polyclonal, sc-1194, 1:1000 dilution); RhoA (mouse
monoclonal, sc-418, 1:5000 dilution); From BD Pharmingen,
Oxford, UK):- DCC (mouse monoclonal, 554223, 1:5000
dilution).

RhoA was included in all experiments as the standard
loading and transfer control since in motile and invasive
cells the classical controls such as actin and tubulin, as-
sociated with the cytoskeletal involvement in movement,
are inappropriate [56, 57].

Secondary HRP-conjugated antibodies were used at a
1:5000 dilution: donkey anti-goat HRP (sc-2020), goat
anti-mouse (sc-2005), and donkey anti-rabbit HRP (sc-
2313) (Santa Cruz, Insight Biotechnology, Wembley,
UK). The blots were quantified using Image J [54, 55, 58].

Immunocytochemistry

Cells were passaged into 24-well plates containing poly
D-lysine (50 pg/ml) coated glass coverslips and after ex-
perimental observation were fixed with 4 % paraformalde-
hyde (PFA), rinsed and incubated overnight in primary
antibody. After further rinsing with PBS, cells were incu-
bated in the appropriate secondary fluorescent antibody at
1:200 dilution in PBS with 0.3 % Triton X (1 h) followed
by rinsing and mounting the coverslips with Vectashield®
fluorescent mounting medium.

Primary antibodies used were: DCC 1:500 (BD Pharmin-
gen, Oxford, UK, #554223); doublecortin (DCX) 1:200
(Santa Cruz, California; #SC8066), neogenin 1:500 (Santa
Cruz, California; #SC6536).

Secondary antibodies (all 1:200) were AlexaFluor 594
goat anti-mouse #A11032; AlexaFluor 488 goat anti-rabbit
#A11008; AlexaFluor rabbit anti-goat #A11078 (Life
Technologies, Paisley, UK).

Cell cultures

All cells were maintained using the procedures and
media recommended by the supplier ECACC (Wiltshire,
UK). The SH-SY5Y cell line, #94030304) is an adherent,
human neuroblastoma cell line obtained at a passage num-
ber of 17. This cell line was only used up to passage 30 as
beyond this the cells lose their neuronal characteristics.
Cells were plated at an initial density of 5 x 10* cells/ml
unless otherwise stated. This cell line was passaged
once per week and fed every 2-3 days with a 50 %
media change.
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The MDA-MB-231 cell line is an adherent, human
Caucasian breast adenocarcinoma cell line purchased at
passage 40 (ECACC #92020424) and used for no more
than 30 further passages. Cells were plated at an initial
density of 1 x 10> cells/ml unless otherwise stated and
were passaged twice per week and fed every 2-3 days,
when required, with a 50 % media change.

The MCEF-7 cell line is an adherent, human Caucasian
breast adenocarcinoma cell line purchased at passage 15
(ECACC #86012803) and used for no more than 30 pas-
sages following resuscitation. Cells were plated at an initial
density of 1 x 10> cells/ml unless otherwise stated. These
cells were passaged once per week and fed every 2—-3 days
with a 50 % medium change.

Human Caucasian colon adenocarcinoma (CaCo-2) cells
(ECACC #86010202) were purchased at passage number
45 and were used for up to 20 passages. Cells were plated
at an initial density of 1 x 10° cells/ml unless otherwise
stated and were passaged once per week and fed every 2—3
days with a 50 % media change.

Replating and recovery

MDA-MB-231 cells were plated at a density of 3x10°
cells/ml in 6-well plates and were allowed to attach to
the plates for 24 h before the addition of subtilisin
(1 uM). After 24 h, detached cells were collected, washed
and replated in fresh medium, then left for 24 h before
harvesting for Western blotting. Cells were photographed
at x20 magnification on an Olympus IX50 inverted micro-
scope attached to an Olympus DP50 camera.

Agarose spot migration

Based on a published method [59], low melting point
agarose was prepared and human netrin-4 (R & D sys-
tems, #1254-N4) was added to 1000 ng/ml. A spot of
10 pl of LMA solution was pipetted into the centre of
each well and allowed to set for at least 1 h at 4 °C. Cells
were passaged and transferred to the spot-containing
wells for 4 h at 37 °C, when the medium was changed to
contain 0.1 % serum. After 24 h, six photographs were
taken of each well at x4 magnification, with a minimum
of 4 different experiments from 4 different passages.
Image ] (http://rsb.info.nih.gov/ij/) was used to analyse
cell distribution in the photographs and the average num-
ber of cells per spot was calculated for each experiment.

Wound healing assay

Cells were plated at a density of 2 x 10° cells/ml in
6-well plates which had been marked with a reference
grid. A confluent monolayer formed in approximately
3 days, when a scratch wound was made down the
centre of each well [60, 61]. The cells were then washed
and placed in normal (10 % serum) medium. Photographs
(x4 magnification) were taken immediately (0 h) and at
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72 h at 3 points along the wound using an Olympus DP50
camera attached to an Olympus IX50 inverted microscope.
The score grid ensured that the same area of cells was cap-
tured in each photograph. Experimental treatments were
started after the initial photograph, and wound closure was
quantified by measuring open wound area, using T-scratch
software [62]. When subtilisin was added, photographs
were also taken at 24 h and 48 h.

