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Abstract

Background: Many urothelial carcinomas (UC) contain activating PIK3CA mutations. In telomerase-immortalized
normal urothelial cells (TERT-NHUC), ectopic expression of mutant PIK3CA induces PI3K pathway activation, cell
proliferation and cell migration. However, it is not clear whether advanced UC tumors are PIK3CA-dependent and
whether PI3K pathway inhibition is a good therapeutic option in such cases.

Methods: We used retrovirus-mediated delivery of shRNA to knock down mutant PIK3CA in UC cell lines and
assessed effects on pathway activation, cell proliferation, migration and tumorigenicity. The effect of the class | PI3K
inhibitor GDC-0941 was assessed in a panel of UC cell lines with a range of known molecular alterations in the PI3K

pathway.

Results: Specific knockdown of PIK3CA inhibited proliferation, migration, anchorage-independent growth and in
vivo tumor growth of cells with PIK3CA mutations. Sensitivity to GDC-0941 was dependent on hotspot PIK3CA
mutation status. Cells with rare PIK3CA mutations and co-occurring 7SCT or PTEN mutations were less sensitive.
Furthermore, downstream PI3K pathway alterations in 7TSCT or PTEN or co-occurring AKTT and RAS gene mutations

were associated with GDC-0941 resistance.

Conclusions: Mutant PIK3CA is a potent oncogenic driver in many UC cell lines and may represent a valuable

therapeutic target in advanced bladder cancer.
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Background

Advanced urothelial carcinoma (UC) of the bladder has
a poor prognosis. At presentation, 15-30 % of UC pa-
tients are diagnosed with muscle-invasive tumors, and
these carry a 5-year risk of death ranging from 33 to
73 % [1]. The standard treatment for localized invasive
UC, is surgical removal of the bladder and regional
lymph nodes, but metastatic disease is a major cause of
death in these patients. The addition of cisplatin-
containing combination neoadjuvant therapy has been
shown to improve outcomes following cystectomy [2, 3],
but metastasis remains common and although treatment
with cisplatin-containing chemotherapy is beneficial in
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some cases, median survival for metastatic UC is only
13-15 months. As no significant improvements in sur-
vival have been achieved in recent years, new approaches
to therapy, particularly second line therapies for meta-
static disease, are urgently needed. Detailed molecular
information on UC is now available [4, 5], but targeted
agents have not yet been widely applied [6].

The phosphatidylinositol 3-kinase (PI3K) signaling path-
way plays a critical role in regulation of cell metabolism,
migration, proliferation and survival [7] and mutations
that lead to aberrant activation of the pathway are found
in virtually all types of cancer. In bladder cancer, 50-70 %
of tumors contain mutations that are predicted to activate
this pathway. These include activating mutations in
PIK3CA, [8, 9] and AKT1I [10], and inactivating mutations
of PTEN [11, 12], PIK3RI [13], TSCI and TSC2 [9, 14].
Assessment of the phosphorylation status of key pathway
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proteins confirms that pathway activation is present in
bladder tumors of all grades and stages [15]. These tumors
may benefit from PI3K-targeted therapy. Clinical trials of
mTORCI inhibitors in patients with bladder cancer have
been initiated in recent years. In trials of the mTOR inhibi-
tor Evirolimus, exceptional responses have been reported in
patients with advanced UC whose tumors contained 7SCI
or mTOR mutations [16, 17]. In general however, responses
to mTOR inhibitors have not been impressive [18], and in-
deed not all UC patients with tumors containing 7SCI mu-
tations have shown responses [16]. A potential reason is
that mTOR inhibition triggers feedback loops that activate
AKT [19]. Inhibitors of AKT have therefore been examined
in preclinical studies of UC [20, 21]. Importantly, these
studies revealed that sensitivity to AKT inhibition was
strongly related to the presence of PIK3CA mutation.
Taken together, it is clear that a thorough understanding of
the signaling events initiated by the PI3K pathway is re-
quired in order to maximize clinical benefit.

Inhibition of PI3K as a potential therapeutic approach
in UC has not previously been examined, though muta-
tions in PIK3CA represent the most frequent PI3K path-
way mutations in this cancer type, including 12-20 % of
muscle-invasive tumors [14, 22]. Preclinical studies and
early clinical trials indicate sensitivity to inhibitors of
PI3K in several cancers including breast, ovarian, endo-
metrial, lung and multiple myeloma [18, 23-29]. The
majority of these studies highlight the Class 1 PI3K in-
hibitor, GDC-0941, as a good therapeutic drug for solid
tumors. Furthermore, a phase I dose-escalation study of
GDC-0941 has recently been completed and reports
good tolerability of the drug with confirmed target
modulation in tumor tissues [30]. Several studies in
non-bladder cell lines have sought predictive biomarkers
of sensitivity to PI3K inhibitors and it has been sug-
gested that mutation of PIK3CA or loss of PTEN func-
tion are related to sensitivity to inhibitors of class I PI3K
and that mutations in RAS genes are associated with re-
sistance (Reviewed in [31]), though prediction based on
these biomarkers is not absolute.

