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Abstract

Breast cancer causes the No.1 women cancer prevalence and the No.2 women cancer mortality worldwide. Nuclear
receptor/transcriptional factor signaling is aberrant and plays important roles in breast cancer pathogenesis and
evolution, such as estrogen receptor a (ERa/ESR1), tumor protein p53 (p53/TP53) and Nuclear factor kappa B (NFkB).
About 60-70 % of breast tumors are ERa positive, while approximate 70 % of breast tumors are P53 wild type.
Recent studies indicate that nuclear receptors/transcriptional factors could be tightly controlled through protein

post-translational modification.

The nuclear receptors/transcriptional factors could endure several types of modifications, including phosphorylation,
acetylation and ubiquitination. Compared with the other two types of modifications, ubiquitination was mostly
linked to protein degradation process, while few researches focused on the functional changes of the target
proteins. Until recent years, ubiquitination process is no longer regarded as merely a protein degradation process,

but aslo treated as one kind of modification signal.

As an atypical E3 ubiquitin ligase, RNF31 was previously found to facilitate NFkB signaling transduction through
linear ubiquitination on IKK(IkB kinase y). Our previous studies showed important regulatory functions of RNF31 in
controlling important oncogenic pathways in breast cancer, such as ERa and p53. This review highlights recent
discoveries on RNF31 functions in nuclear factor modifications, breast cancer progression and possible therapeutic

inhibitors targeting RNF31.
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Background

Breast cancer is one of the most frequent neoplastic
lethality among women [1]. According to the receptor
status classification based on estrogen receptor (ER),
progesterone receptor (PR) and human epidermal
growth factor receptor 2 (HER-2) positivity, breast can-
cer can be divided into luminal A, luminal B, HER2 type
and triple negative/basal - like subtype [2]. Among these
subtypes, luminal A and B could be treated with ERa an-
tagonists and/or aromatase inhibitors, while HER2
enriched subtypes could be effectively controlled through
Trastuzumab, a specific antibody for HER2 [3, 4]. Due to
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a lack of validated drug targets for triple negative/basal-
like subtype, chemotherapy is the primary treatment for
this group with the worst prognosis [5].

According to the oncogene addiction theory, each sub-
type of breast cancer needs at least one oncogenic pathway
to maintain its survival. For the luminal A and B subtypes,
estrogen signaling has the function to maintain breast can-
cer survival and malignant phenotype, while HER2 sub-
type is dependent on HER2 amplification/overexpression
[6, 7]. As to the triple negative/basal-like subtype, the ad-
dictive oncogenic pathway is not totally clear. However,
there were reports that NFkB and EGFR signaling were
necessary to facilitate breast cancer progression [8—12].

Currently, few nuclear receptors/transcriptional factors
lead to successful drug development and clinical applica-
tions. Since the post-translational modification on nuclear
receptor/transcriptional factors was proved to be the key
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mechanism in regulating the relative intensity of cellular
signaling [13], more studies start to focus on the explor-
ation of biological functions on the nuclear factors modu-
lators [14]. The increased knowledge of nuclear factor
modulators will lay a solid foundation for selective targets
on these modulation proteins and subsequently clinical
applications.

The nuclear receptors/transcriptional factors could be
subjected to several post-translational modifications,
such as acetylation, methylation, phosphorylation and
ubiquitination. Compared with other modifications, ubi-
quitination is processed sequentially via multiple ubiqui-
tin ligases E1, E2 and E3, which was first recognized as
the signal for protein destruction [15]. But further stud-
ies revealed that ubiquitination linked to signaling trans-
duction and proper protein functioning [16]. A lot of
non-destructive ubiquitination is ligated by the E3
ubiqutin ligases belonging to ring finger protein (RNF)
family [17]. As one of the RNF family member, RNF31
(other names: HOIP; ZIBRA) was first cloned from
breast cancer cell line and was identified as a classical
component in linear ubiquitin assembly complex
(LUBAC) to facilitate NFkB signaling transduction [18].
Our previous studies identified the oncogenic role of
RNF31 in facilitating estrogen signaling and suppressing
P53 pathway in breast cancers [19, 20]. Here we want to
review the current knowledge about RNF31 as an ubi-
quitin ligase in breast cancer cell progression.

