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Abstract
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Background: Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive, fatal, childhood tumors that arise in
the brainstem. DIPGs have no effective treatment, and their location and diffuse nature render them inoperable.
Radiation therapy remains the only standard of care for this devastating disease. New therapeutic targets are

needed to develop novel therapy for DIPG.

Methods: We examined the expression of PLK1 mRNA in DIPG tumor samples through microarray analysis and
found it to be up regulated versus normal pons. Using the DIPG tumor cells, we inhibited PLK1 using a clinically
relevant specific inhibitor Bl 6727 and evaluated the effects on, proliferation, apoptosis, induction of DNA damage

and radio sensitization of the DIPG tumor cells.

Results: Treatment of DIPG cell lines with Bl 6727, a new generation, highly selective inhibitor of PLK1, resulted

in decreased cell proliferation and a marked increase in cellular apoptosis. Cell cycle analysis showed a significant

arrest in G2-M phase and a substantial increase in cell death. Treatment also resulted in an increased yH2AX
expression, indicating induction of DNA damage. PLK1 inhibition resulted in radiosensitization of DIPG cells.

Conclusion: These findings suggest that targeting PLK1 with small-molecule inhibitors, in combination with
radiation therapy, will hold a novel strategy in the treatment of DIPG that warrants further investigation.
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Background

Diffuse intrinsic pontine glioma (DIPG) is a childhood
brain tumor that is largely fatal with median survival
time of just 9-12 months and accounts for the ma-
jority of pediatric brain tumor mortality [1, 2]. These
tumors are highly infiltrative within the ventral pons
that render them inoperable. There are no effective
chemotherapeutic options available for treatment of
these devastating tumors. Radiation therapy remains
the standard of care [2]. The shortage of targeted
therapy can be attributed to the lack of understanding
the biology associated with DIPG. Until recently, a
shortage of primary tissue available for research
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limited the understanding of the genomic landscape
of DIPG. With new biopsy protocols in place, and a
growing number of cell lines that create robust pre-
clinical models, experimental models of DIPG have
been established to investigate the biology of the dis-
ease [3].

These experimental models have provided new insight
into the role of the genetic makeup of DIPG, potential
drivers of this tumor, as well as potential therapeutic tar-
gets. Initial whole-genome profiling of DIPG identified
recurrent involvement of platelet-derived growth factor
receptor alpha (PDGFRA) pathways [4]. Follow up stud-
ies with larger sample sets supported this finding, as well
as amplification of genes within other tyrosine kinase-
Ras-phophoinositide 3-kinase signaling pathways such as
MET. In addition, a portion of DIPG had amplification
of cell-cycle regulatory genes for retinoblastoma protein
(RB) phosphorylation [5]. Additional advances using
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whole genome exome sequencing demonstrated the
presence of mutations in histone H3F3A or H3.1 (lysine
27 > Methionine, K27M) in a high proportion of DIPG
tumors [6]. Further these histone mutations have poten-
tial biologic and clinical relevance in patients. For ex-
ample the presence of the K27M-H3.3 mutation is
associated with shorter survival [7]. Additional studies
have identified mutations in ACVRI1, and ATRX [8-10].
Studies also suggest that DNA Damage response path-
ways are altered in DIPG, perhaps reflecting the fact that
these tumors are highly radio-resistant [4, 11]. We hy-
pothesized that kinases involved in response to DNA
damage and radiation sensitization would be attractive
targets for DIPG therapy. We chose to initially examine
polo-like kinase 1 (PLK1) based on our previous experi-
ence with this kinase as a radio-sensitizer in another
brain tumor, medulloblastoma.

