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Prognostic relevance of caspase 8 -652 6N
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Abstract

Background: The minor allele of two caspase 8 polymorphisms, namely CASP8 -652 6N InsDel (rs3834129) and
CASP8 Asp302His (rs1045485), were repeatedly associated with reduced breast cancer susceptibility. Contrarily, the
presence of the -652 6N Del or the CASP8 302His variant was reported to be an unfavorable prognostic factor in
colorectal cancer or neuroblastoma. However, prognostic relevance of these genetic variants for breast cancer is
completely unknown and is therefore adressed by the current study.

Methods: Genotyping was performed by pyrosequencing. Caspase 8 mRNA expression was quantified by
comparative RT-qPCR.

Results: We observed an allele-dose dependent association between CASP8 -652 6N InsDel and caspase 8 mRNA
expression in breast cancer tissue, with homozygous deletion carriers showing lowest relative caspase 8 expression
(p = 0.0131). Intriguingly, the presence of the -652 6N Del or the 302His variant was shown to be a negative prognostic
factor for breast cancer in terms of an allele-dose dependent influence on overall survival (OS, p = 0.0018, p = 0.0150,
respectively). Moreover, both polymorphisms were independent predictors of OS after adjusting for co-variats (p = 0.
007, p = 0.037, respectively). Prognostic relevance of both polymorphisms were confirmed to be independent from
each other and combined analysis of diplotypes revealed an additive influence upon OS (p = 0.0002).

Conclusion: This is the first report, showing negative and independent prognostic impact of the CASP8 -652 6N Del
and the 302His variant for breast cancer. Our data provide rationale to further validate clinical utility of these
polymorphisms for breast cancer and to extend this investigation to a broad scope of other malignancies.
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Background
Programmed cell death, also referred to as apoptosis,
physiologically occurs in multicellular organisms and its
aberration has important implications in cancer biology.
Among the death receptor signaling pathway, the initiator
Caspase 8, a 55 kDa cysteine protease, plays an important
role in intrinsic and extrinsic apoptosis induction. In
terms of the intrinsic apoptosis pathway, caspase-8
activates the death inducing signaling complex (DISC),
which in turn induces downstream effector caspase-3,

finally resulting in apoptosis [1, 2]. Among the extrinsic
pathway, caspase-8 cleaves the Bcl-2 related protein Bid,
which in turn induces cytochrome c release from
mitochondria and caspase-3 activation, likewise resulting
in apoptosis [1, 2].
Nearly at the same time, two CASP8 polymorphisms,

namely CASP8 -652 AGTAAG InsDel (-652 6N Del,
rs3834129) and CASP8 Asp302His (rs1045485) were
described in key publications [3, 4]. The non-coding
CASP8 -652 6N InsDel polymorphism, a functional 6-bp
deletion located in the promoter region of the CASP8
gene, has been associated with reduced CASP8 mRNA
expression and concomitantly impaired caspase-8 activ-
ity and reduced “activation induced cell death” (AICD)
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in stimulated T-lymphocytes [3]. The second poly-
morphism, CASP8 Asp302His, is located in the coding
region of caspase 8 and results in aspartic acid to histi-
dine substitution (Fig. 1a). Although instructive data on
the functionality of this polymorphism are missing, it
was hypothesized that the Asp302His change could like-
wise impair caspase-8 function, possibly by negatively
affecting its auto processing or its catalytic activity [5].
Given that the above mentioned caspase-8 variants

were suggested to impair caspase-8 function and to
interfere with cell death of T-lymphocytes, which has
essential consequences on immune surveillance of
malignancies, a variety of studies on different cancer
entities investigated, whether these polymorphisms may
influence cancer susceptibility. These studies, also

including meta-analyses, were primarily performed on
breast cancer, but also on other cancer entities, such as
colorectal-, ovarian- or gastric cancer. The majority of
investigators observed an association of the CASP8 -652
6N Del or the CASP8 Asp302His variant with reduced
cancer susceptibility [3, 5–12]. However these insights
were not entirely conclusive, since some other studies
failed to confirm a significant cancer protective effect of
these caspase 8 variants [13–17]. Furthermore, since
they are in linkage disequilibrium, it remains unclear,
whether both or only one of these polymorphisms has
an impact on cancer risk.
Beside the extensively studied role of the above

mentioned caspase 8 polymorphisms in cancer suscepti-
bility, recent approaches also started to investigate,