E3 ubiquitin ligase and cancer

E3 ubiquitin ligases function to catalyze the transfer of
ubiquitin from an E2 ubiquitin-conjugating enzyme to
the lysine of a protein substrate. Ubiquitin molecules are
attached to lysine residues on substrates via lysine resi-
dues on ubiquitin [21]. Different forms of ubiquitination
have been identified such as mono-ubiquitination and
poly-ubiquitination [15]. Mono-ubiquitination can be
viewed as a necessary process for poly-ubiquitination or
a separate event [22, 23]. Mono-ubiquitination is dem-
onstrated to link to a change of substrate functions such
as signal transduction or protein trafficking in addition
to protein degradation [23]. For example, mono-
ubiquitination of histone 2A (H2AX) by RNF8 is a ne-
cessary step of the DNA repair response [24]. Poly-
ubiquitination has different lysine residues on ubiquitin
protein as points of ubiquitination, including K63, K48,
K27, K29, K33, K11 and linear ubiquitination [25-27].
The K48 and K63 ubiquitination process is related to
proteasome dependent degradation [15]. However, the
other atypical forms of ubiquitin, such as K27, K11 and
linear ubiquitin, are less well understood, while there are
accumulating evidences showing that they are involved
in DNA repair, signal transduction and protein traffick-
ing [15, 28, 29].
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Beside to the classification of lysine ubiquitination
sites, E3 ubiquitin ligases can also be divided by their
functional domains, which include the HECT (homolo-
gous to the E6-AP carboxyl terminus) group and the
RING finger group [21]. There are about 30 different
HECT E3 ligases in mammals that are involved in pro-
tein transfer, immune reaction, and DNA damage re-
sponse [21]. In general, the HECT family of E3 ligases is
composed of two functional domains. The functional do-
main at the C-terminus is responsible for the interaction
with E2 and ubiquitin molecules, while the N-terminal
domain is responsible for substrate interaction [21]. One
group of proteins, which belong to the HECT family are
the SMURF (Smad ubiquitinylation regulatory fac-
tor) proteins, which regulate TGFP and bone morpho-
genetic protein (BMP) signaling [30]. SMUREF proteins
interact with Smad proteins and regulate its poly-
ubiquitination and degradation via the HECT domain.
This process negatively controls the protein levels of the
Smad proteins and subsequently controls TGEP pathway
output. There are about 700 different RING E3 ligases,
most of which are not well studied [31]. According to
the current knowledge, the functions of RING E3 ligases
cover multiple aspects of cell physiological functions, in-
cluding cell proliferation, cell migration, DNA damage,
and protein trafficking [29, 31, 32]. Many of the RING
E3 ligases are found to be involved in carcinogenesis
[33]. BRCAL is the most thoroughly studied RING E3
ligase in cancer. As a tumor suppressor protein, BRCA1
is shown to regulate gene expression, DNA repair after
double stain break and protein ubiquitination [34]. ERa
has been suggested as a putative BRCA1 target and
BRCA1 inhibits ERa function [35]. Defects in BRCA1
ligase functions will lead to loss of the DNA repair re-
sponse [36]. BRCA1 mutations are found in about 70 %
of familial breast cancer and ovarian cancer [37]. In
addition, recent studies showed that RNF54 (RBCK1) in-
teracts with ERa and facilitates ERa target genes tran-
scription [38]. Analysis of publically available data sets
indicates that RBCK1 expression correlates with poor
tamoxifen response [39].

RNF31 as an E3 ubiquitin ligase

Ring finger protein 31 (RNF31), also named HOIL-1-
interacting protein (HOIP), was first cloned in 2004
from MCEF-7 cells [40]. Figure 1 shows the domain
structure of the RNF31 protein [41]. The PUB domain
(putative ubiquitin binding domain) at the N-terminal is
reported to bind cofactors [42]. The ZNF-RBZ domain
(Zinc finger domain in Ran-binding proteins and other
proteins) is related to the ubiquitin binding function
[43]. The UBA domain (ubiquitin binding associated
domain) has been shown to bind RBCK1 and mediate
linear ubiquitination of IKKy, which facilitates signal
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Fig. 1 RNF31 protein domain structure. PUB domain, putative ubiquitin binding domain; ZNF-RBZ domain, Zinc finger domain in Ran-binding
proteins and other proteins; UBA domain, ubiquitin binding associated domain; RING-IBR-RING domain, ring finger domain-in between RING-ring

transduction of NFkB [44]. The RING-IBR-RING domain
(RBR domain) at the C-terminal is thought to be the most
important one for its ubiquitin ligase function [45]. The
deletion of this domain will lead to loss of function of its
substrates, such as IKKy [41, 46].

