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Abstract

Background: Hypoxia is a typical character of locally advanced solid tumours. The transcription factor hypoxia-

inducible factor 1a (HIF-Ta) is the main regulator under the hypoxic environment. HIF-1a regulates various genes to
enhance tumour progression, angiogenesis, and metastasis. Sphingosine kinase 1 (SPHK-1) is a modulator of HIF-1a.

Methods: To investigate the molecular mechanisms of pristimerin in association with SPHK-1 pathways in hypoxic

PC-3 cancer cells. Vascular endothelial growth factor (VEGF) production, cell cycles, and SPHK-1 activity were
measured, and western blotting, an MTT assay, and an RNA interference assay were performed.

Results: Pristimerin inhibited HIF-1a accumulation in a concentration- and-time-dependent manner in hypoxic PC-3
cells. Pristimerin suppressed the expression of HIF-1a by inhibiting SPHK-1. Moreover, inhibiting SPHK-1 with a
sphingosine kinase inhibitor enhanced the suppression of HIF-1a, phosphorylation AKT, and glycogen synthase
kinase-3(3 (GSK-3[3) by pristimerin under hypoxia. Furthermore, a reactive oxygen species (ROS) scavenger enhanced

the inhibition of HIF-1a and SPHK-1 by pristimerin.

Conclusion: Taken together, these findings suggest that pristimerin can exert an anti-cancer activity by inhibiting

HIF-1a through the SPHK-1 pathway.
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kinase 1; VEGF, Vascular endothelial growth factor; VHL, Von Hippel-Lindau

Background
Hypoxia is a common characteristic of locally advanced
solid tumours [1] and up to 50-60 % of solid tumours
include areas of hypoxic tissues [2]. The hypoxic tumour
contributes to aggressive and metastatic cancer pheno-
types that are associated with resistance to radiation
therapy, chemotherapy, and a poor treatment outcome
(3, 4].

The hypoxia inducible factor-1 (HIF-1) is a transcription
factor and also a key factor that maintains oxygen homeo-
stasis in mammalian cells [5]. HIF-1 is a heterodimer
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consisting of HIF-1a and P subunits [6]. HIF-1a is domin-
antly expressed under hypoxic conditions, however, it ex-
ists in low levels under normoxic conditions [7]. On the
contrary, HIF-1p is expressed constitutively [7]. In nor-
moxic conditions, HIF-1a is hydroxylated by a tumour
suppressor Von Hippel-Lindau (VHL) protein of the E3
ubiquitination ligase complex. Whereas, under hypoxic
conditions, HIF-1a remains unhydroxylated and facilitates
several factors, [8—10] such as angiogenesis, tumour
proliferation, tumour survival, and glycolysis [11, 12].
Sphingosine-1-phoshate (S1P) is a signaling sphingolipid
metabolite and a potent lipid mediator, which regulates
progress in tumour cells such as cell growth, proliferation,
apoptosis, invasion, angiogenesis, calcium homeostasis,
and vascular maturation [13, 14]. S1P precursors generate
from sphingosine by sphingosine kinase 1 (SPHK-1), and
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the generation of S1P precursors triggers either a cell’s
proliferation or death [13]. SPHK-1 can act as a catalyst
for the ATP-dependent phosphorylation of sphingosine,
which stimulates a wide array of growth factors, such as
PDGEF, FGF, EGF, HGF, VEGE etc. [15-21]. SPHK-1
mRNA is overexpressed in various solid tumours, such as
a breast, brain, lung, stomach, colon, kidney, and ovary tu-
mours [22]. Several studies have demonstrated that
SPHK-1 controls the level of HIF-1la during hypoxia in
cancer cells [23].

