Wang et al. BMC Cancer (2016) 16:742
DOI 10.1186/512885-016-2767-2

Bicyclol induces cell cycle arrest and

BMC Cancer

@ CrossMark

autophagy in HepG2 human hepatocellular
carcinoma cells through the PI3K/AKT and
Ras/Raf/MEK/ERK pathways

Yu Wang, Hao Nie, Xin Zhao, Yong Qin~ and Xingguo Gong"

Abstract

Background: Bicyclol, a novel synthetic antihepatitis drug, is widely known to protect against liver injury. However,
few reports have focused on the possible effect of bicyclol on anti-proliferation and autophagy induction in cancer
cells, particularly hepatocellular carcinoma cells.

Methods: In this study, we investigated the antitumor efficacy of Bicyclol in HepG2 cells and the mechanism of cell
growth inhibition. Cell proliferation was analyzed by MTT assay, and the cell cycle and apoptosis were assessed by
flow cytometry. And we transfected the cells with the GFP-RFP-LC3 vector to detect the autophagy flux in the cells.
Mechanisms of bicyclol-induced cell growth inhibition were probed by western blot analysis.

Results: Bicyclol effectively inhibited HepG2 cell proliferation in a dose- and time-dependent manner. In addition,
we found that bicyclol inhibited cell cycle progression at G1 phase and induced autophagy in HepG2 cells, which
implied that the significant decrease in cell proliferation was mainly induced by autophagy and inhibition of cell
proliferation. Furthermore, western blot showed that bicyclol inhibited phosphorylation of Akt and ERK, down-regulated
the expressions of cyclin D1, cyclin E2, CDK2, CDK4, p-Rb and p-mTOR. Moreover, AKT or ERK knockdown by siRNA
enhanced bicyclol-induced autophagy and inhibition of cell proliferation.

Conclusion: These results suggest that bicyclol has potent anti-proliferative activity against malignant human hepatoma
cells via modulation of the PI3K/AKT pathway and the Ras/Raf/MEK/ERK pathway, and indicate that bicyclol is a potential
liver cancer drug worthy of further research and development.
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Background

Liver cancer is the fifth most common cancer worldwide,
and the second most frequent cause of cancer death [1].
The highest liver cancer rates and deaths were found to
occur in China in 2008 [2]. In the USA, the liver cancer
incidence rates continued to increase by at least 3 % per
year from 1992 to 2009, which was the highest of all can-
cers. Despite extensive research into treatments of liver
cancer, such as chemotherapy, hepatectomy, liver trans-
plantation, microspheres, and immunotherapy, survival
rates are 3—5 % in cancer registries in developed countries,
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and consistently low rates are estimated worldwide [3, 4],
which highlights the urgent need for novel effective thera-
peutic approaches.

Bicyclol  (4,4’-dimethoxy-5,6,5,6’-Bis(dimethylene-dioxy)-
2-hydroxymethyl-2’-methoxy carbonyl biphenyl, Fig. 1a [5])
is a new synthetic antihepatitis drug. It has been widely
used in the clinic to treat patients with chronic hepatitis B
viral infections [6]. In mice and rats, bicyclol effectively pro-
tects against liver injury induced by various hepatotoxins,
such as acetaminophen [7], CCl, [8], alcohol [9], concanav-
alin A [6], lipopolysaccharide and d-galactosamine [5].
Additionally, bicyclol can improve liver function and par-
tially inhibits hepatitis B virus replication in the clinic [10].
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Fig. 1 The effect of bicyclol on the living cell number of cancer cell lines and normal liver cells. a Chemical structure of bicyclol. b The effect of

various concentrations of bicyclol on HepG2, Hela and LO2 cells after 48 h of treatment. DMSO-treated (0.25 %) cells were used as vehicle
controls. A570 was measured after the MTT incubation. ¢ dose- and time-dependent effect of bicyclol on the living cell number of HepG2
cells. The bar graphs represent the means = SD from three independent experiments. d The IC50 values at 48 h in different cells. The bar
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Recently, it was reported that bicyclol effectively induces
the cytoprotective effect of heat shock protein 27/70 by
suppressing NF-kB in mice [11, 12], and it has similar ef-
fects in HepG2 cells through the mitochondria-associated
pathway [13]. However, there were few studies about the
possible effect of bicyclol on anti-proliferation and autoph-
agy induction in cancer cells, particularly hepatocellular
carcinoma cells.

Recent studies have shown that a series of chemical
compounds have anti-proliferation effect in cancer cells
through the PI3BK/AKT pathway. The PI3K/Akt path-
way plays an important role in angiogenesis, apoptosis,
cell cycle progression, cell survival and cell differenti-
ation. Upon PI3K activation, the Akt PH domain inter-
acts with PtdIns(3,4,5)P3 and recruits Akt to the
plasma membrane, where it is then activated through
phosphorylation at Thr308 in the activation loop of the
catalytic domain and Ser473 in the regulatory domain
[14, 15]. Akt modulates the function of many down-
stream substrates, such as mTOR, p27 and Mdm?2,
which are involved in the regulation of the cellular pro-
cesses mentioned above [16].

In hepatocellular carcinoma cells (HCC), the PI3K/
Akt/mTOR pathway and the Ras/Raf/MEK/ERK path-
way have a synergetic relationship in regulating the pro-
liferation of tumor cells [17]. The classic Ras/Raf/MEK/
ERK pathway is a key signal transduction component of
cell proliferation in many cells [18]. It contains a cascade
of protein kinases: Ras, Raf, MEK, and ERK. One of the

key roles of the Ras/Raf/MEK/ERK pathway in many
cell types is the regulation of the cell division cycle
[19]. It is reported that the p27Kipl expression is in-
duced by Ras/Raf/MEK/ERK pathway inhibition, and
cyclin/cyclin-dependent kinase 2 (CDK2) activity was
also inhibited [20].

