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Long non-coding RNA MALAT-1 modulates @
metastatic potential of tongue squamous

cell carcinomas partially through the

regulation of small proline rich proteins
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Abstract

Background: We previously described several abnormally expressed long non-coding RNA (IncRNA) in tong
squamous cell carcinomas (TSCCs) that might be associated with tumor progression. In the present study, we
aimed to investigate the role of abnormally expressed metastasis-associated lung adenocarcinoma transcript 1
(MALAT-1) IncRNA in the metastatic potential of TSCC cells and its molecular mechanisms.

Methods: Expression levels of MALAT-1 IncRNA were examined via quantitative reverse transcriptase polymerase
chain reaction (qRT-PCR) in 127 TSCC samples as well as paired adjacent normal tissues and lymph node metastases
(if exist). Lentiviral vectors expressing short hairpin RNA (shRNA) were used to knock down the expression of MALATT
gene in two TSCC cell lines (CAL27 and SCC-25) with relatively higher MALAT-1 expression. Proliferational ability
of the TSCC cells was analyzed using water soluble tetrazolium-1 (WST-1) assay. Metastatic abilities of TSCC cells
were estimated in-vitro and in-vivo. We also performed a microarray-based screen to identify the genes influenced by
MALAT-1 alteration, which were validated by real-time PCR analysis.

Results: Expression of MALAT-1 IncRNA was enhanced in TSCCs, especially in those with lymph node metastasis (LNM).
Knockdown (KD) of MALAT-1 IncRNA in TSCC cells led to impaired migration and proliferation ability in-vitro and fewer
metastases in-vivo. DNA microarray analysis showed that several members of small proline rich proteins (SPRR)
were up-regulated by KD of MALAT-1 IncRNA in TSCC cells. SPRR2A over-expression could impair distant metastasis
of TSCC cells in-vivo.

Conclusion: Enhanced expression of MALAT-1 is associated with the growth and metastatic potential of TSCCs. Knock
down of MALAT-1 in TSCCs leads to the up-regulation of certain SPRR proteins, which influenced the distant metastasis
of TSCC cells.
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Background

Oral cancer is the third most common cancer in devel-
oping nations and the sixth most common cancer
worldwide [1, 2]. Squamous cell carcinoma is the most
common oral cancer and frequently involves the tongue
[3-5]. Although tongue squamous cell carcinoma
(TSCC) can be cured with proper treatment when de-
tected early, patients who have had TSCC have a high
risk of developing secondary and/or recurrent tumors
in the surrounding area, a phenomenon called field
effect. Once tumor cells spread to the lymph nodes, the
overall mortality rate is high and the 5-year overall
survival rate does not exceed 50 % [6—8].

Long non-coding RNAs (IncRNAs, pseudogenes and
circRNAs) have recently come into light as powerful
players in cancer pathogenesis and it is becoming in-
creasingly clear that they have the potential of greatly
contributing to the spread and success of personalized
cancer medicine [9, 10]. In our previous study, we iden-
tified several IncRNAs that might be associated with the
progression of TSCCs in a certain number of TSCC
cases, which includes MALAT-1 [11]. MALAT-1 is a
novel large, noncoding RNA. The MALAT-1 gene, also
known as the NEAT2 gene, is found on chromosome
11q13 and is well- conserved among mammalian species
[12]. The MALAT-1 transcript is widely expressed in
normal human and mouse tissue, has been shown to
localize to the nucleus and its 3" end can be processed
to yield a tRNA-like cytoplasmic RNA. MALAT-1 has
been shown to be a potentially generic marker for epi-
thelial carcinomas and is greatly up-regulated in lung
adenocarcinoma metastasis [13], endometrial stromal
sarcoma of the uterus [14], non-hepatic human carcin-
omas [15] and was recently reported to be overexpressed
in placenta previa and to play a role in trophoblast inva-
sion regulation [16].

In the present study, we enrolled additional TSCC pa-
tients and examined the expression levels of MALAT-1 in
all the collected samples. We explored the correlation
between the MALAT-1 IncRNA expression and cancer
metastasis. We also aimed to find out the differentially
expressed genes between MALAT-1 knockdown and con-
trol cells by DNA microarray analysis. We found that the
expression of small proline-rich protein 2A (SPRR2A)
were negatively regulated by MALAT-1 expression and
had an influence on cancer metastasis in vivo.