PLK1 is essential for mitotic progression, regulating
entry into mitosis by phosphorylating cyclin B1/CDK1
complex, and exit by activating the Anaphase Promoting
Complex (APC) [12]. Non-mitotic roles of PLK1 have
also been described in the form of anti-apoptotic func-
tion [13, 14]. PLK1 is overexpressed in a variety of
human cancers, and overexpression is linked to chromo-
somal instability and aneuploidy [12]. PLK1 may play an
oncogenic role in tumor survival and growth, as inhib-
ition of PLK1 by shRNA or small molecule inhibitors
has been shown to decrease cell proliferation both in
vitro and in vivo [12, 15, 16]. In fact, forced expression
of PLK1 in human fibroblasts in vitro, is capable of cre-
ating xenograft tumors in nude mice [17]. Importantly,
small molecule inhibition resulted in lower proliferation
of cancer cells versus normal cells [18, 19]. Phase I/II tri-
als of PLK1 inhibitors in advanced solid tumors in adults
have yielded promising results [20, 21]. For these rea-
sons, small-molecule inhibitors of PLK1 have become at-
tractive candidates for drug development.

We and others have identified PLK1 as a potential
therapeutic target in brain tumors including glioblastoma
and medulloblastoma [22-24]. Importantly PLK1 inhib-
ition strongly radio-sensitized medulloblastoma cells
[22]. PLK1 has been identified as a potential thera-
peutic target in other pediatric tumors such as rhabdo-
myosarcoma and neuroblastoma as well [25-27].
Volasertib (BI 6727) is a new generation, highly select-
ive PLK1 inhibitor that acts as an ATP-competitive kin-
ase inhibitor of PLK1 [28]. We chose to use this
inhibitor to examine the effects of PLK1 inhibition in
DIPG, as it is currently the most clinically advanced of
the investigational PLK1 inhibitors [29].

In this study, our goal was to evaluate PLK1 as a po-
tential therapeutic target in DIPG. We show that PLK1
is abnormally over expressed in DIPG compared to nor-
mal pons and that inhibition of PLKI1 significantly
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impaired DIPG cell growth and induced DNA damage
in vitro. We further show that PLK1 inhibition with clin-
ically relevant inhibitors can radio-sensitize DIPG cells.

Methods
Cell lines and primary patient samples
DIPG IV and VI cells were kindly provided by Dr.
Michelle Monje (Stanford University, California) and
cultured in tumor stem media (TSM) consisting of
Neurobasal(-A) (Invitrogen), B27(-A) (Invitrogen),
human-basic FGF (20 ng/mL; Shenandoah Biotech),
human-EGF (20 ng/mL; Shenandoah Biotech), human
PDGF-AB (20 ng/mL; Shenandoah Biotech) and hep-
arin (10 ng/mL). Both DIPG IV and DIPG VI cells
carry the H3K27M mutation and DIPGVI cells also
harbor an additional TP53 point mutation [30].
Primary patient samples were obtained from Children’s
Hospital Colorado and were conducted in accordance
with local and federal human research protection
guidelines and Institutional Review Board (IRB) reg-
ulations. Informed consent was obtained for all spec-
imens collected. Normal brain tissue was collected
from autopsy at the Children’s Hospital Colorado
under IRB guidelines.

Gene expression microarray analysis

Eight patient tumor samples were evaluated for gene ex-
pression using Affymetrix U133 Plus 2.0 GeneChip mi-
croarrays. Briefly, samples were snap-frozen in liquid
nitrogen at the time of surgery. An RNeasy kit (Qiagen,
Valencia, CA) was used to extract ribonucleic acid from
each sample using. Samples were hybridized to HG-
U133 Plus 2.0 GeneChips (Affymetrix, Santa Clara, CA)
according to the manufacturer’s instructions. All micro-
array data from the samples was background-corrected
and normalized using the gcRMA algorithm. One probe
set per gene was selected for use in subsequent analyses
based on highest overall expression level across samples.
Differential expression of genes was determined using a
Student’s t-test.

Small molecule inhibitors of PLK1

The small molecule PLK1 inhibitor BI 6727 was pur-
chased from Selleck Chem (Houston, TX). The drug was
reconstituted in dimethyl sulfoxide (DMSO) and stored
according to manufacturer’s instructions. An equivalent
amount of DMSO for the highest concentration of drug
was used for each experiment as a vehicle control.