In the present study, we investigated the effects of
bicyclol on HepG2 cells and further examined the cell
anti-proliferation mechanism. Our observations demon-
strate that bicyclol effectively inhibits HepG2 cell prolif-
eration, but is minimally toxic to normal liver LO2 cells;
the significant decrease in cell proliferation was mainly
induced by autophagy and inhibition of cell proliferation.
Mechanistically, we further identified the cytotoxicity of
bicyclol is closely associated with the inhibition of the
PI3K/AKT and Ras/Raf/MEK/ERK pathways. These pre-
clinical studies suggest that bicyclol could be useful for
the treatment of liver cancer.

Methods
Materials
Bicyclol (298 %, HPLC) was purchased from Sigma, dis-
solved in dimethylsulfoxide (DMSO) and diluted to the
desired concentration before use; the final concentration
of DMSO was less than 0.3 % in culture. 3-(4,5-Dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
was purchased from Sigma.

The primary antibodies were purchased from the
following companies: Cell Signaling Technology (p-Rb,
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Cyclin D1, Cyclin E2, LC3, p-mTOR) and Sangon
Biotech (p21, p27, CDK2, CDK4, Akt, p-Akt, p-ERK,
Ras). All other chemical reagents were of the highest
purity available. The secondary antibody conjugated
with Alexa Fluor® 680 was purchased from Jackson
ImmunoResearch Laboratories, Inc. The cell cycle and
apoptosis analysis kit was purchased from Beyotime
Biotechnology.

The LO2 (human normal liver), HepG2 (hepatocellular
adenocarcinoma), A549 (human lung epithelial cells),
H292 (human mucoepidermoid pulmonary carcinoma)
and HeLa (cervical carcinoma) cell lines were obtained
from the Cell Bank of Type Culture Collection of Chinese
Academy of Sciences (Shanghai, China). All cell lines were
cultured in RPMI 1640 medium (Gibco), which contained
10 % (v/v) fetal calf serum (Gibco), 100 units/ml penicillin,
and 100 units/ml streptomycin. The cell lines were cul-
tured in a humidified cell incubator at 37 °C with a 5 %
CO, atmosphere.

LY294002, 3-MA, benzyloxycarbonyl-Val-Ala-Asp-
(OMe) fluoromethyl ketone (Z-VAD) and PD98059
were purchased from Beyotime Biotechnology. The
AKT1-cDNA-pCMV expression vector was purchased
from Sino Biological Inc. The AKT1 and ERK1 siRNAs
were purchased from Shanghai GenePharma Co., Ltd.
The Lipofectamine 2000 and Lipofectamine RNAi-
MAX transfection reagents were purchased from Life
Technologies.

Cytotoxicity assay

The cell metabolism rate of the cell lines was measured
using the MTT assay. Exponentially growing cells were
treated for 24 h or 48 h with various concentrations (0—
500 umol/L) of bicyclol in 96-well plates. DMSO-treated
cells (0.25 %) were used as vehicle controls. MTT was
then added to each well, and the cells were incubated
for 4 h at 37 °C in the dark. The Formazan crystals that
formed were dissolved with 150 pl of DMSO. The ab-
sorbance at 570 nm was measured using a Model
ELX800 microplate reader (Bio-Tek Instruments). Each
test was repeated at least three times. The cell metabol-
ism rate was calculated by the following formula: %cell
metabolism rate = (mean absorbance in test wells)/(mean
absorbance in control well) x 100 %.

Cell death analysis

Cell death, including apoptosis and necrosis, was
assessed by staining with an annexin V-FITC/PI kit
(Sigma), according to the manufacturer’s instructions.
Briefly, the cells were cultured with various concentra-
tions of bicyclol for 48 h, and then 1 x 10° cells were
harvested and washed twice with ice-cold PBS. The
apoptotic (Annexin V+/PI-) or necrotic cells (Annexin V
+/PI+) were evaluated by double staining with annexin
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V-FITC and PI in binding buffer using flow cytometry
(FAC sort, Becton Dickinson).

Cell cycle analysis

The cell cycle was analyzed by flow cytometry (FAC sort,
Becton Dickinson). The cells were cultured with various
concentrations of bicyclol for 24 h, or with 200 pl of
bicyclol for 8,16 or 24 h, and then suspended in 70 %
ethanol and fixed overnight at 4 °C. The cells were then
treated with 20 pg/ml RNase A, followed by 25 pg/ml
propidium iodide (PI). The proportion of cells in GO/G1,
S and G2/M phases were determined by examining the
intensity of PI fluorescence with a flow cytometer using
an argon laser and 570 nm bandpass filters.

Transient transfection and immunofluorescence

The GFP-RFP-LC3 expression vector is widely used to
detect autophagic flux [21]. The cells were transiently
transfected with the GFP-RFP-LC3 expression vector
(kindly provided by Prof. Mao Xiang [22]) using Lipofec-
tamine 2000, according to the manufacturer’s instruc-
tions. After the GFP-RFP-LC3-transfected cells were
incubated for 48 h, the cells were treated with bicyclol
for an additional 24 h. The GFP-RFP-LC3 fluorescence
was observed using an Olympus FV1000 confocal micro-
scope, and the autophagosomes (yellow dots) and auto-
lysosomes (free red dots) in each cell were counted.