Pristimerin is a naturally occurring triterpenoid quinone
methide [24, 25]. Several studies have demonstrated that
pristimerin is involved in a variety of multiple biological ac-
tivities related to anti-inflammatory, anti-oxidant, anti-
cancer, anti-malarial, and anti-microbial action [26-28].
Also, pristimerin has shown potent anti-cancer effects, in-
cluding anti-proliferation, anti-migration, anti-angiogenesis,
and apoptosis-inducing activity in various cancer cell lines,
including glioma, leukemia, breast, lung, and prostate
cancer cell lines [24, 25, 29, 30] by inhibiting NF-kB
[29, 31-36]. Recently, Zuo, et al. reported that pristi-
merin has an inhibitory action on hypoxia-mediated
metastasis [4]. Nevertheless, the potential effects and
the mechanism of pristimerin in hypoxia-mediated
cancers still remain unknown.

Here, we demonstrate that pristimerin inhibits HIF-1«
via the SPHK-1 signaling pathway in a prostate cancer
cell lines. The results we have yielded provide the mech-
anism for inhibitory action of HIF-1a and angiogenesis
by pristimerin in hypoxic prostate cancer cell lines.

Methods

Test chemical

Pristimerin (purity: 298 % as determined by HPLC)
was purchased from Sigma Aldrich (St Louis, MO, USA).

Cell culture and hypoxia treatment

The human castration-resistant prostate cancer cell lines
PC-3 and DU145 cells were preserved in RPMI1640
(Welgene, Daegu, Korea), supplemented with 10 % FBS
and 1 % antibiotics (Welgene, Daegu, Korea). The
human androgen responsive prostate cancer cell line
LNCaP was maintained in RPMI1640, supplemented
with 25 % HEPES (Welgene, Daegu, Korea), 10 % FBS
and 1 % antibiotics (Welgene, Daegu, Korea). Normoxi-
cally conditioned cells were cultured in a 5 % CO, incu-
bator at 37 °C. The cells cultured under hypoxia were
grown in a hypoxic chamber (Forma Scientific, Marietta,
OH, USA) containing 1 % oxygen, 5 % carbon dioxide,
and 94 % nitrogen at 37 °C.

Cell viability assay
A colorimetric  3-(4,5-Dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) assay (Sigma, USA) was
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used to assess cell viability. Cells (1 x 10* per well) were
seeded in 96-well plates (SPL Life Science, Korea) and
treated with various concentrations (0, 0.047, 0.094,
0.188, 0.375, 0.75, 1.5, and 3 pM) of pristimerin. After
24 h, 50 uL of MTT reagent (1 mg/mL) was added. After
incubation for 1 h, optical density was measured by an
ELISA-Reader (Tecan, Switzerland) at a wavelength of
570 nm.

Western blot analysis

The cells were lysed in RIPA buffer (Cell signaling,
USA). The protein extract were separated on SDS—poly-
acrylamide gels and were electrotransferred to a nitro-
cellulose membrane (GE healthcare life sciences, UK).
The membranes were blocked in 5 % non-fat dry milk
and probed with primary antibodies for SPHK-1 (Cell sig-
naling, USA), HIF-1la (Novus Biologicals, USA), AKT
(Santa Cruz Biotechnology, Santa Cruz, CA, USA), p-
AKT (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
GSK-3p (Invitrogen, USA), p-GSK-3B (Cell signaling,
USA), VEGF (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), PCNA (DAKO, USA), PI3K (Millipore, Germany),
and P-actin (Sigma-Aldrich, St, Louis, MO, USA) over-
night at 4 °C and HRP-conjugated secondary antibodies.
Detection of specific proteins was carried out with an en-
hanced chemiluminescence (ECL) assay (GE Healthcare
Life Sciences, UK).

Sphingosine kinase assay

To measure sphingosine kinase activity, sphingosine kin-
ase activity assay kit (Echelon, Salt Lake City, UT, USA)
was used. The Sphingosine kinase activity assay method
was previously described in our other study [37, 38].
Protein extracts (30 pg) were reacted in reaction buffers,
100 uM of sphingosine, and 10 uM of ATP, for 1 h at 37 °
C, and then to stop the kinase reaction, a luminescence at-
tached ATP detector was added. Lumistar Optima lumin-
ometer (BMG LABTECH, Offenburg, Germany) was used
to measure kinase activity. All samples were prepared in
triplicates and the assay was repeated at least three times.