Methods

Patients and tissue collection

This study was approved by Ethics Committee of Peking
University Health Science Center (IRBO0001053-0804:3).
TSCC samples were obtained from 127 patients of the
Department of Oral & Maxillofacial Surgery, Shenzhen
Hospital, Peking University. A summary of cohort
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characteristics was listed in Table 1. A detailed descrip-
tion of tumor characteristics was listed in Additional
file 1: Table S1. Adjacent normal mucosa tissues located
at least 1.5 cm far from the macroscopically unaffected
margins of the tumor were defined as normal controls.
All the TSCC samples were graded in 4 groups accord-
ing to common criteria of SCC staging: Stagel (less
than 2 centimeters in size and has not spread to lymph
nodes in the area; n = 23), Stage2 (more than 2 cm in
size, but less than 4 cm, and has not spread to lymph
nodes in the area; n =55), Stage3 (more than 4 cm in
size/ has spread to only one lymph node on the same
side of the neck as the cancer; n=38), Stage4 (has
spread to tissues around the lip and oral cavity/ has
spread to more than one lymph node on the same side
of the neck as the cancer, to lymph nodes on one or
both sides of the neck, or to any lymph node that mea-
sures more than 6 cm/ has spread to other parts of the
body, n=11). The TSCC tissues were collected from
patients undergoing surgical excision. Matched samples
of TSCC (n =127) and normal oral squamous cell mu-
cosa (n = 127) were subjected to real-time PCR analysis.
All patients were informed about the aims of specimen
collection and gave signed written consent in accord-
ance with the ethical guidelines of Peking University.

RNA extraction and real-time PCR

Total RNA was isolated from tissues by using a Axy-
PrepTM Blood Total RNA MiniPrep Kit (Axygen, US)
according to the manufacturer’s instruction. First strand
c¢DNA was synthesized with a RevertAidTM First Stand
c¢DNA Synthesis Kit (Fermentas, US) using random hex-
amar primer. Quantitative PCR was performed through
BioRad Chromo4 real-time PCR system. The primer sets
for amplifying MALAT-1 and other related genes were
listed in Table 2. Since “housekeeping” gene may have
differential expression in the tissue types being evaluated
[17], we compared the expression of 16 reference genes

Table 1 Summary of the cohort characteristics

Characteristics Information

Gender Female 46
Male 81

Age Average age 51.2
Range 23~75

Tumor Location Root 15
Lateral margin 50
Inferior surface 52
Dorsum 3
Around tongue tip 7

Lymph node metastasis (LNM) With LNM 59
Without LNM 68
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Table 2 Primer sets used for amplifying the fragment of INncRNA
transcripts and control

Forward(5'-3") Reverse(5'-3')
MALATT GGATCCTAGACCAGCATGCC AAAGGTTACCATAAGTAAGTT
CCAGAAAA

SPRR2A  GGATATTTGGCTCACCTCGT GGAGAAAGAAGCTCCCTGTG
SPRR2D  CTGTAGTACACATCACTTGTGGC ACTTGCATCCCAGGACAGAT
SPRR2E  CACAGCTTCACCTGCATCTT CAATATGGCAGCCTCAGAAA
SPRR1B GGCCACCAGATGCTGAAT CAGAATGCTAATTGCAAGGC
ACTB GAGCACAGAGCCTCGCCTTT TCATCATCCATGGTGAGCTGGC

in 30 paired TSCC, ANT and LNM samples (Additional
file 2: Figure S1). The sequences of the selected refer-
ence genes were listed in the Additional file 1: Table S2.
We selected ACTB as the reference gene in analyzing
the results. At the end point of PCR cycles, melt curves
were made to check product purity. The level of
MALAT-1 was expressed as a ratio relative to the f-
actin mRNA in each sample. Exploratory data analysis
using box plot was applied to visually identify the ex-
pression level of target mRNA.

Cell culture

Human tongue squamous cell carcinoma cell line CAL
27 and SCC-25 (CRL-2095™ & CRL-1628™) was obtained
from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China) where they were characterized by
mycoplasma detection, DNA -Fingerprinting, isozyme
detection and cell vitality detection. These cell lines were
purchased in August 2012 and immediately expanded
and frozen so that they could be restarted every 3 to
4 months from a frozen vial of the same batch of cells.
CAL 27 and SCC-25 cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM, GIBCO, US) supple-
mented with 10 % fetal bovine serum (PAA) and 1 %
penicillin/ streptomycin (Life Technologies Inc., US).