Morphology of SH-SY5Y cells

To examine morphological changes in SH-SY5Y cells,
passaged cells were grown in medium containing 1 %
ECS for 3 days to induce neurite formation. Chymotryp-
sin (100nM) was added on days 1 and 3. On day 6, cells
were rinsed, fixed with 4 % paraformaldehyde and dehy-
drated followed by staining with filtered Cresyl Violet
for 10 min. From three experiments 300 cells were ex-
amined, using 50 control cells and 50 treated cells from
each group. Cells were photographed (x20) and the im-
ages were subsequently analysed using Image J [63] to
determine the number and length of neurites per cell, the
number of neurite branch points and the soma diameter.

Proliferation (bromodeoxyuridine BrdU assay)
Proliferation was assessed in the MCF-7 cells using a
colorimetric BrdU ELISA kit (ab126556, Abcam,
Cambridge, UK). Each assay was performed in triplicate.
MCE-7 cells were plated at 2x10° cells/ml in 96-well plates
and left to attach for 24 h before treatment with subtilisin
(30, 100 and 300nM) or o-chymotrypsin (300 and
1000nM) for 24 h. BrdU reagent was added for the final
2, 6 and 24 h of incubation after which the cells were
fixed and the DNA denatured. Briefly, cells were washed,
incubated with detector antibody (1 h), washed again and
incubated with peroxidase conjugated secondary antibody
(1 h). After washing, cells were incubated with TMB per-
oxidase substrate and a stop solution was added before
reading in a microplate reader (using a dual wavelength of
450/550 nm). Proliferation was expressed as the mean
optical density of BrdU positively labelled cells/BrdU
negative cells.

Transfection of DCC plasmid

A pCMV DCC plasmid (#16459) was obtained from
Addgene courtesy of Dr. B. Vogelstein. This plasmid
contains the Cytomegalovirus (CMV) promoter, a strong
constitutive promoter, the DCC gene flanked by 2 Xhol
restriction sites, polyadenylation signal (Poly A), Ampicillin
resistance gene and Neomycin resistance gene. DH5alpha
E.coli cells containing the plasmid were grown on agar
plates containing 75 pg/ml ampicillin. Individual colonies
were inoculated into Luria-Bertani medium containing
ampicillin and grown overnight. The remaining bacterial
medium was used to extract pCMV DCC plasmid DNA
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using Pure yield plasmid miniprep system (A1223, Pro-
mega UK) following manufacturer’s instructions. Trans-
fection was performed in SH-SY5Y and MCF-7 cells
passaged 24 h prior to transfection. To promote the ef-
ficiency of transfection, cells were plated at a density
sufficient to result in approximately 60-70 % confluency
24 h after passage. At this time, the medium was removed
from each well and replaced with antibiotic free medium
for approximately 1 h. The transfection reagent Lipofecta-
mine 2000 was used for successful transfection of the
DCC plasmid according to the manufacturer’s instructions
using a ratio of 1:1 DNA: Lipofectamine 2000. Briefly,
DNA (1000 ng) was combined with Lipofectamine 2000
in the presence of Optimem and then incubated at
room temperature for 15 min before adding to cells in
antibiotic-free medium. Approximately 4-5 h after the
introduction of DNA, medium was removed and replaced
with medium containing antibiotics and test agents as re-
quired. Cells were either harvested for Western blot ana-
lysis or used for further experiments 48 h after the initial
introduction of the DCC plasmid.

Data analysis and statistics

Comparisons between two experimental samples were
made using a two-tailed Students ¢ test. Statistical compari-
sons were made between groups of samples using ANOVA
followed by the Dunnet post hoc test to compare several
datasets with a common control or the Bonferroni post hoc
multiple comparison test for selected datasets, using Instat
3.0 software. A probability value of 0.05 was adopted as the
criterion for significance.

Results

In addition to DCC and neogenin several proteins have
been examined in this study that are functionally related
to them but which are structurally dissimilar. This
comparison allowed assessment of the selectivity of the
proteases on proteins and pathways which interact with
DCC or neogenin. These proteins include unco-ordinated-
5C (Unc-5C), another dependence receptor for netrin
which can complex with DCC and which is absent from a
variety of cancers [64—67]; Unc-5A: to assess the selectivity
of serine proteases for unc5 family members; the small
GTPase enzyme RhoA [68, 69]; Sonic hedgehog (Shh), a se-
creted protein involved in embryonic morphogenesis, cell
location and polarisation [70, 71] and which modulates the
expression of neogenin and netrin [72].