Transient transfection of the activated AKT cDNA

The HepG2 cells were transiently transfected with an
AKT1-cDNA-pCMYV expression vector using Lipofecta-
mine 2000, according to the manufacturer’s instructions
as described above. After the AKT-cDNA-transfected
cells were incubated for 48 h, the cells were treated with
bicyclol for an additional 24 h. The subsequent assays
were analyzed.

Chemical inhibition

The HepG2 cells were cultured and pre-treated with
20 uM PD98059 for 30 min, and then the cells were
treated with various concentrations of bicyclol. Bicyclol
and 10 pM LY294002 were added to the cells at the
same time. The subsequent assays were analyzed.

siRNA knockdown of AKT and ERK1 expression

The HepG2 cells were transiently transfected with
AKT1 siRNA duplexes (sense, GGGCACUUUCGGCAA
GGUGtt; antisense, CACCUUGCCGAAAGUGCCCtt)
[23], ERK1 siRNA duplexes (sense, GAGCCGCCGC
CGCCGCCATtt; antisense, ATGGCGGCGGCGGCGG
CTCtt) [24], or non-specific control siRNA duplexes
(GenePharma Co, Ltd) using the Lipofectamine RNAi-
MAX reagent, according to the manufacturer’s instruc-
tions. After the siRNA-transfected cells were incubated
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for 48 h, the cells were treated with bicyclol for an add-
itional 24 h. The subsequent assays were analyzed.

Western blot analysis

The treated cells were collected, washed in PBS and then
lysed with lysis buffer on ice. Approximately 20 pg of
the lysed proteins were separated by sodium dodecyl
sulfate-PAGE and transferred to a nitrocellulose blotting
membrane. The membranes were blocked overnight in
blocking buffer (5 % bovine serum albumin solution and
0.05 % Tween 20 in Tris-buffered saline (TBST)). After
three washes in TBST, the membranes were probed with
the indicated primary antibodies in blocking buffer for
1 h. After three washes in TBST, the blots were incu-
bated with the appropriate secondary antibodies for 1 h
in blocking buffer. After three washes in TBST for
15 min, the proteins were visualized by an Odyssey
Imager (LI-COR).

Transmission electron microscopy (TEM)

After 24 h of bicyclol treatment, the cells were collected
and then fixed in 2.5 % glutaraldehyde in phosphate buf-
fer (0.1 M, pH7.0) overnight. After three washes, the
specimen was fixed with 1 % OsO, in phosphate buffer
(0.1 M, pH7.0) for 1 h. After washing, the specimen was
first dehydrated by a graded ethanol series (30, 50, 70,
80, 90 and 100 %) for approximately 15 min at each step,
and then incubated in pure acetone for 20 min. Then,
the specimen was placed in a 1:1 mixture of pure acet-
one and the final resin mixture for 1 h, a 1:3 mixture of
pure acetone and the final resin mixture for 3 h, and the
final spur resin mixture overnight. The specimen was
then placed in spur resin and heated at 70 °C for more
than 9 h. Finally, the specimen was sectioned on a
LEICA EM UC7 ultramicrotome, and sections were
stained by uranyl acetate and alkaline lead citrate for
5 min, respectively. The ultra-thin sections were viewed
on a Hitachi Model H-7650 TEM.

Statistical analysis

The experimental results are expressed as the means + SD.
The changes in the different assays were analyzed by the
analysis of variance followed by Student’s ¢ test. A value of
P < 0.05 was considered to be statistically significant.

Results

Bicyclol induced cell anti-proliferation, but not apoptosis
To examine whether bicyclol induces cytotoxic effects
on different types of cancer cells, we treated HepG2,
Hela, H292, A549 and LO2 cells with different concen-
trations of Bicyclol (0, 50, 100, 200 and 500 puM) for
48 h. DMSO-treated (0.25 %) cells were used as a vehicle
control (Fig. 1b). After a 48 h exposure in 500 pM
bicyclol, the living cell number of HepG2 cells was
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significantly reduced to 39.1 %. Meanwhile, the inhibi-
tory effect of bicyclol on Hela, LO2, A549 and H292
cells was less than the HepG2 cells. Bicyclol inhibited
HepG2 cell proliferation in a time- and dose-dependent
manner (Fig. 1c). These results indicated that bicyclol
had different effects on hepatocellular carcinoma from
normal liver cells and other tumor cells. The ICs, value
for bicyclol in HepG2 cells is 0.30 mM after a 48 h
treatment (Fig. 1d).

We next investigated whether apoptosis could be the
cause of the bicyclol-induced cell anti-proliferation; thus,
an Annexin V-FITC/PI double staining assay was per-
formed. The apoptotic (Annexin V'/PI") or necrotic
cells (Annexin V*/PI") were identified by flow cytometry
(Fig. 2). As shown in Fig. 2a, ¢, d, no significant increase
in the number of necrotic cells was detected at any con-
centration of bicyclol used in this study, particularly
compared with the positive control, 10 pM H,O,. Only
500 uM bicyclol slightly increased the number of apop-
totic cells, but the results were not statistically signifi-
cant. Furthermore, we treated HepG2 cells with both
bicyclol and the pan-caspase inhibitor Z-VAD, which
blocks cell apoptosis. As shown in Fig. 2b, the cell pro-
liferation after the co-treatment was similar to the
treatment with bicyclol only. And the protein level of
cleaved caspase-3 was investigated. As shown in Fig. 2e,
no significant increase in the protein level of cleaved
caspase-3, an apoptosis indicator, was detected at any
concentration of bicyclol used, particularly compared
with the positive control, 10 pM Sorafenib, while Sorafe-
nib effectively reduced cell viability (Additional file 1B)
These results indicated that the bicyclol-induced cell anti-
proliferation was not dependent on apoptosis.