MALAT-1 knockdown by lentiviruses

To generate lentiviruses expressing MALAT-1 shRNA
and control shRNAs, HEK293T cells grown on 10 cm
dish were transfected with 6 pg of MALAT-1 shRNAs
(cloned in PLKO.1) or control vector, 6 pg of pREV, 6 ug
of pGag/Pol, and 2 pg of pVSVg. 12 h after transfection,
cells were cultured with DMEM medium containing
20 % FBS for an additional 36 h. The culture medium
containing lentivirus particles was centrifuged at
10000 x g for 2 min and then used for infection. 24 h
after infection, cells were cultured with fresh medium
for another 24 h, followed with further experiment. The
knockdown efficiency was evaluated by real-time PCR
analysis. The shRNA sequences targeting MALAT-1 are
“ATG GAG GTA TGA CAT ATA AT” and “GGG AGT
TAC TTG CCA ACT TG” [18].
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Cell proliferation assay

Cell proliferation was measured by Cell Proliferation Re-
agent WST-1 (Roche, USA) as introduced previously
[19]. Cells were counted and plated in 96-well culture
plates (1 x 10 per well); WST-1 assay measuring the ac-
tivity of mitochondrial dehydrogenases was performed
following the manufacturer’s instructions at 0-, 1-, 2-, 3-,
and 4-day time points.

Cell migration assay

Migration assays were performed using 24-well Trans-
well units with 8 mm pore size polycarbonate inserts
(BD Biosciences, US). Trans-wells were coated overnight
with 10 mg/ml of fibronectin in PBS at 48 °C, followed
by incubation with 1 % BSA for 1 h at 37 °C. The SCC-
25 and CAL27 cells transfected with sShARNA (MALAT-1
shRNA) or plasmids (SPRR expression vectors and mock
vectors) were detached with trypsin/EDTA, washed once
with DMEM containing 10 % FBS, and re-suspended in
DMEM containing 1 % FBS at 2 x 10° cells/ml. Aliquots
(100 microliters) of cell suspensions were directly added
to the upper side of each chamber. Following incubation
for 12 h, the cells on the upper side of the membrane
were removed, whereas the cells that migrated to the
underside were fixed with 3 % formaldehyde and
stained with 0.3 % crystal violet for 10 min. The num-
ber of cells on the underside of the membrane was
counted in five different fields with a light microscope
at 100x, and the mean and SD was calculated from
three independent experiments.

DNA microarray

After washing the cells with 50 mM potassium phos-
phate buffer (pH 7.4), the total RNA of each sample
was extracted by RNeasy Mini Kit (Qiagen, US). The
procedure for the extraction of the total RNA was ac-
cording to the manufacturer’s instruction. The quality
of the extracted RNA was confirmed with Bioanalyzer
2100 (Agilent Technologies, US). GeneChip(R) arrays
(Affymetrix) were used as the DNA microarrays. DNA
microarray analysis was performed with Bio Matrix
Research. Statistical analysis after data acquisition and
normalization of expression data was performed using
GeneSpring (Agilent Technologies, US). For the pathway-
or function-based category classification, the Munich In-
formation Center for Protein Sequence (MIPS) was used.

Western blotting

Cells were washed with PBS and lysed in a buffer con-
taining 50 mM Tris-HCI (pH 6.8), 2 % SDS, 10 % gly-
cerol, phosphatase inhibitors (100 mM NazVO,, 10 mM
NaF) and protease inhibitor (1 mM PMSF). Equal
amounts of protein were loaded on a SDS-PAGE and
transferred to PVDF membrane. After blocking with 5 %
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non-fat milk in TBS-T (containing 0.1 % Tween-20), the
membranes were incubated with specific primary anti-
bodies, followed by HRP-conjugated secondary anti-
bodies. Proteins were visualized by fluorography using
an enhanced chemiluminescence system. Antibodies for
SPRR1B, 2A (Abcam, US), 2E (Abnova, US) and B-actin
(Sangon,Shanghai, China) were purchased as the primary
antibodies for the approach.