RNF31 is highly expressed in muscle, heart, and testis
[41]. In cells, RNF31 mainly localizes to the cytoplasm.
Whole-body knockout of RNF31 will lead to embryonic
lethality through TNFR1-mediated endothelial cell death
[47]. The most well studied function of RNF31 is that it
together with RBCK1 and SHARPIN, forms the linear
ubiquitin chain assembly complex (LUBAC) which facili-
tates linear ubiquitination of IKKy and NF«B signaling
transduction as demonstrated in several conditional
knockout mice models [46, 47] (Fig. 2). For example,
conditional deletion of the RBR domain in B cells (B-
HOIPA"¢r) Jeads to lack of or reduced NFkB and ERK
signaling. Phenotypically, lack of RBR domain of RNF31
causes development deficiency of B cells and deficient
thymus-dependent and thymus-independent antigen re-
sponse [47]. RNF31 is also observed to contribute to in-
born human immunity disorders, in which RNF31
missense mutation at PUB domain gives rise to the de-
stabilized LUBAC complex and subsequently causes the
auto-inflammation and immunodeficiency [48]. In
addition, RNF31 is reported to modify ERK and JNK
pathways leading to cisplatin resistance [49].

RNF31 in human cancer

Although RNF31 was firstly cloned from MCE-7 cells, it
was not instantly studied in cancer area. The most im-
portant reason is that the functional domain as well as
its molecular function of RNF31 is not clear. As RNF31
was characterized as an E3 ubiquitin ligase in NFkB
signaling transduction from these immunological and
biochemical studies, more and more researchers started
to focus on RNF31 function in cancer area. Firstly
RNF31 is highly expressed in several human cancers,
while RNF31 gene harbors low mutation frequency from
the TCGA database (http://cbioportal.org/) [18]. Although
RNF31 mutation/nucleotide variation is rare, RNF31
single-nucleotide polymorphisms were reported to highly
activate LUBAC activity and contribute to occurrence of
large B-cell lymphoma [50]. In the mechanistic studies,
RNF31 was shown to interact and trans-repress DAX
function, which facilitated carcinogenesis of adrenocortical
carcinoma [51]. Besides RNF31 was also involved in
chemotherapy outcome, Mackay et al reported that
RNEF31 contributed to cisplatin resistance through NF«xB
and JNK pathway [52]. Based on the current studies,
RNEF31 seems to act as an oncogene, while it may exert its
function through two different models. One is that RNF31
contributes its carcinogenic role by facilitating NF«B
pathway, which is already shown to be the key oncogenic
pathway in several cancers. Another is that RNF31 might
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Fig. 2 The proposed model for RNF31 effect on ERa signaling in breast cancer. RNF31 interacts with ERa and increases its stability possibility
through the mono-ubiquitination manner. The stabilized ERa protein will enhance the estrogen dependent signaling transduction
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Fig. 3 The known ERa protein acetylation, sumoylation and ubiquitination sites and their corresponding enzymes. The Activator Function 1 (AF1)
domain at the N-terminal of the ERa protein can transactivate transcription in the absence of ligand binding. The DNA-binding domain (DBD)
binds to estrogen response elements (EREs) in DNA. The AF2 domain is the ligand-dependent transactivation domain. As part of its transactivation
function, the AF2 domain also binds to several co-activators and co-repressors of ERa
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act as an oncogene through modulating these key nuclear
receptors/transcription factors, such as ERa and P53.

RNF31 in ERa and P53 signaling in breast cancers

ERa protein activity can be regulated by various post-
translational modifications. The known modifications
include phosphorylation, ubiquitination, sumoylation,
acetylation, methylation and O-linked N-acetylglucosamine.
The many sites of modifications are widely distributed over
the ERa protein (Fig. 3). Modifications of ERa protein can
modulate its functions in several ways. For example, acetyl-
ation in the hinge domain of ERa changes the ligand sensi-
tivity and subsequent histone de-acetylation effect [53].
For example, p300 is shown to acetylate ERa protein on
the DBD (DNA binding domain), which is shown to
enhance ERa activity [53]. Phosphorylation of ER« in-
creases its interaction with ERa co-activators [54]. For
example, Tharun et al. showed that phosphorylation at
Y537 of ERa changed the helix loop conformation and
subsequently increased ligand or co-factor binding efficacy
[55]. In addition, many ERa protein modifiers could act as

co-activators, which co-occupy with ERa on promoter
regions, such as p300 and PIAS [56, 57]. Hanstein et al.
first reported that p300 interacts with ERa as an im-
portant co-activator [58]. Several years later, Wang et
al. reported p300 as an acetylation ligase on ERa and
that the acetylation effect enhanced ERa transcriptional
activity [53].