An inverse, concentration-related effect of bacterial
subtilisin was observed on the expression of both DCC
and neogenin in tissue slices (Fig. 1a,b). A weaker effect
was noted on the other netrin receptor unc-5C (Fig. 1c)
but no change was seen in the expression of Unc-5A
(Fig. 1d), sonic hedgehog (Shh, Fig. 1e) or RhoA (Fig. 1f).
To confirm that these effects of subtilisin were mediated
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Fig. 1 Effects of subtilisin on protein expression. Protein expression in extracts of brain slices is summarised as image densities (arbitrary units) of
Western blots quantified using Image J for the effects of subtilisin on (a) DCC (b) neogenin, (€) Unc-5C, (d) Unc-5A, (e) Shh and (f) RhoA expression.
Sample blots are shown below each chart (a-c), which illustrate the concentration-dependent effects of subtilisin and the selectivity of its effects.
Scheme (g) is a graphic summary of the experimental protocol for these and subsequent experiments. Panels (h) and (i) summarise the
blockade by AEBSF (100 uM, 4 h) of the depletion of DCC and neogenin by subtilisin (sub, 30nM), confirming the role of serine protease activity.
Panel (j) summarises the effects of subtilisin (1, 3 and 10nM) on the expression of DCC (chart and blot) and on unc-5C, Shh and RhoA (blots) after 7 days
in cultures of SH-SY5Y cells. Human colorectal cancer CaCo-2 cells showed a similar susceptibility with reduced expression of neogenin and unc-5C
(k) but no change in RhoA or Shh after 7days in subtilisin at 10 or 30nM. Bars represent mean + semean (n = 4). *P < 0.05; **P < 0.01; ***P < 0.001
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by serine protease activity it was shown, using the protocol
in Fig. 1g, that they were prevented by treatment with
the general serine protease inhibitor 4-(2-Aminoethyl)
benzene-sulfonyl fluoride hydrochloride (AEBSF) (Fig. 1h, i).

The loss of dependence receptor proteins was con-
firmed using cell cultures which lack the tissue barriers
and non-selective binding sites that exist in intact tissue.
When added to SH-SY5Y cultures for 7 days, subtilisin
induced a significant loss of DCC expression at concen-
trations of only 1nM (Fig. 1j). The selectivity of action
was retained and no changes were seen in unc-5C, Shh
or RhoA (Fig. 1j).

The ability of subtilisin to deplete neogenin or DCC is
not confined to neural tissues. Human CaCo-2

colorectal cancer cells do not express DCC but levels of
both neogenin and unc-5C were reduced by subtilisin at
30nM (Fig. 1k) with no effect on RhoA or Shh (Fig. 1k).
Consistent with the classification of subtilisin as a chy-
motryptic serine protease, chymotrypsin itself also de-
pleted neogenin and DCC in brain tissue (Fig. 2a, b)
with a weaker effect on unc-5C (Fig. 2c) and no effect
on Unc-5A (Fig. 2d), Shh (Fig. 2e) or RhoA (Fig. 2f). On
SH-SY5Y neuroblastoma cells, chymotrypsin produced a
similarly selective loss of DCC expression at concen-
trations similar to those active in intact adult tissue,
with approximately 50 % loss of DCC at 300nM. The
chymotrypsin-like enzyme cathepsin G, secreted by
neutrophils and mast cells as part of the inflammatory
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Fig. 2 Effects of chymotrypsin on protein expression. Protein expression in extracts of brain slices is summarised as image densities (arbitrary units) of
Western blots quantified using Image J for the effects of chymotrypsin on (a) neogenin, (b) DCC, (c) Unc-5C, (d) Unc-5A, (e) Shh and (f) RhoA
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depletion of DCC by the chymotryptic protein cathepsin G in tissue slices. Panels (h) illustrate the agarose spot assay to study the migration
of SH-SY5Y cells towards netrin-4. The spot border is indicated by the dotted line. The accumulation of cells on the outside of a normal spot
is shown in the top micrograph (control), with the penetration of cells into the spot induced by netrin-4 (netrin, middle micrograph) and reduced
penetration in the presence of chymotrypsin (netrin + CT 100nM). The number of cells entering the spots is summarised in chart (i). Photograph (j) is
of SH-SY5Y cells used for the measurement of neurite growth after staining with cresyl violet, with bipolar and multipolar cells visible. The
accompanying bar charts summarise the measurements of soma diameter (k), neurites per cell (I), mean neurite length (m) and the proportion of
neurites with primary branching (n). Bars in charts (@) to (i) represent mean + semean (n =4). *P < 0.05; **P < 0.01; ***P < 0.001 relative to the control

bar. Calibration bars: 200 um in (h), 25 um in (j)

response, showed a similar effect, reducing DCC pro-
tein expression at concentrations of 10nM or above
(Fig. 2g).

Cell migration

In addition to its role in cell survival, netrin provides a
chemoattractive stimulus for the movement of cells. The
attraction is mediated by netrin binding to DCC or neo-
genin and is increased by over-expression of these recep-
tors and prevented in some tissues by DCC antibodies
or anti-sense RNA [73, 74].

Cell migration studies using netrin incorporated into
an agarose gel spot, showed that SH-SY5Y neuroblast-
oma cells moved towards netrin (Fig. 2h,i) over a period
of 24 h [59]. Since the levels of DCC are low in cancer-
derived cell lines, netrin-4 was used in these experiments,

since this is an effective ligand for neogenin, which is
abundant in SH-SY5Y neuroblastoma cells. In the pres-
ence of netrin-4, the number of cells reaching the agarose
spot increased approximately 10-fold relative to control
wells (Fig. 2i). The addition of chymotrypsin at 3nM pro-
duced a small enhancement of migration, while at 10nM
or above chemotaxic migration was inhibited (Fig. 2i) con-
sistent with previous data [36] and with its suppression of
DCC and neogenin expression. The initially increased at-
traction probably results from the relative amounts of
DCC and neogenin in the cells since neogenin is a target
of both netrin and the Repulsive Guidance Molecules.
Since chymotrypsin is slightly more potent in reducing
neogenin than DCC expression (Fig. 2a,b), this would un-
mask the net attractive effect of DCC in the absence of
neogenin.
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These effects of chymotrypsin were associated with
changes in neuronal morphology. DCC and neogenin are
involved in neurite or growth cone formation and collapse
essential for axonal guidance [74-76]. When exposed to
chymotrypsin at 100nM for up to 72 h, SH-SY5Y cells
(Fig. 2j) exhibited a significant reduction in soma diameter
(Fig. 2k), the number of neurites per cell (Fig. 2I) and the
mean length of neurites (Fig. 2m). There was also a trend
to increase neuritic branching (Fig. 2n). Such changes in
neuritic parameters are consistent with the proposed in-
volvement of DCC and neogenin in the regulation of
neurite elongation and branching [73, 77, 78] and support
the concept that the depletion of dependence receptors by
subtilisin and chymotrypsin has the expected functional
consequences.