Establishment of the SCC metastases animal model in
nude mice

The animal experiments were approved by the Ethics
Committee of Peking University Health Science Center
(IRB00001053-09028). Six-week-old male nude mice
(Zi Guang Laboratory Animal Technology Co. Ltd.,
Guangdong, China) were placed under general anesthesia
with 1 % pentobarbital sodium (Sigma). SCC-25/CAL 27
cells (5 x 10°) were injected subcutaneously (15 mice each
group, and additional 15 mice for CAL27-Mock and
CAL27-MALATI1KD cells). Metastasis was assayed by
gross examination at autopsy and by PCR for Alu se-
quences in various organs. Control cells including SCC-25
and CAL27 cells caused grossly evident metastasis within
the first 8 weeks and all animals were sacrificed at this
time point. On the contrary, mice receiving MALAT-1
shRNA-transfectants were healthy at 8 weeks, but several
were sacrificed for comparison, while the remaining mice
were followed for an additional 4 weeks to determine if
metastatic tumors developed. The volume of xenograft
was calculated as v = 3/4mab® (a = length, b = width). The
average volume of the xenografts at sacrifice were listed in
the Additional file 1: Table S3. Grossly obvious tumors
and metastases were dissected and fixed immediately with
4 % paraformaldehyde for pathological analysis (Some of
the animal models as well as metastases were shown in
the Additional file 3: Figure S2).

Plasmids and transfection

The cloned SPRR1B & 2A cDNA fragment were
inserted into pcDNA3.1 expression vector to construct
the expression vectors. To produce stable transfec-
tants, pcDNA-SPRR1B & 2A as well as mock plasmids
were stably transfected into the CAL27/SCC25 line
using Lipofectamine 2000 reagent (LF2000, Invitrogen,
Carlsbad, CA) according to the manufacturer’s recom-
mendations. Selection was performed via the addition
of 1 mg/ml G418. The transfectants from the backbone
vector and pcDNA3-SPRR1B/2A were designated as
mock-CAL27/SCC25 and SPRR1B/2A-CAL27/SCC25,
respectively.

Statistical analysis
GraphPad Prism software (Version 5.0) was used to
analyze the obtained data. Results of the MALAT-1
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IncRNA expression for paired TSCC and ANT samples
or paired TSCC and local lymph-node metastasis were
compared using paired t-test. Results of the MALAT-1
IncRNA expression for different TSCC groups were
compared using non-parametric Mann-Whitney test.
Data of in-vitro experiments were analyzed using the
chi-square test or Fisher exact test. Differences of the
metastasis between different groups of mouse models
were analyzed using Chi-square test. P-values less than
0.05 were considered statistically significant.

Results

Enhanced expression of MALAT-1 IncRNA correlates with
lymph node metastasis in TSCCs

As a complementary experiment for the previous study,
we examined the expression of MALAT-1 IncRNA in all
the collected TSCC samples (n=127), paired adjacent
normal tissues (ANTs) and lymph node metastases (n =
59) in the present study. As shown in Fig. 1a, the expres-
sion levels of MALAT-1 IncRNA increased significantly
in TSCCs compared to paired ANTs. In TSCC tissues
with lymph node metastasis (LNM), the expression
levels of MALAT-1 IncRNA were statistically higher
than those without LNM (Fig. 1b). On the other hand,
the differences were less significant between paired pri-
mary tumor and LNMs (n =59, Fig. 1c).

Knockdown of MALAT-1 IncRNA impaired migration of
TSCC cells in-vitro and in-vivo

In the preliminary work, we found that the expression
levels of MALAT-1 were higher in SCC25 and CAL27
lines than those in SCC-6, SCC-9 and SCC15 lines
(Fig. 2a). Thus, we selected these two cells for the in-
vitro studies. After MALAT-1 was knock down by
lentiviruses (Fig. 2b), the cell growth were both atten-
uated in SCC25 and CAL27 cells (Fig. 2c). We next
estimated cell migration of SCC25 and CAL27 cells
using trans-well assay. It was found that the both
SCC25 and CAL27 cells with impaired expression of
Malat-1 migrated less effectively through trans-well
membrane (Fig. 2d & e).