Measurement of VEGF production

VEGF ELISA kit (Invitrogen, Carlsbad, CA, USA) was
used to assess VEGF levels in pristimerin and/or SKI ex-
posed PC-3 cells. The VEGF production level measure-
ment methods was previously described in our other
study [39]. The culture supernatants was added in a 96-
well plate, and reacted with dilution buffer and incuba-
tion buffer at room temperature for 2 h. The wells were
then washed four times with washing buffer, and then bio-
tin conjugate was added to each well at room temperature
for 1 h. After washing, the stabilized chromogen was
added into each well and reacted for 30 min at room
temperature. The density was measured at 450 nm using a
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microplate reader (Molecular Devices Co., Sunnyvale, CA,
USA) after adding 100 ul of the stop solution.

Cell cycle assay

The cell cycle was determined according to the protocol
described previously [40]. Cells were fixed with 75 %
ethanol and resuspended in PBS with RNase (1 mg/mL)
at 37 °C for 1 h and stained with propidium iodide (PI).
The stained cells were analyzed for DNA content by
FACS Calibur containing Cell-Quest Software (Becton-
Dickinson, Heidelberg, Germany).
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RNA interference experiments

The siRNA transfection method was previously de-
scribed in our other study [37, 38]. A polyplus
siRNA transfection reagent (Illkirch, France) was
used to transfect siRNA for the control or SPHK-1
into PC-3 cells. In brief, siRNA (80 pmol) was mixed
with a transfection reagent in serum-free media and
reacted for 10 min at room temperature. The
siRNA/transfection reagent mixture was added to the
cells and incubated for 48 h. The medium was chan-
ged before the treatment with pristimerin and/or
SKI under hypoxia.
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Fig. 1 Pristimerin decreases cell viability under hypoxia and inhibits hypoxia-induced HIF-1a. a Effects of pristimerin on the cytotoxicity of PC-3
cells for 24 h under normoxic and hypoxic condition. b Changes in the morphology of a cell according to the concentration. Cells were treated
pristimerin (0, 0.5, and 1 pM) under normoxia and hypoxia for 48 h. ¢ Quantitative cell proliferations were shown. The results are expressed as
means + SD for the triplicate. ** p <001, ** p <0.001 compared with untreated control. # p <0.05, ## p <001 compared with normoxic prestimerin-treated
group. d Effect of pristimerin on the HIF-1a expression by western blotting. Cells were treated with or without pristimerin (0.5 and 1 pM) under normoxia
and hypoxia for 4 h. e Quantitative HIF-1a protein levels are shown. The results are expressed as means + SD for the triplicate. * p <0.05, ** p <001 and ***
p <0001 compared with hypoxia control. f Effect of pristimerin on the VEGF production. The results are expressed as means+ SD for the
duplicate. ** p <0.01, *** p <0.001 compared with hypoxia control group
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Statistical analysis

The data showed as means * S.D. (standard deviation) of
three replications each experiment in this study. Analysis
of variance (ANOVA) was used to assess the significance
of differences between groups. P <0.05 was considered
to indicate statistical significance.

Results

Pristimerin decreases cell viability under hypoxia

To measure whether pristimerin affects cell viability
under hypoxic and normoxic conditions, cells were
treated with various concentrations of pristimerin in PC-
3 cells under hypoxia or normoxia for 24 h. Pristimerin
significantly decreased cell viability under hypoxia than
it did under normoxia (Fig. 1a). As shown in Fig. 1b and
¢, pristimerin treatment for 48 h reduced cell growth in

Page 4 of 10

hypoxic PC-3 cells. Similar to the 24 h data, pristimerin
significantly decreased cell growth under hypoxia more
than normoxia.