Fig. 1 Analysis of caspase-8 polymorphisms in breast cancer patients. a Schematic overview of the caspase-8 gene and localization of the caspase
8 polymorphisms of interest. The non-coding CASP8 -652 6N InsDel polymorphism, a functional 6 bp deletion, is located in the promoter region
of the CASP8 gene, whereas the Asp302His polymorphism is located in the coding region (exon 9). b CASP8 mRNA expression in primary breast
cancer tissue by the -652 6N InsDel genotypes. Indicated p-value was calculated by linear ANOVA. c–d Kaplan-Meier curves comparing overall
survival of breast cancer patients by the -652 6N InsDel or CASP8 Asp302His genotypes, respectively. e Overview of possible diplotypes.
Five patients belonged to rare diplotypes and needed to be analyzed together with other patients. The figure shows how we joined these rare
diplotype carriers with the common ones. f Kaplan-Meier curves comparing overall survival of breast cancer patients with regard to the diplotypes
of the -652 6N InsDel and Asp302His polymorphisms
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whether these polymorphisms also influence the out-
come of cancer in patients with already existing disease.
In this context, recent pilot investigations reported a
negative prognostic impact for the CASP8 -652 Del
allele or the CASP8 302His allele for patients with colon
cancer or neuroblastoma, respectively [18, 19]. However,
although breast cancer was primarily adressed by recent
CASP8 -652 6N Del and CASP8 Asp302His susceptibil-
ity studies, surprisingly, prognostic relevance of these
caspase 8 polymorphisms has not been investigated in
breast cancer so far.
Hypothesizing that a functional polymorphism, which

is involved in cancer susceptibility, is also likely to influ-
ence the outcome of a given cancer, we took advantage
of a historic breast cancer cohort of clinically docu-
mented primary breast cancer patients and investigated
prognostic significance of CASP8 -652 6N Ins/Del and
CASP8 Asp302His in terms of an exploratory analysis.

Methods
Patient characteristics
The present study refers to a clinically documented
historic breast cancer cohort, being recruited between
1989 and 1993 at the Department of Gynecology and
Obstetrics, University Hospital of Essen, Germany [20].
In this context, a total of 200 consecutive Caucasian
patients of German ancestry, who were diagnosed and
operated for histologically confirmed primary breast
cancer, were enrolled into this study. This study was
approved by the ethics committee of the University Hos-
pital of Essen, Germany (06-3126) and was performed,
according to the Declaration of Helsinki. Since this study
was performed retrospectively on a historic breast
cancer cohort, no patient’s consent was required.
Characteristics for primary breast cancer patients are
summarized in Table 1. The majority of patients had
small tumors and 57.5 % were node-negative. Most
patients had invasive ductal breast cancer (68 %) and
moderately or poorly differentiated tumors were
predominant (63 %). Survival data of these patients
were obtained from the patients’ files or the local
municipal registry.

DNA extraction and caspase 8 genotyping
Genomic DNA was isolated as previously described [20].
Briefly, several 10–20 μm thick sections from routinely
processed paraffin blocks (non-tumorous breast or
lymph node specimens) were dewaxed in xylene, washed
in ethanol and centrifuged. The supernatant was
removed and the open microfuge tube was incubated at
45 °C until the ethanol had evaporated. DNA was puri-
fied with the QIAamp DNA Mini Kit (Qiagen, Hilden,
Germany). The tissue pellet was re-suspended in 180 μl
of buffer ATL/20 μl proteinase K and incubated

overnight at 56 °C. Further processing of the samples
was done according to the manufacturer’s instructions.
CASP8 -652 6N InsDel and CASP8 Asp203His genotypes
were determined by pyrosequencing (Biotage, Uppsala,
Sweden), according to the manufacturer’s instruction. First,
the genomic caspase 8 regions of interest were amplified
using the “slowdown” polymerase chain reaction (PCR)
[21], with the following primer sequences: -652 6N forward:
5′ BIOTIN-AACTTGCCCAAGGTCACG 3′, -652 6N re-
verse: 5′ TGAGGTCCCCGCTGTTAA 3′, 302 forward: 5′
GACCACGACCTTTGAAGAGCT 3′, and 302 reverse: 5′
BIOTIN-AGATTTGCTCTACTGTGCAGTCA 3′. PCR
products were analyzed by pyrosequencing using sequen-
cing primers -652 6N 5′ GTAATTCTTGCTCTGCC 3′
and 302 5′ TGAGATCAAGCCCCA 3′ on the PSQ96
system, according to the manufacturer’s instructions
(Biotage, Uppsala, Sweden). Results were analyzed
using the proprietary PSQ96 SNP software. Re-
genotyping of 30 randomly selected samples to con-
trol for genotype failures revealed 100 % concordance
with the previously obtained results.