Cell proliferation and apoptosis

Cell number and viability was determined using Via-
count assays. 5,000 cells were plated into ultra-low at-
tachment U-bottom 96 well plates (Corning) and treated
24 h later with appropriate doses of BI 6727 for 72 h.
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Cells were pelleted, dissociated using TrypLE Express
(Invitrogen) and stained with ViaCount reagent (Milli-
pore, Billerica, MA). Samples were run on a Guava Easy-
Cyte Plus flow cytometer (Millipore).

Cell proliferation was also determined by MTS [3-(4,
5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium] assay using CellTiter
96 AQueous One Solution (Promega, Madison, WI).
For phamracologic experiments, cells were plated and
treated 24 h later with increasing doses of BI 6727
for 72 h. MTS reagent was added according to stand-
ard manufactures protocol. Plates were read using a
BioTek Synergy 2 plate reader (Winooski, VT). Ex-
periments were done in triplicate and background ab-
sorbance was subtracted from all wells before
analysis.

Apoptosis was assessed 72 h after BI 6727 treatment
using Guava Nexin reagent (Millipore). Samples were
run on a Guava EasyCyte Plus flow cytometer (Milli-
pore). All treatments were run in triplicate. GraphPad
Prism 5 software was used to analyze the results.

Western blotting

Protein lysates were obtained from samples using RIPA
buffer (Thermo Scientific, Rockford, IL) with protease
inhibitors added. Western blotting was performed per
standard methods. Antibodies for PLK1 (#4535), Rad51
(#8875S), phospho YH2AX (2577), p21(2947), p53(cal-
biochem OP03) and Actin (MAB1501) were purchased
from Cell Signaling Technology (Danvers, MA) and
Millipore, respectively. Secondary antibodies conjugated
to horseradish-peroxidase were used in conjunction
with a chemiluminescent reagent to visualize protein
bands.

Phospho-histone H2AX (yH2AX) foci immunofluorescent
microscopy and imaging

3,000 cell were plated and treated with BI 6727 for 6
and 24 h in poly-D-lysine (Sigma) coated chamber
slides. Cells were then washed and fixed with 4 %
paraformaldehyde for 15 min at room temperature
(RT). Afterwards 0.2 % Triton X-100 in PBS was used
to permeabilize cells for 15 min followed by blocking
in 5 % milk diluted in 0.05 % Triton X-100 for
30 min at RT. Next, primary antibodies were applied:
anti-yH2AX (Ser139) was used at a dilution of 1:200.
After several washes, Alexa Fluor 488 conjugated sec-
ondary antibody (1:500) was applied for 1 h at room
temperature in the dark. ProLong Gold Antifade re-
agent (Life Technologies) containing DAPI (Life Tech-
nologies) was used for mounting. Images were
acquired using an inverted epifluorescence microscope
at a magnification of 40x (oil). At least three random
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fields were chosen to count cells containing greater
than 10 foci.

Combination of Bl 6727 and ionizing radiation

5,000 cells/well were plated into 96-well plates (Corn-
ing) and treated with BI 6727 24 h later. Cells were
exposed to drug for 24 h, and then drug-containing
medium was aspirated and normal culture medium
was added. Cells were immediately irradiated using a
Cesium source irradiator. Cells were allowed to grow
for 120 h, and MTS assays as above were used to
measure proliferation. Survival curves were generated
after normalizing for the amount of BI 6727-induced
death. Non-linear regressions were calculated for each
line. The radiation dose intersecting the non-linear
regression for a 10 % (SF0.1) and 50 % (SF0.5) surviv-
ing fraction was calculated for each drug dose as pre-
viously described (Harris et al.)

Statistical analysis

Student’s t-test was used to calculate any statistical sig-
nificance. Error bars represent the standard error of the
mean (n>3). GraphPad Prism 5 was used to calculate
ICs5y values and to compute the nonlinear regression
equations.