Wound healing assays

Migration was also studied using MCEF-7 cells in the
wound or scratch assay [60, 61], MCE-7 cells exhibit a
lower basal level of motility than MDA-MB-231 cells
and the latter line includes significant numbers of float-
ing cells which complicate interpretation of the results.
At 100nM, subtilisin increased the rate of closure of the
scratch wound compared with control cells over 72 h
(Fig. 3a-c). Protein expression in these cells showed sen-
sitivity to subtilisin and chymotrypsin similar to that of
the adult brain tissue and neuroblastoma cells, with sub-
tilisin at 100nM producing a substantial reduction in
neogenin expression (Fig. 3d) but no change of unc-5C
or RhoA expression (Fig. 3e, f).

Chymotrypsin showed a similar ability to facilitate
wound closure over 72 h (Fig. 3g-i). As in the preceding
work, chymotrypsin (1 pM) was less effective than subtili-
sin but still reduced neogenin expression by 40 % com-
pared with control cultures after 48 h exposure (Fig. 3j)
while having no effect on unc-5C (Fig. 3k) or RhoA
(Fig. 30).

The involvement of chymotryptic protease activity in
the effect of subtilisin was confirmed by showing that
chymostatin, the most selective chymotryptic inhibitor
available, could prevent the facilitation of wound closure
by subtilisin (Fig. 3m-p).

Similarly, the Bowman-Birk inhibitor from soybean
(see below) at the relatively low concentration of
50 uM was able to block completely the facilitation of
wound closure by chymotrypsin (Fig. 3q-t). This con-
centration was used since higher levels can directly
affect cell migration, complicating interpretation of the
results. Even at this low concentration, however, the
inhibitor showed a strong tendency to block the pro-
motion of wound closure produced by subtilisin, which
just failed to reach statistical significance (P =0.06)
(data not shown).
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Cell proliferation was examined using the bromodeox-
yuridine (BrdU) uptake method. After 2 h, 6 h or 24 h
exposure neither subtilisin (30 or 100nM) nor chymo-
trypsin (300 or 1000nM) had any effect on the prolifera-
tion of MCEF-7 cells (Fig. 4), indicating that changes in
proliferation could not account for their efficacy on
wound healing.

Reversibility of cell behaviour

An important property of many cells in culture is anoikis —
the induction of apoptosis when they become detached
from a tissue or artificial substratum [79]. This behaviour
mimics the in vivo propensity of cells to undergo apoptosis
if they become detached from their home tissue, a
phenomenon thought to protect organisms by preventing
the migration of potentially abnormal cells to a distant site
where they may become overtly oncogenic and establish
metastases. To examine the effects of serine proteases we
used the relatively aggressive human breast adenocarcin-
oma cell line of MDA-MB-231 cells. These cells normally
exist as a mixture of flattened, multipolar or spindle-
shaped adherent cells (Fig. 5a, b(i)-(iv)) with some detached
and floating cells. When subtilisin was added to cultures
for 24 h at concentrations of 1 uM, a large proportion of
cells detached from the culture plate and appeared as
spherical cells floating in the medium, mostly as individual
cells (Fig. 5b(v)), which could be maintained for up to 24 h
(in 15 % serum). When washed in fresh medium and trans-
ferred to new wells within 24 h, the cells re-attached once
more and then grew and divided as apparently normal
cells, reforming the normal mixture of flat and rounded,
adherent cultures (Fig. 5b(vi)). These observations indicate
that the exposure of cells to subtilisin for 24 h did not pro-
duce irreversible cell toxicity, permanent damage or death
and that the loss of adhesion was an acute and reversible
phenomenon.

These observations were further supported by an
examination of protein expression. In the presence of
subtilisin there was a loss or profound reduction in the
expression of neogenin and unc-5C, with preservation of
RhoA levels (Fig. 5¢), but after washing and re-plating,
protein expression recovered to their original levels within
24 h, in parallel with the recovery of normal cell morph-
ology (Fig. 5¢c). These results agree with previous data
showing that mutational silencing or deletion of DCC or
neogenin using siRNA techniques can produce a loss of
cell adhesion leading to detachment [80, 81] supporting
the concept that biologically relevant serine proteases can
have the same net effects as this highly selective experi-
mental inactivation protocol. Most importantly, the re-
versibility of cell detachment and dependence receptor
depletion by serine proteases reinforces the potential rele-
vance of our observations to cancer cell dispersion and
formation of metastases.
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Fig. 3 Effects of serine protease inhibitors on wound closure. At 100nM subtilisin promotes the closure of a scratch wound in MCF-7 cultures between
0 hand 72 h relative to the closure rate in untreated cells (a, b). The quantified scratch closure data are summarised in chart (c). The effect of subtilisin
at 30 and 100nM is shown on the expression of (d) neogenin, (e) unc-5C, (f) RhoA in the same cell line of MCF-7 breast adenocarcinoma cells.
Chymotrypsin (1 uM) shows a similar ability to facilitate wound closure (g, h) as summarised in panel (i). Chymotrypsin has a similar but weaker
action on neogenin expression (j) without affecting unc-5C (k) or RhoA (I). In separate experiments (m) the rate of wound closure is again facilitated
by subtilisin (n) whose effect is blocked by the chymotryptic protease inhibitor chymostatin (o, p). Similarly the Bowman-Birk inhibitor from soybean
was able to completely block the facilitation of cell migration produced by chymotrypsin (g-t). Bars represent mean + se.mean of the percentage
change in wound area (n = 3-4). **P <001, ***P < 0.001 relative to the control bar. Calibration bars: 200 um