RNA extraction and Quantitative Real-Time PCR
Total RNA was extracted from snap-frozen breast can-
cer tissue with the Qiagen RNeasy kit and according to
the manufacturer’s instructions. One μg of total RNA
was applied for cDNA synthesis with oligo dT primers
(Roche, Mannheim, Germany) and Superscript II reverse
transcriptase (Invitrogen, Karlsruhe, Germany). Relative
CASP8 mRNA expression was evaluated by RT-qPCR
analysis, using the SYBR Green PCR kit (Qiagen, Hilden,
Germany), according to the manufacturer’s instructions.
Quantitative RT-qPCR was performed using the ABI-
7500 system (Applied Biosystems, Darmstadt, Germany).
Primer sequences were designed, in order to detect all
caspase 8 isoforms (forward: 5′ AAA TCT CCA AAT
GCA AAC T 3′, reverse: 5′ATC TTC AGC AGG CTC
TTG T 3′). Data were analyzed using the ABI Sequence
Detection software (version 1.2.3). The Cq-threshold
was adjusted to a fluorescent level above the background
signal and within the linear range of each amplification
plot. Melting curves were drawn after each PCR run in
order to ensure that a single and specific PCR-product
was generated. All samples, including non-RT (without
reverse transcriptase) and no-template controls were
assayed in triplicates. Mean Cq-values and deviations
between the triplicates were calculated. Samples with a
Cq deviation >0.5 or with any evidence for melting curve
abnormality were repeated. Caspase 8 expression values
were normalized to human ß-actin expression as house-
keeping reference [22]. Reported normalized relative
expression values were calculated by the 2-deltaCq

method and corresponded to 2 -[Cq(caspase 8) - Cq(β-actin)].
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Statistical analysis
Statistical analyses were performed using GraphPad
Prism 6.0 (GraphPad Software, LaJolla, CA, USA) and
SPSS software version 21.0 (IBM, Armonk, NY, USA).
Clinical variables and genotypes were compared using
either Student’s t test, ANOVA for continuous variables
or Pearson’s Chi2 test for categorical data. Control for

deviation from the Hardy–Weinberg equilibrium was
conducted using a publically available Hardy–Weinberg
equilibrium calculator [23]. Linkage disequilibrium and
haplotypes were assessed using Haploview [24]. Kaplan-
Meier plots and the log-rank test for trend were used to
retrospectively evaluate the relationship between CASP8
Asp302His genotypes, CASP8 -652 6N InsDel genotypes,

Table 1 Clinico-pathological characteristics at primary diagnosis and -652 6N InsDel genotype distribution

All CASP8 -652 6N InsDel genotype P-value

InsIns InsDel DelDel

n (%) 200 42 (21.0) 101 (50.5) 57 (28.5)

Age at diagnosis (years ± SD) 56.46 ± 12.1 55.00 ± 10.4 57.19 ± 12.4 56.26 ± 12.6 0.676

Tumor type

Ductal 136 (68.0) 28 (20.6) 68 (50.0) 40 (29.4) 0.243

Lobular 43 (21.5) 12 (27.9) 23 (53.5) 8 (18.6)

Others 21 (10.5) 2 (9.5) 10 (47.6) 9 (42.9)

Tumor size (mm± SD) 24.20 ± 16.8 23.51 ± 19.2 25.11 ± 17.1 23.07 ± 14.5 0.837

Tumor stage

pT1 107 (53.5) 24 (22.4) 53 (49.5) 30 (28.1) 0.540

pT2 71 (35.3) 11 (15.5) 39 (54.9) 21 (29.6)

pT3+4 22 (11.0) 7 (31.8) 9 (40.9) 6 (27.3)

Lymph node status

pN0 115 (57.5) 24 (20.9) 61 (53.0) 30 (26.1) 0.592

pN+ 85 (42.5) 18 (21.2) 40 (47.1) 27 (31.8)

UICC stage

I 76 (38.0) 17 (22.4) 37 (48.7) 22 (28.9) 0.442

II 78 (39.0) 13 (16.7) 46 (59.0) 19 (24.4)

III + IV 46 (23.0) 12 (26.0) 18 (39.1) 11 (23.9)

Grade

1 71 (37.4) 16 (22.5) 35 (49.3) 20 (28.2) 0.379

2 68 (35.8) 10 (14.7) 40 (58.8) 18 (26.5)

3 51 (26.8) 13 (25.5) 21 (41.2) 17 (33.3)

Estrogen receptor status

negative 53 (32.5) 12 (7.4) 29 (17.8) 12 (7.4)

positive 110 (67.5) 25 (15.3) 50 (30.7) 35 (21.5) 0.432

Her2 status

negative 138 (83.6) 30 (18.1) 68 (41.2) 40 (24.2) 0.835

positive 27 (16.4) 5 (3.0) 15 (9.1) 7 (4.2)