Results

PLK1 is overexpressed in DIPG

Kinases that regulate cell cycle and mitotic progres-
sion are attractive candidates for targeted therapy in a
variety of human cancers [31] and have been shown
to be potentially important in DIPG [5]. In order to
assess the significance these kinases play in the con-
text of DIPG, we analyzed eight patient samples to
determine the relative expression of a panel of mitotic
checkpoint kinases versus normal brain controls. We
found mitotic kinases are upregulated in the tumors
versus the controls (p<0.01), suggesting that they
play an important role in DIPG tumorigenesis
(Fig. 1a). PLK1, a target with available small molecule
inhibitors, was one of the 20 most significantly over-
expressed kinases in DIPG compared to normal pons
(Fig. 1a). PLK1 transcript was significantly elevated in
both patient samples and DIPG cell lines compared
to normal brainstem tissue (p<0.01, Fig. 1b). Gene
enrichment analysis of primary tumor microarray data
demonstrated PLK1 associated gene signatures includ-
ing the G2M checkpoint (NES =1.55, p<0.05) and
mitotic spindle assembly (NES=1.7, p<0.05) were
also higher in DIPG tumors compared to normal
pons (Fig. 1c). Elevated PLK1 protein levels (com-
pared to normal brain) were also identified in two
DIPG cell lines DIPG IV and DIPG VI indicating
these cells are a good in vitro experimental model to
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evaluate PLK1 inhibition response (Fig. 1d). Moreover
PLK1 protein is significantly elevated in patient sam-
ples as shown in Fig. le further corroborating the
mRNA data suggesting that PLK1 is a potential thera-
peutic target in DIPG.

Inhibition of PLK1 suppresses DIPG cell growth and
proliferation

To examine whether PLK1 was functionally important
for DIPG tumorigenesis, we treated DIPG cell lines with
BI 6727 and noted changes in cell proliferation. To

confirm the effect of BI 6727 on cell proliferation, we
used MTS assays to establish drug IC50 values. Both cell
lines showed a dose dependent response to BI 6727.
DIPG 1V cells showed greater than two-fold the sensitiv-
ity to BI 6727 compared to DIPG VI cells with a 72 h
ICs50 of 62.3 nM versus DIPG VI with an IC50 of 137.5
nM (Fig. 2a). These data might be reflective of the
additional TP53 mutation in DIPG VI cells. Guava Via-
Count assays performed on neurospheres 72 h after
treatment with increasing doses of BI 6727 indicated
that both DIPG IV and VI showed marked decrease



Amani et al. BMC Cancer (2016) 16:647

Page 5 of 9

a  pIpPGIV

1004 e

% Control
8

04

T T T

5 0 5
log [BI 6727] nM

| __EC50Control | 62.27 |

b DIPG IV

400000+
300000
2000004

1000004

TOTAL Cell Number

© 02D O S O.SO.S
A o> o 9° SO P
RV NP T TN

[BI6727] nM

measured (+ SEM) using Guava flow cytometry

Fig. 2 Small molecule inhibition of PLK1 BI6727 suppresses in vitro DIPG cell proliferation and growth. a DIPG cells were treated for 72 h with
increasing dose of the PLK1 small molecule inhibitor Bl 6727. Cell proliferation was measured by MTS assay with the mean + SEM shown. ICs
(in nM) values were calculated as shown. b DIPG cells were treated with increasing doses of Bl 6727 for 72 h and total viable cell number was

DIPG VI

1004

% Control
8

04

5 0 5
log [BI 6727] nM
| EC50Control | 137.5 |
DIPG VI
200000+
—
2
£ 150000
-}
z
S 100000
o
2
= 50000
o
._
04

B S S
[BI 6727] nM

O
"
N

in cell number versus DMSO controls (Fig. 2b).
Interestingly there is a maximum biological effect at
75nM BI 6727 after which there is no further dose
dependence.