Bicyclol induced cell cycle arrest and suppressed the
growth regulatory signals in G1 phase

A cell cycle analysis was performed to determine how
bicyclol inhibited the growth of HepG2 cells (Fig. 3). The
results showed a time- and dose-dependent increase in
the percentage of cells in G1 phase and a decrease of the
percentage of cells in S phase after bicyclol treatment
(Fig. 3a, b). 53.34 % of the PBS-treated cells were in G1
phase. After 24 h of treatment with 50, 100 and 200 uM
bicyclol, the percentage of cells in G1 phase increased to
58.54, 60.67 and 64.80 %, respectively (Fig. 3c).

The growth regulatory signals of G1 phase, including
Rb, cyclins, cyclin-dependent kinases and cyclin-
dependent kinase inhibitors, can be further evidence of
the G1/S cell cycle arrest. Phosphorylated Rb leads to
the release of the E2F1 transcription factor and subse-
quent initiation of cell cycle progression to S phase [25].
Therefore, we next investigated the cell cycle-related
protein levels in cells treated with various concentration
of bicyclol using western blot (Fig. 3d). As shown in
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Fig. 2 Bicyclol did not induce apoptosis or necrosis in HepG2 cells. a The percent of apoptotic and the necrotic cells after 24 h of treatment with
different concentrations of bicyclol were measured by flow cytometry. H,O,-treated (10 uM) cells were used as positive controls. b Living
cell number after co- treatment with bicyclol and z-vad. HepG2 cells were treated with 20 uM z-vad and 500 uM bicyclol at the same
time. The cells treated with either 20 uM z-vad or 200 uM bicyclol were used as controls. After a 24 h exposure, the cells were incubated with
MTT and the As7o was measured. ¢ Flow cytometry analysis of cancer cell apoptosis using the Annexin V-FITC/PI dual-labeling technique. The B2 gate
(Annexin V*/PI") represents the percentage of necrotic cells, while the B4 gate (Annexin V*/PI") represents the percentage of apoptotic cells. Up to
10,000 cells were counted in each sample. d The percent of cells identified by flow cytometry. e The protein level of cleaved caspase-3 treated

Fig. 3d, the level of phosphorylated Rb was dramatically
decreased after bicyclol treatment. In addition, the expres-
sion of the cyclin D1, cyclin D3 and cyclin E2 proteins
were decreased after treatment with 500 pM bicyclol.
Meanwhile, the expression of the CDK2 and CDK4 pro-
teins were decreased, while the cyclin-dependent kinase
inhibitors p21“™ and p27°™! were increased in a dose-
dependent manner. The increase in the expression of the
p21"" and p275™! proteins and the decrease in cyclins
and cyclin-dependent kinases dephosphorylate Rb and
lead to cell cycle arrest, which may contribute to the anti-
proliferative effects of bicyclol in HepG2 cells.

Bicyclol induced autophagy in HepG2 cells

Autophagy is a physiological cellular strategy and survival
mechanism under stress conditions. Moreover, over-
activated autophagy may result in cell anti-proliferation
[26]. LC3 is a hallmark of autophagy, and the conver-
sion of cytosolic LC3-I to autophagosome membrane-
bound LC3-1II is a specific marker for autophagosome
formation [27]. Thus, a GFP-RFP-LC3 plasmid was
transfected into HepG2 cells and investigated by fluor-
escence microscopy. As shown in Fig. 4a, b, the amount
of free red dots (indicating autolysosomes) and the
amount of yellow dots (indicating autophagosomes)
were significantly increased after treatment with
200 uM bicyclol. Furthermore, co-treatment with bicy-
clol and 3-methyladenine (3-MA, a chemical inhibitor
of autophagy) reduced the autophagy-inducing and
anti-proliferation effects of bicyclol (Fig. 4d). The cellu-
lar ultrastructure was analyzed by transmission electron
microscopy, which markedly demonstrated the pres-
ence of bicyclol-induced autolysosomes (Fig. 4c). A
western blot assay was performed to detect the conversion
of LC3-I to LC3-II. As shown in Fig. 4e, the conversion
was up-regulated by bicyclol in a dose-dependent manner.
The results suggested that bicyclol induced autophagy
in HepG2 cells.

Bicyclol inhibited the PI3K/Akt/mTOR and the Ras/Raf/
MEK/ERK pathways

As mentioned above, bicyclol induced cell cycle arrest
and autophagy in HepG2 cells. However, the pathways

downstream of these bicyclol-mediated effects were in-
vestigated in-depth. As shown in Fig. 5a, Akt phosphor-
ylation at Ser473 and Thr450 was remarkably inhibited,
while the total protein level of Akt remained constant,
which suggested that the PI3K/AKT pathway was in-
volved in bicyclol-mediated cell anti-proliferation in
HepG2 cells. Dephosphorylated AKT directly inhibits
TSC1/2 and activates PRAS40 to inactivate mTORC1
and induce autophagy [28, 29]. Furthermore, mTOR
phosphorylation at Ser2448 was inhibited after bicy-
clol treatment, which indicated that bicyclol induced
autophagy in HepG2 cells through the PI3K/AKT/
mTOR pathway.

We next investigated whether the Ras/Raf/MEK/ERK
pathway was involved in the bicyclol-induced cell anti-
proliferation as well. The Ras protein level was signifi-
cantly reduced after bicyclol exposure. Additionally,
ERK1/2 phosphorylation at Thr202 and Tyr 204 was
inhibited, while the total protein level was constant.
These results suggested that the synergy between the
PI3K/AKT pathway and the Ras/Raf/MEK/ERK pathway
played an important role in the bicyclol-induced anti-
proliferative effect.