Treatment

Surgical treatment

breast conserving 50 (25.0) 10 (20.0) 23 (46.0) 17 (34.0) 0.604

ablative 150 (75.0) 32 (21.3) 78 (52.0) 40 (26.7)

Adjuvant therapy

no adjuvant therapy 112 (56.0) 22 (19.6) 62 (57.1) 28 (25.0) 0.285

Tam and/or CMF 88 (44.0) 20 (22.7) 39 (44.3) 29 (33.0)

Tam Tamoxifen, CMF cyclophosphamide, methotrexate and 5 fluorouracil. Data are numbers with percentages given in brackets. Categorical variables were
analyzed by χ2 statistics. P values were calculated using ANOVA for continuous variables
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CASP8 diplotypes, and outcome between the date of
primary diagnosis and the end of follow-up. Both univar-
iate analysis and stepwise backward multivariable Cox
regression analysis were used to analyze the effect of
genotypes and diplotypes of the CASP8 polymorphisms
on clinical outcome. Hazard ratios (HR) and 95 % confi-
dence intervals (95 % CI) were calculated based on the
Cox regression model. Differences with p-values <0.05
were considered significant; all p-values are two-tailed.

Results
CASP8 -652 6N InsDel polymorphism influences CASP8
mRNA expression in malignant breast cancer tissue in an
allele-dose specific manner
The CASP8 -652 6N InsDel polymorphism was previ-
ously shown to influence caspase 8 mRNA expression in
lymphocytes in an allele-dose specific manner [3]. To in-
terrogate, whether this effect may also apply to malig-
nant breast cancer tissue, we quantified Caspase 8
mRNA expression in 55 breast cancer patients from
which snap-frozen cancer tissue for RNA-extraction was
available. Normalized expression data were used to test
if there are mean differences in caspase 8 expression by
genotype groups. Interestingly, cancer tissues being
homozygous for the deletion (n = 15), displayed lowest
relative caspase 8 mRNA expression, followed by hetero-
zygous samples (n = 23). Highest expression levels were
found in tissues bearing the homozygous insertion
variant (n = 17) (p = 0.013, Fig. 1b).
Conclusively, we observed a significant allele-dose

dependent association between CASP8 -652 6N Del
allele and decreased caspase 8 mRNA expression in
primary breast cancer tissue.

Prognostic relevance of CASP8 -652 6N InsDel for breast
cancer
In 57/200 patients (28.5 %), homozygosity for the deletion
variant (DelDel) was observed, whereas 101/200 patients
(50.5 %) were heterozygous (InsDel) and 42/200 patients
(21.0 %) showed an InsIns genotype (Table 1). No signifi-
cant deviation from Hardy-Weinberg equilibrium was
detectable (p = 0.824) and the observed genotype distribu-
tion as well as the allelic frequencies (fIns = 0.463) were
comparable to those previously reported in cancer cases
and healthy controls of European ancestry [13, 25].
Subsequently, we investigated, whether CASP8 -652 6N

InsDel genotyping may provide prognostically relevant
information for breast cancer patients. After confirming
that clinico-pathological characteristics consistently lacked
significant associations with the underlying genotypes
(Table 1), Kaplan-Meier analysis was performed, in order
to determine prognostic relevance of the CASP8 -652 6N
InsDel polymorphism. Intriguingly, an allele-dose
dependent influence of CASP8 -652 6N InsDel upon OS

was observed (Fig. 1c, p = 0.0018), with homozygous dele-
tion carriers at highest risk of death (hazard ratio (HR) =
2.384; 95 % confidence interval (CI) = 1.31–5.48; p = 0.007;
Table 2). Moreover, multivariable Cox-regression analysis
revealed the CASP8 -652 6N DelDel genotype to be an in-
dependent prognostic factor for reduced OS (HR = 2.769;
95 % CI = 1.32–5.81; p = 0.007; Table 2).
In our historic breast cancer cohort, routine assessment

of ER and Her2 receptor status had not yet been diagnos-
tic standard. Nevertheless, ER and Her2 receptor data
were available in 163/200 and 165/200 cases, respectively.
Due to clinical relevance of these parameters, we per-
formed an additional multivariable analysis, including ER/
Her2 status. This analysis confirmed that prognostic
relevance of CASP8 -652 6N InsDel polymorphism is
independent from ER or Her2 status (Additional file 1).
In conclusion, we revealed the CASP8 -652 deletion

variant to be an allele-dose dependent negative prognos-
tic factor for patients with breast cancer. Moreover,