Previously we examined the effect of ectopic expression
of mutant PIK3CA in telomerase-immortalized normal
human urothelial cells (TERT-NHUC) and showed that
this induces cell proliferation and migration [32]. In blad-
der tumors, more than one lesion in the PI3K pathway is
commonly present [9] and this could potentially lead to
distinct types of pathway dependence and response to spe-
cific therapeutic agents. Therefore, we have examined the
consequences of specific inhibition of mutant PIK3CA in
UC cells using stable knockdown, and treatment of a
panel of UC cell lines containing a range of PI3K pathway
alterations with the class I PI3K inhibitor, GDC-0941. Our
findings strongly suggest that targeting of PIK3CA maybe
a valid therapeutic approach in advanced bladder cancer.

Page 2 of 12

Methods

Cell culture

Cell lines with known PI3K pathway mutation status
were chosen (Additional file 1). Cell lines used for gene
knockdown and functional studies were VM-CUB-3,
BFTC909 and 253]. VM-CUB-3 was established from a
primary human bladder transitional cell carcinoma (TCC),
the grade and stage of which are unknown [33]. BETC909
was established from the sarcomatoid component of a
grade 3 TCC of the renal pelvis [34]. 253] was established
from a retroperitoneal metastasis from a human TCC
[35]. Bladder cancer cell lines J82, 253], HT-1197, VM-
CUB-3, BFTC909, UM-UC3, KU-19-19, DSH1, VM-CUB-
1, CAL29, TCCSUP, MGH-U3, 639V, 97-1, LUCCI,
LUCCS3 and RT4 were used in drug sensitivity assays. Cell
line identity was verified by short tandem repeat DNA
typing using the Powerplex 16 kit (Promega). Profiles were
compared to publically available data (ATCC, DSMZ) or
where no reference profile was available, were confirmed
as unique. Cells were grown in standard growth media;
Hams F12+1 % FCS + 1 % Insulin-Transferrin-Selenium
+ 1 pg/ml hydrocortisone + 1x Non-essential amino acids
+2 mM L-glutamine (97-1), MEM + 10 % FCS + 1x Non-
essential amino acids + 2 mM L-glutamine (HT-1197, ]82,
MGH-U3), DMEM +10 % FCS+2 mM L-glutamine
(VM-CUB-3, VM-CUB-1, TCCSUP, BFTC909, 639V,
CAL29, UM-UC3), McCoy’s 5a + 10 % FCS + 2 mM L-glu-
tamine (RT4), 50:50 DMEM and RMPI 1640 + 5 % FCS +
2 mM L-glutamine (253]) and RPMI 1640 + 10 % FCS +
2 mM L-glutamine (DSH1, KU-19-19). Cells were incu-
bated at 37 °C in 5 % CO,. TERT-NHUC [36] were also
used and were cultured in Keratinocyte Growth Medium
Kit 2 plus supplements (with 90 pl CaCl,). All cells were
tested routinely for mycoplasma whilst in culture and be-
fore freezing by PCR using PCR Mycoplasma Test Kit I/C
(PromoKine PK-CA91-1048) according to the manufac-
turer’s protocol.

shRNA constructs and transduction of cell lines

Two shRNAs targeting PIK3CA were designed (forward
oligo 1 5'- gcagaagtatactctgaaatTCAAGAGatttcagagtatac
ttctgc TTTTTTGGGCC-3', reverse oligo 1 5- CAAA
AAAgcagaagtatactctgaaatCTCTTGAatttcagagtatacttctge
-3', forward oligo 2 5'- caggtatctaccatggaggtTCAAGA
GacctccatggtagatacctgTTTTTTGGGCC-3" and reverse
oligo 2 5'- CAAAAAACcaggtatctaccatggaggtCTCTTGA
acctccatggtagatacctg-3’ according to an algorithm de-
scribed previously [37, 38]. The sequence in lowercase is
complementary to PIK3CA and forms a short-hairpin
structure when expressed due to the intervening loop se-
quence. These, and a non-specific (NS) shRNA, were first
cloned into pGEM-U6 puro and then into pRetroSuper-
puro (pRS-puro), along with empty pRS-puro vector
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(control), to generate retroviruses to transduce VM-CUB-3,
BFTC909 and 253] cell lines as described previously [37].

Western blotting

Protein extraction was carried out as described [39] and
concentration was quantified using the BIO-RAD pro-
tein assay (BIO-RAD, Hemel Hempstead, UK). SDS-
PAGE and immunoblotting was carried out as described
[32]. Primary antibodies were anti-p110a, anti-pAKT
(Serd73), anti-panAKT (Cell Signaling) and anti-tubulin
alpha (AbD Serotec). Bound primary antibodies were de-
tected using HRP-conjugated secondary antibodies and
Luminata Forte Western HRP Substrate (Millipore).

Phenotypic assays

Proliferation, anchorage-independent growth, and
Transwell migration assays were carried out and ana-
lyzed as described previously [32]. All assays were done
in triplicate and repeated at least three times.