We next tested the metastatic potential of control
shRNA and MALAT-1 shRNA transfectants 8-12
weeks after subcutaneous injection as introduced in
the Methods section. Decreased number of mice that
developed metastasis was observed in CAL27-
MALATI1KD group compared to the control group
(Table 3, p<0.05). Detailed information of organ-
specific metastases was also listed in Table 3. On the
other hand, the results using SCC-25 cells could
hardly be analyzed due to the insufficient metastasis
formation. Thus, we selected CAL27 cells for follow-
ing the in-vivo experiments.
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Fig. 1 Enhanced expression of MALAT-1 IncRNA in TSCC. Real-time PCR assay was carried out as described under Methods Section and the results
were obtained from indicated group of samples. a Scatter plot illustrated the relative expression of MALAT-1 as a ratio of IncRNA to -actin mRNA
in each sample; b Scatter plot illustrated the relative expression of MALAT-1 as a ratio of TSCC to paired ANT in the TSCCs with or without lymph
node metastasis; ¢ Scatter plot illustrated the relative expression of MALAT-1 as a ratio of INcCRNA to -actin mRNA in each sample
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Knockdown of MALAT-1leads to the enhanced expression
of several SPRR proteins

As a non-coding RNA, MALAT-1 could not directly
influence cell migrational ability. We surveyed the differ-
entially expressed genes between MALAT-1 KD and
control cells by DNA microarray analysis. Numerous
genes showing significant differential expression were
identified in the microarray analysis in two independent
MALAT-1 KD cell lines. The down-regulated genes in
MALAT-1 KD cells included genes previously implicated
in extracellular matrix and cytoskeleton regulation, such
as LAYN, CCT4, CTHRCI, and FHLI. Here we noticed
that expressions levels of several members of SPRR fam-
ily were also influenced by MALAT-1 KD (Fig. 3a),
which was a novel finding.

The qRT-PCR analysis was performed to confirm the
expression level of differential expressed genes. As
shown in Fig. 3b, mRNA levels of SPRR1B, SPRR2A,
and SPRR2E were significantly up-regulated in MALAT-
1 KD cells. The altered expression of LAYN, CCT4,
CTHRCI, and FHLI were also confirmed by qRT-PCR

(Fig. 3c). We also used a Western blot to examine the
protein levels of these genes. It was found that the pro-
tein levels of SPRR1B and 2A were significantly induced
in MALAT-1 KD cells (Fig. 3d, e & g), while SPRR2E
were slightly influenced (Fig. 3f & g).

Over-expression of SPRR2A prevents TSCC metastasis
in-vivo

Previously, it was indicated that LAYN, CCT4, CTHRCI,
and FHLI gene were correlated with the migrational poten-
tial of lung cancer cells [13]. Here we wondered whether
SPRRs regulated by MALAT-1 also could influence TSCC
metastasis. SPRRs are a subclass of structural proteins
which constitute cornified cell envelope precursors. Several
studies have suggested that the SPRRs are related to in-
creased epithelial proliferation and malignant processes.
Here we first use trans-well assay to estimate the migra-
tional/invasive abilities of TSCC cells with different expres-
sion of SPRR1B and 2A. As shown in Fig. 4a & ¢, SPRR2A/
1B transfectants showed marked increase of protein levels
in CAL27 and SCC25 cells. In-vitro studies showed that
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Fig. 2 Knockdown of MALAT-1 IncRNA impaired proliferation and migration of TSCC cells in-vitro. a Expression levels of Malat-1 IncRNA were
examined by real-time PCR. b After treatment of lentiviruses expressing MALAT-1 shRNA and control shRNAs, the expression levels of
MALAT-1 IncRNA were examined by real-time PCR. The relative expression of Malat-1 INcCRNA (as the ratio of Malat-1 IncRNA to (3-actin
mRNA) is illustrated as a ratio to control (cells transfected with nonsense siRNA). ¢ WST-1 (Roche) assay measuring the activity of mitochondrial
dehydrogenases was performed following the manufacturer’s instruction at 0-, 1-, 2-, 3-, 4- day time points. Error bars represent the standard deviation
of the mean; d Cell migration was determined using a transwell assay as described in the Methods section. Microscopic image of migrated CAL
27 and SCC-25 cells with indicated treatments: (I) SCC25 + control shRNA; (Il) SCC25 + MALAT1KD shRNA; (lll) CAL27 + control shRNA; (IV)
CA 27 + MALAT1KD shRNA; e Diagrams of migrating cells from the different transfectants are shown, which are from more than three
independent experiments.*P < 0.05 versus control