Pristimerin decreases HIF-1a abundance and VEGF
secretion

To examine whether pristimerin inhibits hypoxia-
induced HIF-1la, pristimerin was treated into PC-3
cells under hypoxia for 4 h. As shown in Fig. 1d and
e, pristimerin decreased HIF-la abundance. To
examine whether hypoxia-induced VEGF secretion is
decreased by pristimerin, the VEGF secretion level
was measured on a hypoxia-induced PC-3 cell
medium, with pristimerin treatment for 24 h. As
shown in Fig. 1f, the VEGF secretion level under
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Fig. 2 Pristimerin exerts significant inhibition of SPHK-1 in hypoxic PC-3 cells. a Cells were treated with or without pristimerin (0.5 and 1 pM) under
normoxia and hypoxia for 4 h. Western blotting was performed to determine SPHK-1 expression. b Quantitative protein levels are shown. The results
are expressed as means + SD for the triplicate. *** p <0.001 compared with hypoxia control. ¢ Pristimerin inhibits hypoxia-induced HIF-1a and SPHK-1
accumulation in PC-3 cells under hypoxia in a time-dependent manner. Cells were treated with 1 uM pristimerin for 0, 0.5, 4, 6, or 8 h under hypoxia.
Western blotting was performed to determine HIF-1a and SPHK-1 expressions in PC-3 cells. d Quantitative protein levels are shown (SPHK-1). The
results are expressed as means + SD for the duplicate. * p <0.05 compared with hypoxia control at each time point e Quantitative protein levels are
shown (HIF-1a). The results are expressed as means + SD for the duplicate. * p <0.05 and ** p <0.01 compared with hypoxia control at each time point
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hypoxia was higher than under normoxia control.
Pristimerin reduced the hypoxia-induced VEGF
secretion.

Pristimerin exerts significant inhibition of SPHK-1 in
hypoxic PC-3 cells

To investigate whether pristimerin affects SPHK-1 in
PC-3 cells, the cells were incubated under hypoxia for
4 h with 0.5 or 1 uM of pristimerin. Pristimerin at
1 uM reduced SPHK-1 to 55 % under hypoxia com-
pared with the control (Fig. 2a and b). As SPHK-1 is
one of the regulators of HIF-1a, the effect of hypoxia
was assessed with the HIF-la expression. Both the
SPHK-1 and HIF-la accumulation reached the peak
4 h after hypoxia exposure and then decreased in a
time-dependent manner. The SPHK-1 and HIF-1a ex-
pressions were effectively inhibited by pristimerin
(Fig. 2¢, d and e).
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SPHK-1 mediates the activation of HIF-1a under hypoxia