PLK1 inhibition induces G2-M arrest and apoptosis in
DIPG cells

PLK1 is a cell cycle kinase that regulates mitosis by act-
ing as an early trigger for G2-M transition. In order to
evaluate the effect of BI 6727 on the cell cycle, we
treated DIPG IV and VI cells with their corresponding
ICs doses of BI 6727 (Fig. 2a) for 24 h. Cell were fixed
and stained, and significant changes cell cycle were ob-
served. Most notably, there was a significant G2-M ar-
rest in BI 6727 treated samples (Fig. 3a). In order to
evaluate whether PLK1 inhibition resulted in apoptosis
in DIPG cells, we treated DIPG cells with 150 nM and
300 nM of BI 6727 and stained with Annexin V. In
each drug-treated cell line, Annexin V positive-7-
AAD positive late apoptotic populations were signifi-
cantly enhanced and Annexin V negative-7-AAD
negative live cell populations were subsequently de-
creased, both in a dose dependent manner (Fig. 3b).

The difference in apoptosis between DMSO and BI
6727 treated cells was statistically significant in mul-
tiple independent assays.

Bl 6727 treatment induces DNA damage in DIPG cell lines
The histone H3.3 point mutation K27M is a hallmark of
DIPG, and abnormal H3.3 function at the embryonic
level has recently been shown to cause dysfunction of
heterochromatin structures leading to mitotic defects
and resulting in karyotypical abnormalities and DNA
damage [32]. H3.3 K27M may therefore render DIPG
unable to maintain genomic integrity. This provides a
potential therapeutic window where induction of further
DNA damage could result in more catastrophic cellular
events leading to selective tumor cell death.

To examine the impact of BI 6727 on DNA damage in
DIPG cells, we examined the induction of the DNA
damage associated marker yH2AX (Fig. 4a). Six hours of
treatment with the corresponding ICs, dose of BI 6727
induced DNA damage as detected by immunocytochem-
istry of yH2AX foci in both DIPG IV and DIPG VI cells.
As shown in Fig. 4b, the increase in YH2AX foci was sta-
tistically significant (p <0.01). A further increase in
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YH2AX foci was noted in both lines after treatment with
BI 6727 for 24 h, indicating an accumulation of DNA
damage over time (Fig. 4b).

To further examine induction of DNA damage we
evaluated the expression of proteins associated with the
Dna Damage Repair (DDR) in response to Bl 6727 treat-
ment (Fig. 4c). Treatment with BI 6727 potently induced
expression of p53 and YH2AX proteins but not p21, fur-
ther confirming the induction of DNA damage in re-
sponse to PLK1 inhibition.

Bl 6727 pretreatment sensitizes DIPG cells to ionizing
radiation

To investigate whether BI 6727 enhances cellular sen-
sitivity to ionizing radiation, DIPG cells were exposed
to BI 6727 for 24 h before irradiation, and the effects
evaluated using an MTS assay. DIPG IV and VI cells
were treated with a DMSO control and the corre-
sponding ICs, ICs59 and IC,, doses for each cell line.
Drug was washed off, and each plate was exposed to
a specific dose of radiation: 0, 1, 2, 4, 6, 8 and 10 Gy.
After 5 days of recovery, MTS proliferation assays re-
vealed that the survival fractions (SF) at ICsy, ICs

and IC;, doses of BI 6727 were reduced in both
DIPG IV and VI cells after exposure to a range of
doses of radiation (Fig. 5a). Sensitizer enhancement
ratios (SERs) for each cell line were calculated by fit-
ting nonlinear regression curves to the MTS data. For
DIPG 1V cells, the SERs were 1.7, 1.6 and 1.4 at 10 %
cell survival (SF0.1) and 1.8, 1.7 and 1.4 at 50 % cell
survival (SF0.5) at IC3, IC5y and IC,, BI 6727 doses
respectively. DIPGVI cells also showed increased SERs
at 2.1, 1.9 and 1.9 at 10 % cell survival (SF0.1) and
2.2, 1.9 and 2.0 at 50 % cell survival (SF0.5) at ICs,
IC50 and IC;o BI 6727 doses, respectively (Fig. 5b).
Any SER value greater than one indicates enhance-
ment of radiation. Thus, the radiation survival curves
generated establish that BI 6727 pretreatment radio-
sensitizes DIPG cells to ionizing radiation at a consid-
erable range of doses in both DIPG cell lines.