Down-regulation of ectopic DCC

While tissue slices expressed high levels of DCC and
neogenin, the cancer-derived cell lines showed little or
no intrinsic DCC expression. We therefore inserted the
dcc gene into SH-SY5Y and MCEF-7 cells to generate a
population of transiently transfected cells which exhib-
ited much stronger fluorescence than control cells
(Fig. 6a-c). Western blots confirmed the very low levels
of DCC in naive cells with approximately 25-fold higher
expression in the transfected cells (Fig. 6d). Levels of
neogenin and RhoA were not different between control
and transfected cells (Fig. 6e, f) confirming that they
were not directly affected by the introduction of DCC.
The addition of subtilisin (30 or 100nM for 48 h)
showed a clear suppression of both ectopic DCC expres-
sion (Fig. 6d) and of endogenous neogenin (Fig. 6e) with
no effect on RhoA (Fig. 6f). Comparable results were ob-
tained using transfected MCF-7 cells, with a reduction
in ectopic DCC expression at 100nM subtilisin (Fig. 6g),
but no change in RhoA (Fig. 6h).

Bowman-Birk and other inhibitors

Families of Bowman-Birk serine protease inhibitors have
been isolated from a wide range of plants, including the
soybean inhibitor from Glycine max [48—51]. They have

MCF-7 cells Oz
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Fig. 4 Proliferation of MCF-7 cells. Using the BrdU for cell proliferation,
neither subtilisin 30 or 100nM, nor chymotrypsin 300 or 1000nM had
any effect on the proliferation of MCF-7 breast cancer cells after 2, 6 or
24 h incubation with the protease (n = 3)

anti-cancer properties associated with their inhibitory
activity against trypsin-like and chymotrypsin-like enzymes
[51, 82]. We found that the soybean protease reduced sig-
nificantly the loss of DCC produced by chymotrypsin
(Fig. 7a) without affecting the expression of other proteins
such as neogenin, RhoA or Shh (Fig. 7b-d).

To examine the effect of the soybean Bowman-Birk in-
hibitor on a functional system, it was tested on the wound
invasion assay. As noted above and shown in Fig. 3q-t, the
inhibitor (50 pM) blocked completely the facilitation of
wound closure produced by chymotrypsin (1 pM) and
substantially reduced the effect of subtilisin (P = 0.06).

Although DCC and neogenin can be metabolised by
y-secretase activity [83—-85], the y-secretase inhibitor
N-[N-(3,5-difluorophenacetyl-L-alanyl)]-(S)-phenylglycine-
t-butyl ester (DAPT; 5 pM) did not modify the basal
expression of DCC or neogenin or their depletion by
chymotrypsin (Fig. 7a-d). The bacterial chymotryptic in-
hibitor chymostatin blocked the effects of chymotrypsin
and subtilisin on DCC (Fig. 7e) and neogenin (Fig. 7f). Se-
lective inhibitors of proteasomal chymotryptic activity —
carfilzomib [86—88], epoxomicin (epox, 1 pM) [89, 90]
and carbobenzoxy-Leu-Leu-leucinal (MG132, 10 uM)
[91] - did not affect DCC or neogenin expression
(Fig. 7g-j) although carfilzomib did reduce significantly
the effect of chymotrypsin.

Another endogenous serine protease, trypsin, also re-
duced the expression of neogenin (Fig. 7k) and DCC,
(Fig. 71) with no significant effects on Unc-5C, Unc-5A,
Shh and RhoA expression (Fig. 7m). These effects were
not prevented by N-a-tosyl-L-lysine-chloromethyl-ketone
(TLCK) - an inhibitor of trypsin-like enzymes, or the
general inhibitor of chymotryptic proteases, N-tosyl- L-
phenylalanyl-chloromethyl-ketone (TPCK) (Figs. 7Kk, 1).

TPCK, but not TLCK, blocked the effect of chymotrypsin
on neogenin expression (Additional file 1: Figure Sla, b)
and increased DCC to a level not significantly different
from controls (Additional file 1: Figure S1b). Neither
TPCK nor TLCK blocked the effects of subtilisin on
DCC or neogenin (Additional file 1: Figure Slc, d) indi-
cating that subtilisin is atypical, despite its blockade by
chymostatin (see Fig. 7e, f).