Besides ERqa, P53 is another star protein in breast can-
cer area. The p53 protein is encoded by the TP53 gene,
which is located on chromosome 17 [59]. Structural and
functional analysis reveals that p53 is composed of
several functional domains (Fig. 4). The p53 protein is
activated by several events, such as DNA damage, oxida-
tive stress and oncogene activation [60, 61]. If activated,
the p53 half-life will increase, leading to activation of
p53 target genes [62]. Several p53 target genes, including
p21, are involved in cell cycle arrest [63]. Another group
of target genes regulate cell apoptosis, including the BAX
and Fas proteins [64]. In addition to its transactivation
function, p53 exerts trans-repression functions on several
oncogenes, such as bcl-2 [65]. P53 is also reported to
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Fig. 4 P53 protein domain structure. The N-terminal part amino acids 1-42, constitutes the transactivation domain. The proline-rich domain, from
amino acid 42 to amino acid 100, is proven necessary for p53 dependent apoptosis and cell cycle arrest. The DBD (DNA binding domain) is rich
in arginine and related to transcriptional activity. The protein domain from amino acid 305 to amino acid 322 includes the nuclear localization
domain. The domain from amino acid 340 to amino acid 351 includes the nuclear exclusion domain. In addition, the protein domain from amino
acid 326 to amino acid 356 corresponds to the tetramerization domain. The C-terminal domain from amino acid 364 to amino acid 393 is
required for DNA binding capability and DNA damage response
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Fig. 5 The regulatory effect of RNF31 and other E3 ligases on P53. RNF31 interacts with P53/MDM2 complex and facilitates P53 degradation in

mediate DNA repair via interaction with DNA repair pro-
teins, such as BRCA1 and ATM [66, 67].

P53 is under precise control in unstressed conditions.
If the p53 pathway is not activated, the p53 half-life is
approximately 20 min, regulated mainly by ubiquitina-
tion and proteasomal degradation [68]. Several ubiquiti-
nation sites are found at the C-terminal domain of p53,
including K370/K372/K373/K381/K382/K386 [69]. Sev-
eral E3 ubiquitin ligases have been shown to directly
poly-ubiquitinate the p53 protein and induce its protea-
somal degradation, including MDM2, COP1 and Pirh2
[70]. The most studied of these is the MDM?2 protein.
MDM2 is a direct target gene of p53 [71]. When p53 is
activated, it will induce the expression of MDM2. The
MDM2 protein will interact with p53 at the N-terminus
and block its transcriptional function [72]. MDM2 also
facilitates poly-ubiquitination at several lysine residues
in the p53 DBD and C-terminus, which subsequently in-
duces the degradation of p53 [73-75]. This MDM2-p53
negative feedback effectively keeps the cells responding
appropriately to certain stimulus [73]. Besides this cross
talk between MDM?2 and p53, more and more E3 ubi-
quitin ligases are found to modify the MDM2-p53 com-
plex and indirectly regulate p53 poly-ubiquitination and
degradation, including RNF2 and Smurf [76, 77]. E3 ubi-
quitin ligases that indirectly modify p53 are highly
expressed in cancers and thought to be involved in car-
cinogenesis by suppressing p53 function [78].

RNF31, which was firstly identified from MCEF-7 cells,
is found to be necessary in estradiol stimulated cell pro-
liferation [20, 40]. Further experiments showed that
RNF31 depletion significantly decreased ERa protein
level, ERa target gene expression, ERa-regulated re-
porter gene activity and ERa recruitment to the pro-
moter regions of target genes. Analysis of breast cancer
samples reveals that RNF31 is highly expressed in breast
tumors compared with adjacent tissues, while RNF31 ex-
pression is correlated with ERa target genes both in cell
line and in clinical samples. Mechanistic studies showed
that RNF31 interacts with ERa and increases its protein
stability through RBR domain. Besides, our results dem-
onstrate that RNF31 increased mono-ubiquitination of
ERa, and this was dependent on the RBR domain and
the E3 ligase activity.