Transfection of the constitutively active AKT cDNA
suppressed the bicyclol-induced anti-proliferative effects
in HepG2 cells

Our results showed that bicyclol targets the AKT signaling
pathway. To confirm the role of the AKT signaling path-
way in bicyclol-induced cell cycle arrest and autophagy,
we next transfected HepG2 cells with a constitutively
active form of the AKT cDNA and treated the AKT-
overexpressing cells with bicyclol (Fig. 5b, ¢ d, e). The
expression level of total AKT was significantly increased,
which confirmed the success of transfection. Transfected
cells expressing the active AKT cDNA were considerably
more resistant to bicyclol than cells transfected with
the control ¢cDNA. The living cell number was in-
creased from 72.3 to 89.1 % (Fig. 5b). The bicyclol-
induced cell cycle arrest was rescued after transfection,
while the percentage of cells in G1 phase was de-
creased from 78.5 to 76.3 % (Fig. 5¢, and DNA distri-
bution was presented in Additional file 2A). Moreover,
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Fig. 3 Bicyclol induced G1 cycle arrest in HepG2 cells on a dose- and time-dependent manner. a The phase distribution of HepG2 cells treated
with various concentrations (0, 50, 100, 200 and 500 uM) of bicyclol for 24 h was analyzed by flow cytometry. The HepG2 cells were plated in
six-well plates and cultured until they reached 60 % confluence. The cells were incubated in serum-free RPMI 1640 culture medium for 24 h
to be synchronized. Then the cells were treated with bicyclol for 24 h. The cell cycle distribution was determined by flow cytometry with the
propidium iodide (Pl) dye, and distribution of cells in G1, S, and G2 phases was calculated using the Cell Quest software. b The phase distribution
of HepG2 cells treated with 200 uM bicyclol for 8, 16 and 24 h was analyzed by flow cytometry. The cells were treated as in (A). ¢ The DNA distribution
of cells treated with various concentrations of bicyclol for 24 h. d Dose-dependent effects of bicyclol on cell cycle-related proteins in HepG2 cells.
The cells were disrupted after treatment with various concentrations (0, 50, 100, 200 and 500 pM) of bicyclol for 12 h. The proteins were
collected, and cellular B-actin, cyclin D1, cyclin D3, cyclin E2, CDK2, CDK4, p21, p27 and p-Rb (Ser 807) were analyzed by western blotting.

the fluorescence microscopy results showed that the
amount of autolysosomes and autophagosomes were
significantly decreased after transfection (Fig. 5e). Fur-
thermore, the LC3-I to LC3-II conversion was restored
in AKT-overexpressing cells compared to the control.
In addition, AKT phosphorylation at Ser473 and

ERK1/2 phosphorylation at Thr202 and Tyr 204 were
rescued after transfection, which led to Rb phosphoryl-
ation and resulted in a decrease in the percent of cells
in G1 phase (Fig. 5d). These results further confirmed
that the AKT signaling pathway is indeed the target of
bicyclol treatment.
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Fig. 4 Bicyclol induced autophagy in HepG2 cells. a Autophagy flux was induced by bicyclol and inhibited by 3-MA. The cells were transiently
transfected with GFP-RFP-LC3 vectors using Lipofectamine 2000 and incubated for 48 h, and then treated with 200 uM bicyclol for another 24 h
or pre-treated with 5 mM 3-MA for 30 min. The GFP-RFP-LC3 fluorescence was observed by a confocal microscope, and the number of autophagosomes
(vellow dots) and autolysosomes (free red dots) in each cell were counted by ImageJ. 50 cells for each condition were counted. b The number of
autophagosomes and autolysosomes were increased by bicyclol, and 3-MA suppressed the effect. ¢ The cellular ultrastructure was analyzed
by transmission electron microscopy. The cells were incubated in 6-well plates and treated with 200 uM bicyclol for 24 h. Then, the cells were collected
and fixed. Next, ultra-thin sections were viewed on a TEM. The autolysosomes were indicated by arrows. d Cell proliferation after co-treatment with
bicyclol and 3-MA. The cells were incubated in 96-well plates and then pre-treated with 5 mM 3-MA for 30 min. Next, the 3-MA was removed and the
cells were treated with 200 uM bicyclol for 24 h. The As7 was then measured after the MTT incubation. e The levels of the LC3 | and Il proteins were
influenced by bicyclol. The cells were treated with various concentrations of bicyclol for 12 h and then disrupted. The proteins were collected, and
cellular LC3 | and Il were analyzed by western blotting. -actin was used as the loading control. Bar graphs represent the means + SD
from three independent experiments. (*p < 0.05 versus bicyclol treatment)