Table 3 The number of organ-specific metastasis sites in nude mice after cell plantation

Metastasis site CAL-27-Mock CAL27-MALAT1KD SCC-25-Mock SCC-25-MALAT1KD
(30mice/group) (30 mice/group) (15mice/group) (15 mice/group)

Brain 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)

Kidney 5 (16.7 %) 2 (6.7 %) 1(6.7 %) 0 (0 %)

Liver 9 (30 %) 4 (133 %) 2 (133 %) 2 (133 %)

Mediastinum 4 (133 %) 1 (3.3 %) 0 (0 %) 0 (0 %)

Bone 3 (10 %) 0 (0 %) 0 (0 %) 0 (0 %)

Colon 14 (46.7 %) 6 (20 %)* 4 (0 %) 2 (0 %)

Local invasion 22 (733 %) 18 (60 %) 12 (0 %) 13 (0 %)

Mesentery 7 (233 %) 3 (10 %) 3 (133 %) 1(6.7 %)

Mice with metastases 18 (60 %) 9 (30 %)* 5 (333 %) 2(13.3)

*P < 0.05 V.S. CAL27-Mock group
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over-expression of SPRR1B and 2A slightly promoted the
migration of CAL 27 cells and SCC25 cells (Fig. 4b & d)
and had little effects on cell proliferation (Additional file 4:
Figure S3). We next tested the metastatic potential of mock
vector and SPRR2A/1B transfectants 8—12 weeks after
subcutaneous injection. SPRR2A-CAL27 cells showed

impaired distant metastasis compared to Mock-CAL27
cells (Table 4), while no obvious differences were ob-
served between SPRR1B-CAL27 cell and mock cells.
Thus, increased MALAT-1 expression might enhance
TSCC distant metastasis partially through the down-
regulation of SPRR2A.
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" o Discussion and conclusions
Table 4 The number of organ-specific metastasis sites in nude

mice after cell plantation (15 mice/each group)

LncRNA contributes significantly to human transcriptome
and is believed to play a critical role in cancer develop-

Meltastams site Mock-CAL27  SPRR2A-CAL27  SPRR1B-CAL27 ment. A previous report showed that ~60 % of the
Brain 0 0 0 detected IncRNAs have aberrant expressions in oral pre-
Kidney 1 0 2 malignant lesions [20]. Previously we focused on TSCC
Liver 6 2 7 and a series of abnormally expressed cancer-related
Mediastinum 2 1 2 IncRNAs were identified [11]. Here we further proved that
Bone 5 0 5 the expression levels of MALAT-1 IncRNA were markedly
Colon g ; 9 elevated in TSCC, especially in TSCC with LNM. In

o TSCCs with LNM, increased expression of MALAT-1
Local invasion A 13 12 IncRNA was detected in LNMs than in primary tumors.
Mesentery 3 1 3 Cell growth and migration was attenuated in MALAT1-
Mice with metastases 11 (733 %) 5 (333 %)* 12 (80 %) KD TSCC cells. These all indicated the potential role of

*P < 0.05 V.S. Mock-CAL27 group

MALAT-1 IncRNA in metastasis of TSCCs.
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In microarray analysis, we found that MALAT-1 knock-
down led to the accumulation of SPRR proteins, which
was a novel finding. The SPRRs constitute cornified cell
envelope precursors [21]. Several studies have suggested
that the SPRRs are related to increased epithelial prolifera-
tion and malignant progression [22]. Why knockdown of
MALAT-1 IncRNA would lead to the accumulation of
SPRR proteins in TSCC cells? One possibility is that
MALATTI regulates gene transcription via modification
of the epigenetic program. Yang et al. reports MALAT1
can facilitate the assembly of multiple co-repressors/co-
activators and finds that MALAT1 alters the histone
modifications on chromatin by alternating the activity
of Polycomb2 protein (Pc2) [23]. In addition, MALAT1
molecule has been linked to the physical interaction
with critical chromatin-modifier Polycomb Repressive
Complex 2 (PRC2) to modulate the epigenetic status of
target genes [24]. Hirata H. et al. [25] reports that
MALAT1 directly binds to the EZH2 protein, which is
a critical component of the PRC2 complex to play the
methyltransferase activity of the chromatin histone
modifications; similar result showed that MALAT1
binds to active chromatin sites [26]. These experimen-
tal evidences showed that MALAT1 modulates the
chromatin histone methylations by binding to PRC2
complex and abolishing its methylation activity.