Table 2 Risk of death by uni- and multivariable -652 6N InsDel
Cox-regression analyses

Variable Hazard Ratio 95 % CI P

Univariate Analysis

-652 6N del

InsIns 1a

InsDel 1.316 0.65–2.68 0.450

DelDel 2.384 1.31–5.48 0.007

Multivariable Analysis

-652 6N del

InsIns 1a

InsDel 1.490 0.72–3.10 0.286

DelDel 2.769 1.32–5.81 0.007

Age (per year) 1.002 0.98–1.02 0.863

Tumor type

ductal 1a

lobular 1.909 1.00–3.64 0.050

others 1.713 0.88–3.35 0.115

Tumor stage

T1 1a

T2-4 1.798 1.09–2.98 0.023

Nodal status

negative 1a

positive 3.681 2.13–6.35 <0.001

Grade

1 1a

2 1.044 0.56–1.94 0.892

3 1.776 0.89–3.53 0.102
aReference group
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homozygosity for the -652 6N del variant is an inde-
pendent predictor for decreased OS.

Prognostic relevance of CASP8 Asp302His for breast
cancer
In the following, we analyzed prognostic relevance of the
CASP8 Asp302His polymorphism in our study cohort.
We observed that 151/200 patients (75.5 %) had an
AspAsp genotype, 46/200 patients (23 %) were heterozy-
gous (AspHis) and 3/200 patients (1.5 %) exhibited the
rare HisHis genotype (Table 3). No deviation from
Hardy-Weinberg equilibrium was detectable (p = 0.812)
and the observed genotype distribution as well as the al-
lelic frequencies (fHis = 0.130) were comparable to those
previously reported in cancer cases and healthy controls
of European ancestry [6, 7]. After confirming that
clinico-pathological characteristics consistently lacked
significant associations with the underlying genotypes
(Table 3), Kaplan-Meier analysis was performed, in order
to determine prognostic relevance of the CASP8
Asp302His polymorphism. Interestingly, an allele-dose
dependent influence of CASP8 Asp302His upon OS was
observed (Fig. 1d; p = 0.015), with homozygous minor al-
lele carriers at highest risk of death (hazard ratio (HR) =
4.746, 95 % confidence interval (CI) = 1.14–19.71 p =
0.032; Table 4). Moreover, multivariable Cox-regression
analysis revealed the His/His genotype to be an inde-
pendent prognostic factor for reduced OS (HR = 4.889,
95%CI = 1.10–21.76; p = 0.037; Table 4). Here again, by
performing an additional multivariable analysis, includ-
ing available ER and Her2 data, we could confirm that
prognostic relevance of CASP8 Asp302His polymorph-
ism is independent from ER or Her2 receptor status
(Additional file 1).
In conclusion, we revealed the CASP8 Asp302His vari-

ant to be an allele-dose dependent and negative prog-
nostic factor for patients with breast cancer. Moreover,
homozygosity for CASP8 302His variant is an independ-
ent predictor for decreased OS.

Combined analysis of CASP8 Asp302His and CASP8 -652
6N InsDel and its prognostic relevance for breast cancer
We used Haploview to analyze putative linkage of the
polymorphisms. We identified four different haplotypes,
two common haplotypes (Del/Asp, fDel/Asp = 0.448 and
Ins/Asp, fIns/Asp = 0.422), the Del/His haplotype with a
frequency of 0.115 and a rare haplotype (Ins/His fIns/His

= 0.015). Since this analysis showed that CASP8
Asp302His and CASP8 -652 6N InsDel are in linkage
disequilibrium to each other (D’ = 0.754), but showed a
low correlation (r2 = 0.073), we inquired, whether the ef-
fects of these two polymorphisms are independent from
each other. Interestingly, a Cox model including both
polymorphisms revealed that homozygosity for CASP8

-652 DelDel (HR = 2.384; 95%CI = 1.14–4.97; p = 0.020)
and CASP8 302His (HR = 4.495, 95%CI = 1.07–18.94, p
= 0.041) were both prognostic factors, which are inde-
pendent from each other (Table 5).
Moreover, to investigate prognostic significance of

combined CASP8 -652 6N InsDel and CASP8
Asp302His genotypes in breast cancer patients, we used
CASP8 diplotypes (Fig. 1e). Theoretically, 4 haplotypes,
as identified for these polymorphisms, lead to 10 diplo-
types. However, due to the shown haplotype frequencies
and the detected linkage of these polymorphisms, only 5
common diplotypes could be detected. Five patients
belonged to rare diplotypes and needed to be analyzed
together with other patients. Figure 1e shows how we
joined these rare diplotype carriers with the common
ones.
Kaplan-Meier analysis was performed, in order to de-