LY294002 and PD98059 enhanced the anti-proliferative in bicyclol-induced cell cycle arrest and autophagy, we
effect of bicyclol co-treated HepG2 cells with bicyclol and LY294002, a
To further confirm the central role of the AKT signaling  PI3K inhibitor, or PD98059, a MEK inhibitor (Fig. 6).
pathway and the Ras/Raf/MEK/ERK signaling pathway = The MTT assay results showed that cell proliferation
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Fig. 5 Bicyclol suppressed the PI3K/AKT and the Ras/Raf/MEK/ERK pathways. a Dose-dependent effects of bicyclol on the PI3K/AKT and the Ras/
Raf/MEK/ERK pathway-related proteins. The cells were disrupted after treatment with various concentrations (0, 50, 100, 200 and 500 pM) of
bicyclol for 6 h. The proteins were collected, and cellular B-actin, p-ERK1/2 (Thr202 and Tyr 204), total ERK, Ras, p-AKT (Thr 450), p-AKT
(Ser 473), total AKT, p-mTOR (Ser 2448), and total mTOR were analyzed by western blotting. b The AKT cDNA rescued HepG2 cells from
bicyclol-induced cell anti-proliferation. The cells were transiently transfected with the AKT cDNA expression vector using Lipofectamine
2000 and incubated for 48 h. Then, the transfected cells were treated with 200 uM bicyclol for 48 h. The As;o was measured after the
MTT incubation. ¢ The bicyclol-induced GT1 arrest was reduced by the AKT cDNA. The cells were transfected with the AKT cDNA expression
vector and then treated with 200 uM bicyclol for 24 h. The phase distribution was determined by flow cytometry. d The AKT cDNA suppressed the
effect of bicyclol on the PI3K/AKT and the Ras/Raf/MEK/ERK pathways. The cells were transfected with the AKT cDNA expression vector
and then treated with 200 uM bicyclol for 6 h. The cells were disrupted, and cellular B-actin, p-AKT (Thr 450), p-AKT (Ser 473), total AKT, p-ERK1/2
(Thr202 and Tyr 204), total ERK, p-Rb (Ser 807) and LC3 | and Il were analyzed by western blotting. e The number of autophagosomes and
autolysosomes were reduced by the AKT cDNA. Bar graphs represent the means + SD from three independent experiments. (*p < 0.05 versus
bicyclol treatment)

co-treatment with bicyclol and PD98059. Furthermore,
the percentage of cells in G1 phase was remarkably in-
creased from 68.7 to 71.8 % after co-treatment with bicy-
clol and LY294002 (Fig. 6b, and DNA Distribution was

was significantly decreased after 24 h and 48 h of co-
treatment with bicyclol and LY294002 compared to treat-
ment with only bicyclol as a control (Fig. 6a). Moreover,
cell proliferation was significantly decreased after 48 h of
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Fig. 6 1Y294002 and PD98059 enhanced the anti-proliferative effect of bicyclol in HepG2 cells. a Cell proliferation after co-treatment with LY294002
and bicyclol or PD98059 and bicyclol. The cells were treated with both 10 uM LY294002 and 200 uM bicyclol for 24 or 48 h, or cells were pre-treated
with 20 uM PD98059 for 30 min and then 200 uM bicyclol was added to the media for 24 or 48 h. The As;o was then measured after the MTT
incubation. b The percentage of cells in G1 phase after co-treatment with LY294002 and bicyclol or PD98059 and bicyclol. The cells were
treated as in (A) for 24 h, and the percent of cells in G1 phase was determined by flow cytometry. ¢ The bicyclol-mediated protein levels
after co-treatment with LY294002 and bicyclol. Cells were pre-treated with both 10 pM LY294002 and 200 uM bicyclol for 6 h. Then, the
cells were disrupted, and cellular 3-actin, p-AKT (Ser 473), total AKT, p-ERK1/2 (Thr202 and Tyr 204), total ERK, p-Rb (Ser 807) and LC3 |
and Il were analyzed by western blotting. d The bicyclol-mediated protein levels after co-treatment with PD98059 and bicyclol. The cells
were pre-treated with 20 uM PD98059 for 30 min and then 200 uM bicyclol was added to the media for 6 h. Then, the cells were disrupted,
and cellular B-actin, p-AKT (Ser 473), total AKT, p-ERK1/2 (Thr202 and Tyr 204), total ERK, Ras, p-Rb (Ser 807) and LC3 | and Il were analyzed by western
blotting. e The autophagosomes and autolysosomes were increased by LY294002 and PD98059. The cells were transiently transfected with
GFP-RFP-LC3 vectors using Lipofectamine 2000 and incubated for 48 h. Then the cells were treated with both 10 uM LY294002 and

200 uM bicyclol for 24 h, or cells were pre-treated with 20 uM PD98059 for 30 min and then 200 uM bicyclol was added to the media
for 24 h. The GFP-RFP-LC3 fluorescence was observed by a confocal microscope, and the number of autophagosomes (yellow dots) and
autolysosomes (free red dots) in each cell were counted by Imagel. 50 cells for each condition were counted. Bar graphs represent the
means + SD from three independent experiments. (*p < 0.05 versus bicyclol treatment)
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presented in Additional file 2B). Additionally, the percent-
age of cells in G1 phase was increased from 68.7 to 80.9 %
after co-treatment with bicyclol and PD98059. The
amount of autolysosomes and autophagosomes were also
significantly increased after co-treatment with bicyclol and
LY294002 compared to treatment with only bicyclol
(Fig. 6e). In addition, the LC3-I to LC3-II conversion in
AKT-inhibited cells was enhanced. Furthermore, AKT
phosphorylation at Ser473 and ERK1/2 phosphorylation at
Thr202 and Tyr 204 were inhibited after the co-treatment,
which led to Rb dephosphorylation and resulted in an in-
crease in the percent of cells in G1 phase (Fig. 6¢). How-
ever, the amount of autolysosomes and autophagosomes
were significantly increased after treatment with bicyclol
and PD98059. The LC3-I to LC3-II conversion in ERK-
inhibited cells was enhanced as well (Fig. 6e). In addition,
AKT phosphorylation at Ser473 and ERK1/2 phos-
phorylation at Thr202 and Tyr 204 were inhibited
after the co-treatment, which led to Rb dephosphory-
lation and resulted in an increase in the percent of
cells in G1 phase (Fig. 6d, and DNA Distribution was
presented in Additional file 2C). Moreover, the ex-
pression level of Ras was constant. Taken together,
these findings suggested that bicyclol induced cell
cycle arrest and autophagy through the PI3K/AKT
and the Ras/Raf/MEK/ERK pathways.