To confirm the involvement of SPHK-1 in the
pristimerin-mediated inhibition of HIF-la during hyp-
oxia, the effects of pristimerin was evaluated by using
SPHK-1 siRNA and an SPHK-1 inhibitor, on SPHK-1 ac-
tivity and the phosphorylation of AKT and GSK-3p. This
is because the SPHK-1 dependent stabilization of HIF-
la is known to be mediated by AKT/GSK-3f3, down-
stream of SPHK-1. The phosphorylation of AKT and
GSK-3p was induced under hypoxia (Fig. 3a). Pristimerin
suppressed the phosphorylation of GSK-3p and AKT in
hypoxic PC-3 cells (Fig. 3a). SKI, an SPHK-1 inhibitor,
blocked the expression of HIF-1a and the phosphoryl-
ation of AKT and GSK-3f (Fig. 3a). The SPHK-1 activity
was significantly decreased by pristimerin and SKI
(Fig. 3b). Consistently, SPHK-1 siRNA transfection
suppressed pristimerin-mediated inhibition of SPHK-1
in PC-3 cells under hypoxia (Fig. 3c and d). As shown in
Fig. 4a, we assessed whether pristimerin suppresses
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Fig. 3 Pristimerin inhibits SPHK-1, and SPHK-1 mediates the activation of HIF-1a under hypoxia. PC-3 cells were treated with pristimerin (1 uM)
and or SPHK-1 inhibitor (SKI) (10 uM) for 4 h under hypoxia. a Effect of pristimerin on the expression of SPHK-1, HIF-1a, p-AKT and pGSK-3f in
hypoxic PC-3 cells. Western blotting was performed to determine the expression of SPHK-1, HIF-1a, p-AKT, AKT, pGSK-303, GSK-3(3, and B-actin in
hypoxic PC-3 cells. b The activity of SPHK-1 in pristimerin treated PC-3 cells. SPHK-1 activity was measured by using SPHK-1 activity kit. Data are
presented as means + SD. * p <0.05 and ** p <0.01 compared with hypoxia control. ¢ PC-3 prostate cancer cells were transfected with control
vector or SPHK-1 siRNA for 48 h to decrease the expression of SPHK-1. Then PC-3 cells were treated with 1 uM of pristimerin for 4 h. Western blot-
ting was performed to determine the expression of SPHK-1, HIF-1q, p-AKT, AKT, pGSK-33, GSK-33, and B-actin in hypoxic PC-3 cells. d The activity
of SPHK-1 in pristimerin treated PC-3 cells. SPHK-1 activity was measured by using SPHK-1 activity kit. Data are presented as means + SD. * p <0.05
and ** p <0.01 compared with hypoxia control
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Fig. 4 Reactive oxygen species mediate pristimerin inhibited SPHK-1 activity in hypoxic PC-3 cells. Hypoxic PC-3 cells were treated with pristimerin
and/or NAC. a Western blotting was performed to determine the expression of SPHK-1, HIF-1q, p-AKT, AKT, pGSK-3(3, GSK-3[3, and B-actin in hypoxic
PC-3 cells. b SPHK-1 activity in pristimerin and/or NAC-treated PC-3 cells under hypoxia. Data are presented as means + SD. * p <0.05 and ** p <0.01
compared with hypoxia control. # p <0.05 compared with normoxia control. ¢ Pristimerin suppresses p-AKT and p-GSK-3(3 via SPHK-1 inhibition in
prostate cancer cell lines under hypoxia. Western blotting was performed to determine the expression of SPHK-1, HIF-1q, p-AKT, AKT, pGSK-3(3, GSK-38,

hypoxia-induced HIF-1a and SPHK-1 in several prostate
cancer cell lines (PC-3, DU145, and LNCaP). Pristimerin
inhibited HIF-1a and the phosphorylation of AKT and
GSK-3p in all cell lines tested, which is similar to the re-
sults from PC-3 cells (Fig. 4a).

ROS mediates pristimerin inhibited SPHK-1 and HIF-1a in

hypoxic PC-3 cells

To examine whether ROS mediate pristimerin-induced
inhibition of HIF-la and SPHK-1, PC-3 cells were
treated with pristimerin or/and NAC. The treatment
with either pristimerin or NAC reduced hypoxia-
mediated HIF-1a, and SPHK-1 expressions and activity
(Fig. 4b and ¢).

Pristimerin inhibits VEGF production via SPHK-1 inhibition
in Hypoxic PC-3 cells

As shown in Fig. 1c, pristimerin significantly reduced
VEGF production. To exam the role of SPHK-1 on the
secretion of VEGF, an angiogenic factor, PC-3 cells were
treated with pristimerin and SKI under hypoxia for 24 h
and VEGEF levels were then measured by an ELISA and

Western blot. VEGF levels elevated significantly in the
hypoxia control group while pristimerin and SKI treat-
ment reduced VEGF secretion (Fig. 5a). In addition,
combination treatment with pristimerin and SKI signifi-
cantly diminished VEGF secretion in PC-3 cells under
hypoxia (Fig. 5a).