termine prognostic relevance of CASP8 diplotypes
(Fig. 1f ). We observed an additive influence of CASP8
Asp302His and CASP8 -652 6N InsDel upon OS (p =
0.0002). Consequently, individuals bearing a -652 DelDel
and a homo- or heterozygous 302His diplotype had the
highest risk of death, followed by patients with a -652
DelDel variant and 302 AspAsp diplotype.
Moreover, the presence of the -652 DelDel variant and

a homo- or heterozygous 302His diplotype or the pres-
ence of the -652 6N del variant and the 302 AspAsp
diplotype were independent predictors for OS (HR =
3.129, 95%CI = 1.39–7.05; p = 0.006; HR = 2.961, 95%CI
= 1.17–7.53; p = 0.023, respectively, Table 5). Including
available ER and Her2 data in an additional multivariable
analysis confirmed that prognostic relevance of CASP8
diplotypes is independent from ER or Her2 receptor sta-
tus (Additional file 1).
Thus, we may conclude that the CASP8 -652 6N Del

or the CASP8 Asp302His variant provide an allele-dose
dependent and negative prognostic factor for breast can-
cer, independently from each other.

Discussion
In the present study, we investigated clinical relevance
of two selected caspase 8 polymorphisms, namely
CASP8 -652 6N InsDel and Asp302His, for patients with
primary breast cancer. Intriguingly, in contrast to previ-
ous molecular epidemiological findings [4, 7, 26], de-
scribing an association of the CASP8 -652 6N deletion
variant or the CASP8 Asp302His variant with decreased
breast cancer susceptibility, we showed that these cas-
pase 8 variants have a negative and allele-dose
dependent prognostic impact on breast cancer overall
survival. Moreover, we confirmed that clinical informa-
tivity of both polymorphisms is independent from each
other and that these polymorphisms have, besides, an
allele-dose dependent additive influence on OS.
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Considering that activation induced cell-death of anti-
tumor T-lymphocytes was shown to be involved into
immune surveillance of cancer cells [3, 27], the function-
ally underlying death receptor-pathway emerged as an
interesting target to seek novel candidate polymorphisms
for cancer susceptibility. In this regard, CASP8 -652 6N

InsDel has already been shown to have an influence on
caspase 8 mRNA expression in stimulated T-lymphocytes,
by disrupting a Specifity Protein 1 (Sp1) transcription
factor binding site in the caspase 8 promoter region and,
consequently, by functionally interfering with caspase 8
transcription [3]. Complementarily, we reported that

Table 3 Clinico-pathological characteristics at primary diagnosis and Asp302His genotype distribution

All CASP8 Asp302His genotype P-value

Asp/Asp Asp/His His/His

n (%) 200 151 (75.5) 46 (23.0) 3 (1.5)

Age at diagnosis (years ± SD) 56.46 ± 12.1 57.46 ± 12.0 52.87 ± 11.7 61.33 ± 11.0 0.089

Tumor type

Ductal 136 (68.0) 109 (80.1) 24 (17.6) 3 (2.2) 0.086

Lobular 43 (21.5) 29 (67.4) 14 (32.6) 0 (0)

Others 21 (10.5) 13 (61.9) 8 (38.1) 0 (0)

Tumor size (mm± SD) 24.20 ± 16.8 23.54 ± 17.4 25.22 ± 14.4 50.00 ± 7.1 0.163

Tumor stage

pT1 107 (53.5) 84 (78.5) 22 (20.6) 1 (0.9) 0.321

pT2 71 (35.3) 49 (69.0) 21 (29.6) 1 (1.4)

pT3+4 22 (11.0) 18 (81.8) 3 (13.6) 1 (6.7)

Lymph node status

pN0 115 (57.5) 92 (80.0) 22 (19.1) 1 (0.9) 0.202

pN+ 85 (42.5) 59 (69.4) 24 (28.2) 2 (2.4)

UICC stage

I 76 (38.0) 59 (77.6) 16 (21.1) 1 (1.3) 0.387

II 78 (39.0) 58 (74.4) 20 (25.6) 0 (0)

III + IV 46 (23.0) 34 (73.9) 10 (21.7) 2 (4.3)

Grade

1 71 (37.4) 56 (78.9) 15 (21.1) 0 (0) 0.459

2 68 (35.8) 49 (72.1) 18 (26.5) 1 (1.5)

3 51 (26.8) 38 (74.5) 11 (21.6) 2 (3.9)