Genetic silencing of AKT and ERK enhanced bicyclol-
mediated cell cycle arrest and autophagy

Although LY294002 and PD98059 are relatively selective
inhibitors of AKT and MEK, they may influence other
proteins that mediate cell cycle or autophagy. Therefore,
we also used small interfering RNAs (siRNAs) to specif-
ically silence AKT and ERK and evaluate the effect of
AKT and ERK silencing on bicyclol-mediated cell cycle
arrest and autophagy. Thus, HepG2 cells were trans-
fected with a pool of siRNAs targeting AKT or ERK be-
fore bicyclol treatment. The transfection efficiency was
verified by western blot assay (Fig. 7d). As shown in
Fig. 7a, the combination of genetic silencing of AKT and
treatment with 200 pM bicyclol for 48 h reduced the liv-
ing cell number to 9.4 %, while treatment with bicyclol
alone reduced the living cell number to 73.4 %. Add-
itionally, the combination of genetic silencing of ERK
and treatment with 200 uM bicyclol for 48 h reduced
the living cell number to 10.6 %, while treatment with
bicyclol only reduced the living cell number to 73.4 %
(Fig. 7b). The flow cytometry results showed that spe-
cific knockdown of AKT and ERK expression enhanced
the bicyclol-induced G1 arrest (Fig. 7c, , and DNA Dis-
tribution was presented in Additional file 1A). Further-
more, a GFP-RFP-LC3 and siRNA co-transfection was
established and investigated by fluorescence microscopy.
As shown in Fig. 7e, genetic silencing of AKT and ERK
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significantly enhanced the bicyclol-induced increase in
the amount of autolysosomes and autophagosomes com-
pared with bicyclol treatment alone. These influences of
siRNA-mediated AKT and ERK silencing on bicyclol-
induced cell cycle arrest and autophagy agree with the
results from the chemical inhibitors, indicating that bicy-
clol suppresses the PI3K/AKT and the Ras/Raf/MEK/
ERK pathways, leading to LC3 conversion, inhibition of
the growth regulatory signals of G1 phase, and eventu-
ally cell cycle arrest at G1 phase and autophagy.

Discussion
At present, bicyclol is a novel synthetic drug that has
been widely used in the clinic to treat patients with
chronic hepatitis B viral infections [6]. The previous
studies focused on its protective effects against
hepatotoxin-induced liver injury, but the anti-cancer po-
tential of bicyclol remained unexplored. From previous
studies [13], bicyclol has protective effects and induces
expression of heat shock protein 27 under 100uM at less
than 24 h. In this study, we found that bicyclol induces
cell cycle arrest at G1 phase and autophagy at more than
100uM, and we also identified the molecular mechan-
ism, showing that bicyclol suppresses both the PI3K/
AKT pathway and the Ras/Raf/MEK/ERK pathway
and downregulates cyclin D, cyclin E and mTOR,
leading to Rb dephosphorylation and the conversion
of LC3I to LC3IL

We found that bicyclol treatment of HepG2 cells
caused a dose-dependent increase in the percentage of
cells in G1 phase. Therefore, we specifically focused on
proteins that regulate the cell cycle. CDK2 and CDK4
play a central role in cell cycle progression by forming
complexes with cyclin E and D1, respectively [30, 31]. By
binding to cyclin Ds, CDK4 phosphorylates the Rb pro-
tein to release Rb from the E2F complex, leading to
transactivation of the E2F target genes important for S
phase [32-34]. By binding to cyclin Es, CDK2 also can
phosphorylate the Rb protein and control the transition
into S phase [35]. As shown in Fig. 3, bicyclol not only
inhibited CDK2-cyclin E and CDK4-cyclin D expression
but also suppressed Rb phosphorylation in a dose-
dependent manner. Intrinsic CDK inhibitors, such as
p21<"*! and p27X™"!, which appear to be the primary
negative regulators during proliferation in a variety of
cell types, induce G1 cell cycle arrest by binding to the
CDK-cyclin complex and inhibiting its kinase activity
[36-38]. Our results suggested that p21<'** and p27"'"**
upregulation, inhibition of levels of the CDK2-cyclin E
and CDK4-cyclin D complexes, and Rb down-regulation
contribute to the anti-proliferative effects of bicyclol in
HepG2 cells.

We investigated the pathways that regulate cell cycle
arrest at G1/S checkpoint to further confirm which
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Fig. 7 AKT and ERK siRNAs enhanced the anti-proliferative effect of bicyclol in HepG2 cells. a Cell proliferation after AKT inhibition and bicyclol
treatment. The cells were transiently transfected with the AKT siRNA using Lipofectamine RNAIMAX and incubated for 48 h. Then, the transfected
cells were treated with 200 uM bicyclol for 24 or 48 h. The As;o was then measured after the MTT incubation. b Living cell number after ERK
inhibition and bicyclol treatment. The cells were transiently transfected with the ERK siRNA using Lipofectamine RNAIMAX and incubated
for 48 h. Then, the transfected cells were treated with 500 uM bicyclol for 24 or 48 h. The As7o was then measured after the MTT incubation. ¢ The
percent of cells in G1 phase after AKT or ERK inhibition and bicyclol treatment. The cells were treated as in (A) with 200 uM bicyclol for 24 h, and the
percentage of cells in G1 phase was determined by flow cytometry. d The transfection efficiency of the AKT and ERK siRNAs. The cells were transiently
transfected with AKT or ERK siRNAs using Lipofectamine RNAIMAX and incubated for 48 h. Then, the cells were disrupted, and cellular 3-actin, total
AKT and total ERK were analyzed by western blotting. e The number of autophagosomes and autolysosomes was increased by AKT or ERK inhibition.
The cells were co-transfected with the GFP-RFP-LC3 vector and AKT/ERK siRNAs using Lipofectamine 2000, incubated for 48 h, and then
treated with 200 uM bicyclol for another 24 h. The GFP-RFP-LC3 fluorescence was observed by a confocal microscope, and the number
of autophagosomes (yellow dots) and autolysosomes (free red dots) in each cell was counted. Bar graphs represent the means +SD from

pathways were downstream of bicyclol. In this study,
bicyclol dephosphorylates Akt at Ser 473 and downregu-
lates the PI3K/AKT pathway in HepG2 cells. The PI3K/