SPHK-1 mediates pristimerin-induced G1 arrest in
hypoxia-induced PC-3 cells

As shown in Fig. 1b and c, pristimerin significantly de-
creased cell viability under hypoxia as opposed to nor-
moxia and decreased cell proliferation. Therefore, the
effect of SKI and pristimerin on cell proliferation during
hypoxia was evaluated by FACS analysis and western
blotting.

PC-3 cells were treated with SKI and pristimerin for
48 h under hypoxic conditions. Treatment with pristi-
merin and SKI significantly increased Gl-arrest and de-
creased the expression of G1 regulatory proteins, such
as cylinD1 and CDK4, in hypoxic PC-3 cells (Fig. 5b and
c). PCNA is essential for DNA replication. The PCNA
level under normoxia was similar to that under hypoxia.
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Fig. 5 Pristimerin inhibits cell proliferation and VEGF production via
SPHK-1 inhibition in PC-3 cells under hypoxia. a Cells were treated
with pristimerin (1 uM) and/or SPHK-1 inhibitor (SKI) (10 uM) for

24 h under hypoxia. VEGF level was measured by ELISA. Data are
presented as means £ SD. ** p <0.01 and *** p <0.001 compared with
hypoxia control. Western blotting was performed to determine the
expression of VEGF and B-actin in hypoxic PC-3 cells. b Cells were
treated with pristimerin (1 uM) and/or SPHK-1 inhibitor (SKI) (10 uM)
for 48 h under hypoxia. Cell cycle distribution was analyzed by flow
cytometry. Bar graphs represent the percentage of sub-G1, G1, S,
and G2-M phase cells. Data represent mean + SD of three inde-
pendent experiments. * p <0.05 compared with untreated control.
c Western blotting was performed to determine the expression of
SPHK-1, PCNA, CyclinD1, CDK4, and B-actin in hypoxic PC-3 cells
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SKI and pristimerin treatment reduced the PCNA level.
Combination treatment with pristimerin and SKI re-
duced PCNA under hypoxia (Fig. 5c).

Discussion
Most solid tumours are more aggressive and resistant
to chemotherapy or radiation under hypoxic conditions
[37, 41]. Hypoxia is a typical characteristic of locally ad-
vanced solid tumours [42]. The transcription factor
HIF-1a, which targets 60 genes to enhance the tumour
progression, angiogenesis, and metastasis, is regarded
as the master regulator under the hypoxic environment
[12, 43]. Our previous study showed that the accumula-
tion of HIF-1a is mediated by the AKT/GSK-3p path-
way, and related to HIF-la stabilization through the
activation of SPHK-1 [44]. SPHK-1 is a decisive regula-
tor of this sphingolipid rheostat and as such, a potent
therapeutic target for cancer treatment [45, 46]. Fur-
thermore, the activity and expression of SPHK-1 are
significantly induced under hypoxia and by HIF-1a, and
thus is a critical therapeutic target through pVHL-
dependent proteasomal degradation for cancer treat-
ment [23, 47-49]. Pristimerin, a triterpenoid quinone
methide compound, is involved in a variety of activities,
which includes anti-inflammatory and anti-cancer ac-
tion [27, 29-36]. A recent study reported that pristi-
merin  suppressed HIF-la and hypoxia-induced
metastasis in prostate cancer PC-3 cells [4]. However,
the mechanisms of the inhibition of hypoxia-induced
HIF-1a by pristimerin are not fully comprehended. In
this study, pristimerin significantly decreased cell via-
bility under hypoxia more than it did under normoxia,
which connotes the potential of pristimerin treatment-
resistant cancer cells, given that HIF-1a promotes can-
cer resistance. Our study showed that SPHK-1 and
HIF-1a accumulations began to increase after 30 min
of hypoxia exposure in PC-3 prostate cancer cells com-
pared with the normoxia, which is consistent with pre-
vious studies [37, 38]. Moreover, the hypoxia-induced
HIF-1a accumulation was suppressed in the presence
of pristimerin. In addition, we found that pristimerin
suppressed hypoxia-induced SPHK-1. To further con-
firm the involvement of SPHK-1 in pristimerin-
mediated inhibition of HIF-1a under hypoxia, we tested
the effects of pristimerin on the phosphorylation of
AKT and GSK-3p since AKT/GSK-3p is downstream of
SPHK-1 and mediates HIF-1a stabilization [23]. Fur-
thermore, co-treatment of pristimerin and SKI sup-
pressed the phosphorylation of AKT and GSK-3p.
Likewise, SPHK-1 siRNA transfection suppressed the
phosphorylation of AKT and GSK-30.