Another possibility goes to the direct regulation of
target gene by IncRNA. Four different regulation mecha-
nisms by IncRNAs might be involved in MALATI1-
mediated modulation: (a) MALAT-1 IncRNA molecule
interacts with double strand DNA and represses gene
transcription; (b) MALAT-1 IncRNA fragments act as
intronic siRNA to bind with mRNA and repressing
mRNA translation; (c) Produce alternative splicing
IncRNAs to regulate gene expression. Different isoforms
from alternative splicing have different regulation activ-
ity and specificity, which regulate the gene expression
with different patterns; (d) MALAT-1 IncRNA molecule
interacts with basal transcriptional machinery which dis-
rupts the transcription initiation complex and represses
transcription [27-29]. These need further investigation.

In the present study, over-expression of SPRR2A in
TSCC cells could slightly promote cell migration in-
vitro but impair distant metastasis in-vivo, which seemed
to be a confusing result. A previous finding also showed
that SPRR2A over-expression increases local tumor inva-
siveness but prevents metastasis in cholangiocarcinoma
[30]. This may be explained by the irreversible epithelial-
mesenchymal transition (EMT) of the SPRR2A transfec-
tants. Progression of epithelial tumors requires temporary
acquisition of mesenchymal characteristics (EMT), which
allows for local invasion and hematogenous dissemination
of the cancer cells. At distant sites, these cells undergo
mesenchymal-epithelial transition (MET) to establish
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residence and form tumors that are histopathologically
similar to the primary tumor. Dr. Specht et al. reported
that their stable SPRR2A clones are in a permanent, irre-
versible mesenchymal state. In the current study, CAL27-
SPRR2A cells also appeared to be plastic and have high
mobility, which showed mesenchymal behavior (indicated
by increased Twist protein expression in SPRR2A-CAL27
but not SPRR1B-CAL27, Additional file 5: Figure S4).
Thus, impaired MET ability of SPRR2A-CAL27 might be
associated with the reduced distant metastases.

In general, plausibly, our findings indicated that the
expression level of MALAT-1 have the potential to indi-
cate MALAT-1 have potential for prognostic indicator in
lymph node metastasis of TSCC. MALAT-1 knockdown
led to the accumulation of SPRR proteins, in which
SPRR2A was shown to be associated with the distant
metastasis of TSCCs. The underlying mechanisms of the
regulation of SPRRs by MALAT-1 need to be extensively
investigated in the future.

Additional files

Additional file 1: Table S1. Detailed information of tumoral characteristics
of patients and the information of metastasis. *The information of lymph node
metastasis includes the metastatic site, number of lymph nodes involved and
largest diameter of metastasis. Table S2. Primer sequences of the 16
reference genes. Table S3. Volume of the xenografts when the mice
were sacrificed: The in-vivo experiments using mouse model were
performed as introduced in the Methods section. The average values
express as mean +s.d. (DOCX 30 kb)

Additional file 2: Figure S1. References gene selection for the paired
TSCC, ANT and LNMs. A: Melting curve of the amplification of the targeted
genes; B: Gel electrophoresis of the amplified products in Figure S1A.; C:
Column diagram with SD bar illustrated the relative expression of targeted
genes as a ratio of ANT/LNM to paired primary tumor. JPG 718 kb)

Additional file 3: Figure S2. Establishment of the SCC metastases
animal model in nude mice; grossly obvious tumors and metastases were
dissected and fixed immediately with 4 % paraformaldehyde for pathological
analysis. JPG 1505 kb)

Additional file 4: Figure S3. WST-1 (Roche) assay measuring the
activity of mitochondrial dehydrogenases was performed following
the manufacturer’s instruction at 0-, 1-, 2-, 3-, 4- day time points. Error bars
represent the standard deviation of the mean. (JPG 261 kb)

Additional file 5: Figure S4. Western blotting was performed to
examine the protein levels of Twist in the indicated cells; 3-actin was
used as control. (JPG 151 kb)
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