Although DCC and neogenin can also be degraded by
matrix metalloprotease-9 (MMP-9) [83, 84, 92], a
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Fig. 5 Reversibility of subtilisin. Panel (a) illustrates the experimental paradigm. MDA-MB-231 cells, as a mixture of flattened and rounded cell
types attached to the dish together with some detached, floating cells (b(i),(iv)), were treated with a relatively high concentration of subtilisin

(1 uM) for 24 h. This caused most cells to detach from the culture plate and appear as spherical cells floating in the culture medium either as
individual cells (b(v)) or as aggregates. After 24 h, the cells were washed in fresh medium and transferred to new wells, where the detached
cells re-attached to the well surface and grew to reform the apparently normal mixture of flat and rounded, adherent cultures (b(vi)). Control
cells were treated similarly by washing (b(ii)) and transference to new wells (biii)) in parallel with the subtilisin-treated dishes. The ability to recover
from subtilisin treatment was supported by protein expression (c). There was a substantial reduction in the expression of neogenin and unc-5C, with
preservation of RhoA levels (c) in the presence of subtilisin. When the cells were washed and re-plated as above, expression of these proteins
recovered to their orginal levels within 24 h, in parallel with the recovery of normal cell morphology. Scale bar: 100 um
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selective inhibitor of MMP-9 (2-((4-phenoxyphenylsulfo-
nyl)-methyl) thiirane); SB-3CT) did not alter expression of
the dependence receptors or prevent their down-
regulation by chymotrypsin (Additional file 1: Figure
S2A, B). The non-selective MMP inhibitor marima-
stat (10 uM) was also ineffective in blocking the pro-
tease activity (Additional file 1: Figure S2a,b).

Discussion

The present results reveal the ability of endogenous
chymotrypsin and an environmental, bacterial chymo-
tryptic protease, subtilisin, to down-regulate DCC and
neogenin expression, increasing cell migration. The revers-
ibility of the changes in adhesion and protein expression
would be relevant for cells to migrate and form metastases
elsewhere. Other proteins with strong functional links with
DCC were unaffected.

Even in prokaryotes, serine proteases are involved in
the control of proliferation and modulation of the cell
cycle [93] and an association with cancer was recognised
some years ago [94—98]. Chymotrypsin and related en-
zymes increase proliferation and migration [35, 99-104]
and high levels occur in several cancers, especially in

mammary myoepithelial cells and some solid tumours
[105-108], correlating with the development of malig-
nant disease. Tumour cell aggression is correlated with
serine protease activity in models of carcinogenesis and
metastasis [109-111]. Conversely, serine protease inhibi-
tors or enzyme down-regulation reduce cell migration and
invasiveness [82, 112—114] while reduced levels of serine
protease inhibitors promote oncogenesis [42]. Trypsin is
also linked with the development of cancers [36] including
pancreatic adenocarcinoma [115] and colorectal cancer,
cases of the latter showing poor patient prognosis correl-
ating with their trypsin content [116, 117]. Indeed, serine
proteases are involved in a wide range of biological activ-
ities [118] including embryonic development, osteogen-
esis, and immune cell function, making the present results
potentially of far wider physio-pathological significance
than only for cancer.

Dependence receptors

The experimental deletion or disruption of the dcc gene
can induce or promote cell migration and invasiveness
[11-14] while transfecting cells with the gene can reduce
these characteristics [13—17, 80]. Neogenin expression is



Forrest et al. BMC Cancer (2016) 16:772 Page 11 of 19

SH-SY5Y human neuroblastoma cells
normal 9 DCC transfected K&

@ neogenin f
80 1 * % 70 . * 5 RhoA
60
el 2 50 z®
@ i) (7]
S $ 40 3
T 40 © T 40
g 2 30 %,
[v] (0] T
E 20 E 20 =20
10
1 0 0 ! | I | I
O %n 30 100 con 30 100 con 30 100 con 30 100 con 30 100 ‘con 30 100
|l subtilisinn subtilisin )(nM) | subtilisin | subtilisin) (M) \ S;bi'“ﬁm.l fiubtlllsmi(nM)
i
normal transfyected normal  transfected normal _transfected

MCF-7 human mammary adenocarcinoma cells

g =, bee _x h ., RhoA
20 60
2 15 2 50
'a z
& 10 G 40
- -
o g 30
g ° g
E o E 20
-5 con 30 100 con 30 100 10
10 subtilisin subtilisin (nM) 0
; con 30 100 con 30 100
| I\ J | subtilisin | subtilisin| (nM)
|
normal transfected normal transfected

o R e—]

Fig. 6 Transfection of dcc into cultured cells. A photomicrograph of normal SH-SY5Y cells after incubation with antibodies to DCC showed only
very weak immunofluorescence (a) whereas 48 h after transient transfection with a dcc plasmid, the fluorescence was substantially greater (b) and no
image was obtained in the absence of DCC antibody (c). The fluorescence images are consistent with immunoblots for DCC protein which indicated
an approximately 50-fold increase in expression (d). The protein was down-regulated by subtilisin (d) (30 and 100nM) as observed previously in adult
tissue. The relative expression of neogenin (e) or RhoA (f) was unchanged by dcc transfection and neogenin was reduced by subtilisin while RhoA
remained unaffected, as in the tissue work. An exactly similar pattern was seen in transiently transfected MCF-7 cells, with a profound reduction by
subtilisin of ectopic DCC expression (g) and no change in RhoA (h). Bars represent mean + s.e.mean (n =4-6). *P < 0.05; **P < 0.01; relative to
the corresponding control bar. Scale bar: 50 pm