Discussion

DIPG remains a therapeutic challenge. Over 200 Phase
1/2 trials have been performed, none of which have
shown any promise for therapeutic efficacy [1]. The
major problem has been lack of any preclinical data to
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support these clinical studies. New biopsy protocols have
not only allowed for a greater understanding of the
biology of the disease through genomic analysis, but
also allowed for robust preclinical models to test
drugs on targets established from the genomics. Using
these newly available cells we show that PLK1 is a
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novel therapeutic target in DIPG. We demonstrate
that PLK1 is significantly up-regulated in DIPGs and
that inhibition of PLK1 using a clinically relevant
drug, BI 6727 (Volesertib) radiosensitizes DIPG cells
across a broad range of doses.

It has been well established that PLK1 is implicated in
cell cycle regulation by functioning in centrosome mat-
uration, spindle formation, mitotic entry and cytokinesis
[12]. PLK1 overexpression has been linked to invasive
phenotypes, highly aggressive tumors and subsequent
poor outcomes, all hallmarks of DIPGs [12]. High PLK1
expression has been described in many forms of cancer,
yet its role in DIPG tumorigenesis has not previously
been explored.

Analysis of mitotic checkpoint kinases revealed a glo-
bal up-regulation of these kinases in our cohort of DIPG
primary tumors. PLK1 emerged as an attractive target,
as it is overexpressed in DIPG versus normal pons. As-
sociated spindle assembly and G2-M pathways were also
up in DIPGs, confirming that PLK1 function increased
with elevated expression. Cell line PLK1 transcript and
protein levels were also found to be up-regulated versus
normal pons, giving us an ideal model to investigate
PLK1 inhibition. The availability of BI 6727, a new gen-
eration, highly-selective small molecule inhibitor that is
in later phases of clinical development, made it easy to
test the effects of PLK1 inhibition in our in vitro model.

Treatment of cells with clinically relevant doses of BI
6727 resulted in a marked reduction of cell proliferation.
Post-treatment cell cycle analysis revealed significant
G2-M arrest, supporting the idea that combination with
radiation would result in enhanced cytotoxicity. Disrupt-
ing the proper formation of mitotic spindles required for
chromosome alignment and segregation has been shown
to preferentially kill cancer cells, and the G2-M phase
has been associated with critical DNA repair mecha-
nisms. Indeed we saw significant increase in cell death
with BI 6727 treatment alone. Importantly we identified
a maximum dose for biological effect after wich dose es-
calation did not make a difference to cell viability. This
observation is important because it suggests that bio-
logical effect could be achieved before a maximum toler-
ated dose in human trials, which might spare patients
from toxicity.

We also noted a marked increase in YH2AX staining
only 6 h after treatment, and sustained or increased
staining after 24 h, indicating an accumulation of DNA
damage over time. The accumulation of YH2AX staining
and G2-M arrest led us to believe that there was signifi-
cant chromosomal instability and DNA damage 24 h
after BI 6727 treatment in DIPG cells. Indeed we found
that irradiation of DIPG cells pre-treated with the vary-
ing doses of the BI 6727 potently enhanced the efficacy
of ionizing radiation.
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More recently Grasso et al performed a screen of 83
drugs with therapeutic applications in pediatric oncology
[30]. They identified the HDAC inhibitor panobinostat
as a promising potential agent for DIPG therapy. This
study was the first comprehensive effort to identify
therapeutic agents for DIPG in a preclinical model.
However, their chemical screen did not include any
agents that target PLK1. Other recent studies have iden-
tified Aurora Kinase B and CDK4 as additional drugable
targets in DIPG (33, 34].

Conclusions

Together with our data, these and other studies are be-
ginning to use robust pre-clinical cell and animal models
to identify exciting new therapeutic options for DIPG.
Our findings in particular suggest that targeting PLK1
with small-molecule inhibitors, in combination with
standard of care radiation therapy, will hold a novel
strategy in the treatment of DIPG that warrants further
investigation. The next step will be to perform detailed
in vivo pre-clinical studies to evaluate pharmacokinetic
and pharmacodynamic parameters in response to PLK1
inhibition.
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