AKT pathway plays a major role in many carcinogenic
processes, such as cell growth and differentiation, and
AKT phosphorylation at Ser473 is essential for maximal
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Akt activation [39]. Compelling evidence suggests that
expression of phosphor-Ser473 Akt in primary human
breast cancers was statistically correlated with p27<"*
expression in the tumor cytosol [40]. Moreover, activated
Akt directly phosphorylates and inhibits p21<'** [41], in-
directly activates cyclin D, and, thus, induces cell cycle
progression [42]. In this study, we speculated that the
bicyclol-induced Akt inactivation subsequently up-
regulated the level of p21<""! and p27"'*! transcription,
thereby blocking cell cycle progression at G1 phase by
suppressing CDK2 and CDK4 activity. The Ras/Raf/
MEK/ERK pathway is also inhibited by bicyclol. Blocking
ERK activity blocks cyclin D1 expression and cell prolif-
eration [43]. Additionally, activated ERK is essential for
the assembly of the cyclin E/CDK2 complex [44]. Thus,
ERK plays an important role in the G1/S checkpoint. In
this study, we suggested that the bicyclol-induced ERK
inactivation downregulated the cyclin D/CDK4 and cyc-
lin E/CDK2 complexes. Furthermore, the PI3K/AKT
and the Ras/Raf/MEK/ERK pathways can interact in
multiple ways. MEK can activate Akt activity in
hematopoietic cells [45], and Akt can contribute to Raf-
1 inactivation in some cells. However, it is not clear
how bicyclol mediates the two pathways, which needs
further studies.

The PI3K/AKT and the Ras/Raf/MEK/ERK pathways
also play an important role in autophagy. Activated Akt
directly phosphorylates the protein encoded by the
TSC2 tumor suppressor gene [46]. The phosphorylation
blocks TSC2 binding with TSC1, and subsequently pre-
vents formation of the TSC1/2 complex [47]. Akt can
also inhibit PRAS40, which then activates mTORCI and
induces autophagy [29]. ERK also phosphorylates and
inhibits TSC1/TSC2, which then activates mTORC1
and induces autophagy [48]. The mTOR complex 1
(mTORC1) consists of mTOR, RAPTOR, PRAS40,
mLST8, DEPTOR, and the Ttil/Tel2 complex [49-52].
mTORCI can phosphorylate the autophagy-related gene
13 (ATG13) [53] and the autophagy/beclin 1 regulator 1
(AMBRA1) [54], which inhibits the autophagy-initiating
UNC-5-like autophagy activating kinase (ULK) complex.
On the other hand, the mTORC]1 can also regulate the
VPS34 complex by phosphorylating ATG14 L [55].
Therefore, mTORCI inhibition induces ULK1/2 com-
plex and the VPS34 complex activity, leading to the
conversion of LC3I to LC3II, a specific marker of autop-
hagosome formation, and eventually induces autophagy.
Our findings demonstrated that bicyclol inhibited
p-mTOR, converted LC3I to LC3II, and induced autopha-
gosome formation and autophagy. The amount of autoly-
sosomes and autophagosomes were significantly increased
after co-treatment with bicyclol and LY294002 (or
PD98059). In addition, AKT or ERK knockdown by
siRNA enhanced bicyclol-induced autophagy. Based on
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the above analysis, we conclude that the bicyclol-induced
autophagy is closely associated with the PISK/AKT and
the Ras/Raf/MEK/ERK pathways.

Conclusions

In conclusion, bicyclol inhibited cell cycle progression at
G1 phase and induced autophagy in HepG2 cells, and
the drug didn’t increase cell apoptosis or necrosis. The
anti-proliferative effect of bicyclol was considered as the
result of combination of cell cycle arrest and autophagy,
leading to induced cell proliferation in MTT results.
Our mechanistic study indicated that the cytotoxicity of
bicyclol is closely associated with the inhibition of the
PI3K/AKT pathway and the Ras/Raf/MEK/ERK pathway.
The results contribute to our understanding of bicyclol
and provide clear evidence for its promising potential in
preclinical and clinical situations.

Additional files

<
Additional file 1: (A) The DNA distribution of cells treated with bicyclol-
siRNA-, bicyclol + siRNA-,bicyclol-AKT siRNA+, bicyclol + AKT siRNA+,
bicyclol-ERK siRNA+ and bicyclol + ERK siRNA+. The siRNA was transfected
as mentioned in Methods. Then the cells were treated with bicyclol for

24 h. (B) MTT results of HepG2 cell viability with treatment 500 uM Bicyclol

or 10 pM Sorafenib. (TIF 696 kb)

Additional file 2: (A) The DNA distribution of cells treated with bicyclol-
AKT cDNA-, bicyclol-AKT cDNA+, bicyclol + AKT cDNA- and bicyclol + AKT
cDNA+. The cDNA was transfected as mentioned in Methods. Then the
cells were treated with bicyclol for 24 h (B) The DNA distribution of cells
treated with bicyclol or/and LY294002 for 24 h. (C) The DNA distribution
of cells treated with bicyclol or/and PD98059 for 24 h. (TIF 809 kb)
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