In the microarray analysis based on MCE-7 cells, we ob-
served that the p53 pathway is significantly affected upon
RNF31 knockdown [19]. Our results further show that
RNEF31 depletion decreased the fraction of proliferating
cells in the MCEF-7 and ZR-75-1 cell lines. Using dual stain-
ing with Annexin V and PI, we found that knockdown of
RNF31 facilitated cisplatin-induced apoptosis, while knock-
down of p53 in addition to knockdown of RNF31 rescued
this effect. This supports that interaction of RNF31 and
p53 inhibits apoptosis. Measurement of p53 half-life re-
vealed that RNF31 mainly regulated p53 stability in
MDM?2 dependent manner. Further experiments showed
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that RNF31 affected MDM2 stability and proteasomal deg-
radation by inhibiting MDM2 poly-ubiquitination. How-
ever, it is not clear how RNF31 affect the poly-
ubiquitination of MDM2. There are several possible ex-
planations: RNF31 may compete with other E3 ligases and
inhibit MDM2 degradation. Another possibility is that
RNF31, as atypical E3 ligase, could function to increase
MDM2 stability through mono-ubiquitination. More re-
search is needed to elucidate the regulatory function of
RNF31 on MDM2 (Fig. 5).

It is well established that functional p53 is necessary
for chemotherapy-induced cell death. One approach,
which increases the efficacy of chemotherapy, is to in-
crease p53 protein levels [79]. In our study, we report
that RNF31 depletion can arrest the cell cycle and en-
hance cisplatin-induced cell death. This study uncovers
a potential oncogenic role of RNF31: the suppression of
p53 signaling. As such, RNF31 could be a potential tar-
get to increase the efficacy of chemotherapy. Further, we
provided additional knowledge of the molecular mech-
anism underlying regulation of p53 signaling in breast
cancer cells.

RNF31: the future study and possible therapeutic targets
for breast cancer
Since RNF31 was firstly cloned from MCEF-7 cells, there
is accumulating knowledge about this protein, including
protein structure, domain function, pathway regulation
and relation with disease [19, 20, 40, 41, 50]. The most
striking finding is the observation of RNF31 involving in
linear ubiquitination assembly complex in NF«B signaling
[46] (Fig. 2). As RNF31 whole knockout leads to embry-
onic death, it may indicate the important function in de-
velopment [80]. Since the oncogenic genes always involves
in development, RNF31 may be an important oncogenic
gene participating carcinogenesis and tumor evolution.

The functional role of RNF31 in human cancer is not
thoroughly studied. Currently, RNF31 was found to fa-
cilities lymphoma growth through NF«B pathway [50].
Another study also showed that RNF31 mediated cis-
platin resistance in multiple cancer cell models [49]. In
our previous studies, we found the oncogenic role of
RNF31 in breast cancer growth through facilitating ERa
signaling and suppressing P53 signaling [19, 20]. Besides,
our microarray data also indicated a few novel pathways
affected in breast cancer cells, including NF«B pathway,
TGEFp pathway and Wnt pathway [20]. As p53 wild type
tends to appear in ERa positive breast cancers (Luminal
A and B), there is still little known about RNF31 in
HER2 type or triple negative breast cancers. Interest-
ingly, our unpublished data already indicates the intri-
guing phenotype in triple negative breast cancers.

It is exciting to know the development of RNF31 in-
hibitor is ongoing. A lymphoma study showed that the
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blocking peptide targeting UBL domain of RNF31 sig-
nificantly inhibited lymphoma proliferation [81]. How-
ever, there are still several limitations for this peptide.
One is that since UBL domain is necessary for linear
ubiquitination function of RNF31, it might not affect the
function of RNF31 on ERa and p53 signaling based on
our current results. Another is whether the penetration
ability of the peptide is enough to maintain the function
in the cytoplasm for breast cancer cells. Besides, com-
pared with small molecular inhibitors, the peptide would
be more costly, less stable and possible immune reac-
tion. Since it is already known that the lysine residues
on RBR domain is necessary for the E3 ligase function of
RNF31, it will be interesting to develop the inhibitors
targeting on the E3 ligase function.

Conclusion

The knowledge of RNF31 and its role in breast cancer is
still very limited. We propose that RNF31 mono-
ubiquitinatesERa. However, other studies propose that
RNF31 can mediate linear ubiquitination in several other
models. Since RNF31 is an atypical ubiquitin ligase, its
different ubiquitination patterns to differentsubstrates
should be thoroughly investigated. Additionally, since we
only characterize the role of RNF31 in supporting estro-
gen signaling and inhibiting P53 signaling in ERa-positive
breast cancer cells, further investigation is required to
characterize the role of RNF31 in TNBC cells, which are
ERa negative and express mutant P53. Moreover, since re-
view focused more on the molecular mechanisms of
RNF31, future studies should focus more on the develop-
ment of drug targets and clinical applications.
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