Hypoxia leads to an increase in mitochondrial produc-
tion of ROS, [50] and ROS production is required for
hypoxia-mediated HIF stabilization [51-54]. Several
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recent studies have shown that SPHK-1 activity and
HIF-1a are stimulated by ROS production [44, 55]. In
addition, our previous studies showed that N-acetylcys-
teine (NAC), an ROS scavenger, suppresses HIF-1a by
blocking SPHK-1 under hypoxia.

To confirm whether pristimerin suppresses hypoxia-
induced HIF-la accumulation via the inhibition of
SPHK-1 and ROS generation in prostate cancer cells, we
evaluated the effect of NAC on HIF-la and SPHK-1
abundance in hypoxic PC-3 cells, treated with pristi-
merin. The co-treatment of pristimerin with NAC
affected HIF-1a and SPHK-1 abundance.

PI3K is necessary for cell growth and survival, and
PI3K can be activated by growth factors binding to cell
surface receptor and hypoxia. PI3K induces the accumu-
lation, activation, and stabilization of HIF-la proteins
during hypoxia in cancer cells [56]. To confirm whether
pristimerin inhibits hypoxia-induced HIF-la accumula-
tion by the inhibition of PI3K, PC-3 cells were treated
with pristimerin and SKI under normoxic and hypoxic
conditions for 24 h. PI3K levels did not change
(Additional file 1: Figure S1).

There is evidence that HIF-1a can regulate VEGF secre-
tion in cancer cells [57, 58]. In the present study, the inhib-
ition of SPHK-1 activity using SKI prevented VEGF
production in PC-3 cells. Similarly, studies have demon-
strated that SPHK-1 plays a critical role in HIF-la-
mediated VEGF secretion under hypoxia [37, 38]. Pristi-
merin significantly inhibited cell proliferation for 48 h
(Fig. 1c). It is well known that SPHK-1 mediates cancer cell
proliferation and progression. Thus, to confirm the involve-
ment of SPHK-1 in pristimerin-mediated inhibition of cell
proliferation, hypoxic PC-3 cells were treated with SKI and
pristimerin for 48 h. Interestingly, SKI and pristimerin co-
treatment induced G1 arrest and decreased G1 regulatory
factors in hypoxic PC-3 cells.

Conclusions

Our study shows that pristimerin inhibits HIF-1a,
SPHK-1 expression or activity, and phospho-AKT/GSK-
3B and decreases VEGF production in hypoxic PC-3
cells. These results suggest that pristimerin may inhibit
HIF-1a accumulation by inactivation of SPHK-1 includ-
ing the free radical scavenging effect in PC-3 cells under
hypoxia.

Additional file

Additional file 1: Figure S1. Pristimerin does not affect PI3K in PC-3 cells
under hypoxia. PC-3 cells were treated with pristimerin (1 uM) and or SPHK-
1 inhibitor (SKI) (10 uM) for 4 h under hypoxia. Effect of pristimerin on the
expression of PI3K in hypoxic PC-3 cells. Western blotting was performed
to determine the expression of PI3K and B-actin in hypoxic PC-3 cells.

(TIF 66 kb)
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