Estrogen receptor status

negative 53 (32.5) 43 (26.4) 10 (6.1) 0 (0)

positive 110 (67.5) 81 (49.7) 27 (16.6) 2 (1.2) 0.402

Her2 status

negative 138 (83.6) 104 (63.0) 32 (19.4) 2 (1.2)

positive 27 (16.4) 21 (12.7) 6 (3.6) 0 (0) 0.811

Treatment

Surgical treatment

breast conserving 50 (25.0) 41 (82.0) 8 (16.0) 1 (2.0) 0.300

ablative 150 (75.0) 110 (73.3) 38 (25.3) 2 (1.3)

Adjuvant therapy

no adjuvant therapy 112 (56.0) 90 (80.4) 21 (18.8) 1 (0.9) 0.065

Tam and/or CMF 88 (44.0) 61 (69.3) 25 (28.4) 2 (2.3)

Tam and/or CMF 88 (44.0) 61 (69.3) 25 (28.4) 2 (2.3)

Tam Tamoxifen, CMF cyclophosphamide, methotrexate and 5 fluorouracil. Data are numbers with percentages given in brackets. Categorical variables were
analyzed by χ2 statistics. P values were calculated using ANOVA for continuous variables
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breast cancer tissues of patients, bearing a homozygous
-652 6N Del variant, displayed lowest relative CASP8
expression, which corroborates that this effect is similarly
applicable for malignant breast cancer tissue. This finding
was not necessarily anticipated. Although Sp1 sites are
typically believed to represent constitutive promoter
elements for basal transcription, recent studies showed
that, especially in cancer, the Sp1 transcription factor can
be strongly regulated by post-translational modifications
that positively or negatively affect its activity on a wide
array of genes [28, 29].
The CASP8 Asp302His variant, especially in form the

His/His genotype, was a rare event in our study population,
which is in accordance to previous independent observa-
tions [5]. Similarly, CASP8 302His variant was shown to
confer reduced breast cancer susceptibility in an allele-dose
dependent manner [4]. However, given that the functional
effect of this polymorphism is largely unknown, the under-
lying effect on caspase 8 functionality and tumor progres-
sion is less clear. Nevertheless, aspartate 302 was shown to

be conserved between mouse and human caspase 8 and is
located on the protein surface. Therefore, it has already
been hypothesized that the Asp302His change could
likewise impair caspase 8 function, possibly by negatively
affecting its auto processing capability or its catalytic
activity [5]. However, albeit highly interesting, a detailed
functional analysis of the polymorphisms, investigated
herein, is beyond the objective of our present investigation.
As our key finding, we described both caspase 8 variants

as a negative prognostic factor for breast cancer. At first
glance, our finding may appear counterintuitive, since the
CASP8 -652 InsDel or DelDel genotype has previously
been associated with impaired immune surveillance of

Table 5 Risk of death by bivariate and combined multivariable
Cox-regression analyses

Variable Hazard Ratio 95 % CI P

Bivariate Analysis

-652 6N del

InsIns 1a

InsDel 1.178 0.57–2.44 0.660

DelDel 2.384 1.14–4.97 0.020

Asp302His

Asp/Asp 1a

Asp/His 1.439 0.85–2.44 0.175

His/His 4.495 1.07–18.94 0.041

Multivariable Analysis

-652 + 302

InsIns + AspAsp 1a

InsDel + AspAsp 1.695 0.75–3.82 0.202

Ins-allele + His-allele 1.713 0.70–4.22 0.242

DelDel + AspAsp 3.129 1.39–7.05 0.006

DelDel + His-allele 2.961 1.17–7.53 0.023

Age (per year) 1.002 0.98–1.02 0.876

Tumor type

ductal 1a

lobular 1.933 1.01–3.71 0.048

others 1.714 0.85–3.45 0.130

Tumor stage

T1 1a

T2-4 1.794 1.08–2.98 0.024

Nodal status

negative 1a

positive 3.709 2.14–6.43 <0.001

Grade

1 1a

2 1.030 0.55–1.92 0.926

3 1.789 0.89–3.59 0.101
aReference group

Table 4 Risk of death by uni- and multivariable Asp302His
Cox-regression analyses