also reduced in tumours, especially those involving mam-  third netrin receptor (unc-5C) is also involved in cell pro-
mary tissue [20, 25], where it regulates cell proliferation, liferation and migration and is reduced in many cancers
migration and invasion [119]. Over-expression can sup-  [33, 46, 64, 120]. However, since there are few mutations
press abnormal proliferation and migration [22, 23]. The  of the respective genes in cancerous cells, non-genetic
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( (See figure on previous page.)
Fig. 7 Potential inhibitors of serine proteases. Protein expression in extracts of brain slices is summarised as image densities (arbitrary units) of
Western blots quantified using Image J for the effects of chymotrypsin (CT, 1 uM) on DCC (a), neogenin (b), RhoA (c) and Shh (d) expression. Sample
blots are shown below each chart, which illustrate the concentration-dependent effects of the proteases. The Bowman-Birk soybean inhibitor (BB,
100 puM) blocked the effect of chymotrypsin on DCC expression (a) although the y-secretase inhibitor DAPT (5 uM) did not prevent the loss of
DCC (c) or neogenin (d). Neither BBl nor DAPT had any effect themselves on protein expression. Chymostatin (CS, 30 uM) had no significant
effect alone but blocked the inhibitory effects of both chymotrypsin and subtilisin on DCC (e) and neogenin (f) expression. The chymotryptic
proteasome inhibitor carfilzomib (carf, 50nM) significantly reduced the effect of chymotrypsin (CT, 1 uM) on DCC (g) and neogenin (h) expression.
However, two other inhibitors of the 20S proteasome, epoxomicin (epox, 1 uM) and MG132 (MG, 10 uM) had no significant effect themselves and did
not block the effect of chymotrypsin on DCC (i) or neogenin (j). Trypsin reduced the expression of neogenin (k) and DCC (I) with no significant effects
on unc5H3, unc5HT, Shh and RhoA expression (m) but these effects were not prevented by TPCK or TLCK. Sample blots are shown below each chart.
Bars represent mean + semean (n=4). *P < 0.05; **P < 0.01; ***P < 0.001 relative to the control bar

modifications may be sufficient to cause cellular dysfunc-
tion [9, 10], a conclusion consistent with growing evidence
that non-genetic factors play a dominant role in oncogen-
esis [121-123]. The down-regulation of DCC and neo-
genin by serine proteases could be one example of the
several processes involved [58].

Chymotrypsin and cancer

Chymotryptic activity is present in the blood and other
tissues in the form of chymotrypsin and related proteins
such as chymase and cathepsins released from neutro-
phils during inflammation. Chymotrypsin can also be
absorbed, along with other large proteins, from the in-
testinal contents into the blood [124]. As a result these
endogenous proteases are in direct contact with most
organs and tissues (Fig. 8). Chymotrypsin is resistant to
destruction in the gut in order to carry out its digestive
functions and its concentration in the intestinal contents

changes little from pancreas to faeces, enabling faecal
chymotrypsin concentrations to be used as an indicator
of pancreatic function [125-128]. The concentrations of
chymotrypsin in normal human chyme and faeces are
around 1-10 uM [129-131], levels similar to, and often
higher than those able to deplete neogenin and DCC. It
is likely, therefore, that this depletion also occurs in vivo,
its impact normally limited by the continual replacement
of intestinal epithelial cells or a plant-rich diet. Slowed
transit times or the regular consumption of protease-
treated meat products may increase the impact of chy-
motryptic activity on dependence receptor expression.
Chymotrypsin production is increased in obese individ-
uals, partly in proportion to food volume in order to process
the protein content and partly in response to a raised con-
sumption of meat, which has a higher proportion of protein
per unit weight than dietary plants. Changing to a vegan diet
reduces the secretion of chymotrypsin and the intestinal
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Fig. 8 A schematic summary of the hypothesis. a The pancreas secretes chymotrypsin (yellow) as a digestive enzyme in proportion to the amount of
food (protein) consumed. Most passes through the gastro-intestinal (Gl) tract unchanged. Subtilisin present in processed foods as well as Bacillus subtilis
present in soil, livestock feed and probiotics, enter the gastro-intestinal tract orally, while subtilisin present in cleaning products may access the body
via the respiratory system or dermal contact. Both proteases will be in contact with cells in the intestinal epithelium and some will be absorbed into
the cardiovascular circulation from where both will access all organs and tissues, promoting oncogenesis. b At the cellular level netrin promotes cell
stability and proliferation, with DCC acting to inhibit that activity. The unhindered activity of DCC induces cell death, partly by apoptosis. When DCC is
removed by subtilisin or chymotrypsin, netrin can promote proliferation leading potentially to cancer
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concentration [126], consistent with the lower colorectal
cancer levels in vegetarians [132].

Subtilisin, diet and cancer

Subtilisin is a chymotryptic serine protease synthe-
sised and secreted by B. subtilis and related species.
Closely related enzymes with similar substrate speci-
ficities are secreted by other bacteria (Streptomyces
spp and Cryptosporidium spp) [133-135] as well as
some fungi and yeasts (Aspergillus spp (136, 137], Cry-
phonectria parasitica [138] and Trichoderma reesei),
the latter secreting particularly large quantities of a
subtilisin-like protease [139].

B. subtilis itself is ubiquitous in the environment and
in high densities in soil. It is a normal commensal bac-
terium in the mammalian intestine [47, 140, 141] since
the bacteria and spores resist destruction in the stomach
and intestine [142] (Fig. 7). The bacteria are included in
many probiotic preparations for use in humans or farming
livestock to promote digestion and to increase muscle
mass [140, 143-147] (approximately 1,000 tonnes of the
enzyme are used annually in Europe alone [148]). High
densities of the bacteria are observed in abattoirs and
food-processing plants [149, 150] where it is sometimes
used to tenderise meats and to promote compaction after
butchering. Since the bacteria are highly resistant to acid-
ity or temperature changes (including boiling), subtilisin
of bacterial or environmental origin which enters the food
chain represents a candidate for mediating the effects of
diet and environment on cancer generation by depleting
cellular DCC and neogenin. Being of similar molecular
size to chymotrypsin and smaller then ferritin, subtilisin is
also likely to be absorbed from the intestine [124] into the
systemic blood from where it would reach all the organs
and tissues and potentially promote cancer development
at those sites.

The enzyme is also used in some cleaning preparations
and exfoliants. The US Household Products Database
catalogues more than 100 domestic cleaning products
which contain subtilisin [151] and others are available
elsewhere. Such sources represent a further route of bio-
logical access for subtilisin in the industrial and domes-
tic environments.

Protease inhibitors

The case for a serine protease involvement in cancer
(Fig. 8) is strongly supported by the prevention of depend-
ence receptor loss by a Bowman-Birk inhibitor. These
compounds are selective inhibitors of serine proteases
[152] and are produced by many species of plant including
soybeans, lentils [48], wheat [153], potatoes [49, 154] and
other sources [50, 155]. They are highly resistant to heat
and metabolism, passing largely unchanged through the
gut after dietary consumption. Importantly, the inhibitor
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was also able to prevent the increase in cell migration
produced by chymotrypsin in the wound assay, and
partly reduced the effect of subtilisin when used at a
low concentration. These actions would be consistent
with the protective anti-cancer effects of a plant-rich
diet. This may be especially important in preventing
metastasis formation since this is dependent on serine pro-
teases released from neutrophils which have been attracted
to areas of inflammation [156] and which are inhibited by
Bowman-Birk inhibitors [157]. These inhibitors have been
shown previously to have anti-cancer activity in vitro
[158, 159] and in humans and other animals. After oral
administration they can suppress the development not
only of intestinal cancers [160, 161] but also those in
other tissues after absorption from the gut [162-165].
A concentrated plant extract of Bowman-Birk inhibitors
has proved effective in human clinical trials [51], al-
though a precise site of action had not previously been
identified [166].

Cancer prevention and public health

Further work is required to establish the precise rela-
tionship between continually elevated concentrations of
subtilisin and chymotrypsin in the blood after chronic,
continual, oral administration, their selective removal of
dependence receptors, and the development of cancers
in vivo, especially in relation to the development of late-
stage and malignant disease. In addition to providing an
explanation of a major environmental influence on can-
cer development, these relationships might justify the
clinical use of protease inhibitors in combination with
existing radiotherapy and chemotherapy. Thus, if the pres-
ence of subtilisin in the environment and food chain could
be reduced so that the progression of tumours to malig-
nancy was slowed or prevented, conventional agents should
be able more effectively to produce a complete elimination
of the disease.

Overall, our results suggest the hypothesis that lifestyle
factors such as food choice may make a contribution to
cancer incidence and malignancy [122]. They also sug-
gest a socio-economically valuable public health strategy.
Eliminating the use of subtilisin in farming livestock and
meat processing, domestic cleaning preparations and
other sources in the environment, encouraging careful
washing of crops and increasing the dietary intake of
plant-sourced serine protease inhibitors, could potentially
reduce the worldwide incidence of several forms of cancer
by reducing serine protease-induced removal of DCC and
neogenin.

Conclusions

The present results show that two representative serine
proteases, endogenous mammalian chymotrypsin and
an environmental, bacterial chymotryptic protease,
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subtilisin, can down-regulate DCC and neogenin ex-
pression in cells, increasing cell migration. The revers-
ibility of the changes in adhesion and protein
expression would be important for cells which migrate
from their home tissue to form metastases elsewhere.
Since chymotrypsin secretion is increased by over-
eating and increased basal metabolic rate, and it can be
absorbed from the intestine where is exists as a normal
digestive enzyme, it may provide an explanation of the
link between over-eating and cancer incidence. Subtili-
sin is used in meat tenderisation and processing, and do-
mestic and industrial cleaning products, while its main
producer, the bacterium B. subtilis, is added to probiotics
and food for farm animals to promote growth. This rela-
tionship may contribute to the link between meat con-
sumption and cancer incidence, while inhibition of
chymotryptic enzymes by Bowman-Birk inhibitors from
plants may explain the protective effects of a plant-
based diet. The data reported here, therefore, may help
understanding of the causes of many cancers, with the
potential to prevent many of them by restricting the in-
dustrial and agricultural use of serine proteases. In
addition, further work on the efficacy of dietary
Bowman-Birk compounds as inhibitors of subtilisin and
chymotrypsin might lead to their increased use as protec-
tion against cancer.

Additional file

Additional file 1: Supplementary material. Supplementary Figures S1, S2
and associated legends. (DOC 900 kb)
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