Variable Hazard Ratio 95 % CI P

Univariate Analysis

Asp302His

Asp/Asp 1a

Asp/His 1.607 0.96–2.69 0.071

His/His 4.746 1.14–19.71 0.032

Multivariable Analysis

Asp302His

Asp/Asp 1a

Asp/His 1.089 0.62–1.93 0.769

His/His 4.889 1.10–21.76 0.037

Age (per year) 1.002 0.98–1.02 0.839

Tumor type

ductal 1a

lobular 1.659 0.87–3.15 0.123

others 1.813 0.90–3.67 0.098

Tumor stage

T1 1a

T2-4 1.849 1.11–3.07 0.017

Nodal status

negative 1a

positive 3.652 2.13–6.27 <0.001

Grade

1 1a

2 1.020 0.55–1.91 0.952

3 1.648 0.82–3.30 0.158
aReference group
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cancer cells and concomitantly decreased breast cancer
susceptibility [3, 6, 7, 9]. However, our data are in accord-
ance with a recent pilot investigation, reporting, albeit
with borderline statistical significance, a negative prognos-
tic impact of the CASP8 -652 6N Del allele for colorectal
cancer patients [19]. Complementarily, in a very recent
approach, CASP8 302His was associated with worse over-
all and event-free survival in patients with MYCN-
amplified neuroblastoma tumors [18]. Apoptosis, with
caspase 8 as one of its key regulators, is not only involved
in AICD of antitumor T lymphocytes, but also constitutes
an important defense mechanism against hyperprolifera-
tion and malignancy, which can be induced by e.g. DNA
damage [30, 31]. Therefore, the acquired ability to resist
apoptotic stimuli, caused by aberrations in key apoptotic
pathways, is an essential characteristic for cells to become
malignant and to develop a metastatic phenotype [31, 32].
Moreover, the death receptor pathway, with caspase 8 as
key regulator, was shown to be de-regulated in malignant
tumor cells, such as in breast cancer cells [33, 34], in dys-
plastic cells or in carcinomas in situ [35]. Therefore, in
breast cancer, we hypothesize an ambiguous tumor bio-
logical relevance and a context dependent clinical infor-
mativity for CASP8 -652 InsDel: In healthy individuals,
impaired caspase 8 activity and reduced apoptotic capacity
seems to have primarily influence on immune escape (in
terms of AICD) and obviously decreases breast cancer
susceptibility. Contrarily, in patients with diagnosis of pri-
mary breast cancer, in which malignant cells have already
accomplished immune escape, the so far protective effect
of increased immune surveillance becomes obviously in-
ferior. In this situation, increased resistance of tumor cells
to apoptotic stimuli, conferred by the CASP8 InsDel or
DelDel genotype, turns the balance and becomes a poten-
tially pro-tumorigenic and negative prognostic factor,
resulting in decreased OS. However, this concept is not
necessarily transferable to other cancer entities, since the
CASP8 InsDel and DelDel genotypes were contrarily
described as favorable prognostic indicators for gastric
cancer patients [36]. However, in the light of the complex-
ity of death receptor signaling, these data are not surpris-
ing. It is known that the magnitude of pro-death events
(such as caspase activation) and pro-survival events (such
as Nuclear Factor (NF)-kB) may vary not only from one
cell type to the next but also among individual cells of the
same type due to intrinsic and extrinsic factors. Therefore,
death receptor ligands may simultaneously activate oppos-
ing signals via the same receptors [37].
Moreover, albeit being in linkage disequilibrium,

CASP8 -652 6N InsDel and CASP8 Asp302His showed
an independent and additive prognostic impact on OS.
Therefore, we may hypothesize that both polymorphisms
may account for an additive or even synergistic effect on
total caspase 8 activity in breast cancer cells.

Conclusion
To the best of our knowledge, this is the first report
describing a prognostic impact of both CASP8 -652 6N
InsDel and CASP8 Asp302His for breast cancer patients.
However, considering the limited number of patients in
our study, our statistically verified conclusions should be
handled with care and our explorative approach needs
to be clinically validated in larger and independent
patient cohorts. Nevertheless, we performed multivariate
analysis to reduce the risk of accidental findings, which
revealed that our results remained significant after
correction for the covariates. Moreover, two completely
independent outcome studies in neuroblastoma and
colon cancer showed a comparable effect of -652 6N
InsDel and Asp302His, respectively [18, 19]. This pro-
vides further evidence for a real functional effect of these
polymorphisms. Therefore, further larger (prospective)
studies should be initiated to validate clinical utility of
these two CASP8 polymorphisms for breast cancer and
also to a broad scope of other malignancies.
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analyses including Estrogen receptor and Her2 receptor status. In Table 2,
risk of death is calculated by multivariate Asp302His Cox-regression analyses
including Estrogen receptor and Her2 receptor status. In Table 3, risk of
death is calculated by CASP8 diplotypes multivariate Cox-regression
including Estrogen receptor and Her2 receptor status. (DOCX 22 kb)

Additional file 2: Anonymized clinical dataset. All variables used for
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univariate and multivariable analyses. Ages were replaced by age ranges
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