Xenografts

Xenografts were established in mice by subcutaneous in-
oculation of VM-CUB-3 cells with PIK3CA knockdown
and control cells (NS shRNA knockdown). Pure strain
male BALB/cOlaHsd-Fox1™ mice aged 6 to 8 weeks were
used as described [40]. Each cell line was injected subcuta-
neously into sites on both flanks of 4 mice at a concentra-
tion of 1 x 107 cells/site. On day 5 following inoculation,
tumor was evident, and tumor volume was then measured
frequently using calipers ((axb)/2; where a is the smaller
and b is the larger diameter of the tumor) up to day 43.
Tumor volume is shown in mm?>.

Immunohistochemistry

Tumors were formalin-fixed and embedded in paraffin
wax. Sections were stained with haematoxylin and eosin,
anti-human Ki-67 proliferation-associated antibody
(Dako) and for apoptosis using the terminal deoxynu-
cleotidyl transferase—mediated dUTP nick-end labelling
(TUNEL) assay (ApopTag Plus Peroxidase In Situ Apop-
tosis Detection Kit; Chemicon) and analyzed as de-
scribed previously [40].

GDC-0941 drug treatment

The class I PI3K inhibitor, GDC-0941 (Axon Medchem),
was used to treat bladder cancer cell lines and TERT-
NHUC. The dose range chosen was based on previous
studies that report IC5, values of 0.28—0.95 pM for cell
viability of solid tumor cell lines, as well as pharma-
cokinetic data available from phase I clinical studies that
report a maximum of 2 uM GDC-0941 plasma concen-
tration in patients [30, 41]. Cell viability was assessed by
CellTiter-Blue® (Promega) analysis of bladder cancer cell
lines and TERT-NHUC subjected to GDC-concentrations
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from 0 to 2 uM. Cell viability was assessed by CellTiter-
Blue® (Promega) analysis. 1000—-4000 cells per well (num-
ber of cells determined to ensure that confluence was not
achieved in untreated controls during the experiment)
were plated in 96-well plates in five replicate wells and
allowed to attach for 24 h before addition of 0-2 uM
GDC-0941 in 0.1 % DMSO. After 72 h, 20 pl of CellTiter-
Blue solution was added to the medium for 2 h and fluor-
escence read at 550 nm. Medium alone was used as a
blank. Prism software (GraphPad Software, La Jolla, CA,
USE) was used to calculate ICs, values.

Cell cycle and apoptosis analysis of cells cultured with
1 pM GDC-0941 or DMSO only for 48 h was evaluated
by flow cytometry as described [40]. All assays were
done in triplicate and repeated at least three times.

Statistical analysis

Tumor growth was analysed using the Mann-Whitney U-
test. Drug IC5 data was analyzed using the Fisher exact test
(two-tailed, based on a cut off of >1 and <1 ICs, values)
and Student’s t test was used to calculate significance of
sensitivity of cells to GDC-0941 relative to PIK3CA wild-
type and mutant status. Analysis of variance (ANOVA) and
Student’s t-test (unpaired, two-tailed) were also used and P
values were adjusted for multiple testing using the Bonfer-
roni method. P < 0.05 was accepted as significant. All tests
were conducted using Prism software, except for the Fisher
exact test, which was conducted in R for Mac OS X 3.2.1.

Results

Knockdown of mutant PIK3CA in urothelial carcinoma
cells reduces PI3K pathway signaling, and transformation-
associated phenotypes

Two shRNAs targeting PIK3CA (KD1 and KD2) were de-
signed and validated. These and a non-specific shRNA
(NS) and empty vector (control) were retrovirally trans-
duced into the UC cell lines VM-CUB-3, BFTC909 and
253], all of which have mutations in codon E545 of
PIK3CA (E545K in VM-CUB-3 and BFTC909; E545G in
253J), the most commonly mutated codon of PIK3CA in
UC, and no known additional PI3K pathway aberrations
(Additional file 1) [9, 10, 13, 42]. Following selection of
mass populations of resistant cells, p110a protein levels
were reduced by 42-92 % (average 69 %) in cells express-
ing each of the shRNAs (designated PIK3CA-KD) relative
to controls and these levels remained constant through se-
quential cell passages, demonstrating efficient and stable
PIK3CA knockdown (Fig. 1a & b).

Expression of E545K mutant PIK3CA in TERT-NHUC
induces PI3K pathway activation and increases cell prolifer-
ation, migration and resistance to anoikis [32]. We tested
whether these phenotypes are affected by knockdown of
mutant PIK3CA in UC cell lines. In serum-supplemented
medium, PIK3CA-KD cells showed significant reduction in
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Fig. 1 p110a and pAKT protein expression VM-CUB-3, BFTC909 and 253J cells with PIK3CA knockdown. a. Immunoblots showing p110a protein
expression in cells transduced with shRNAs targeting PIK3CA (KD1 and KD2), non-specific control shRNA (NS) and control empty vector (C), and levels
of phospho(p)AKT (Ser473) as read out of PI3K-AKT pathway activation. Cells were maintained in serum-supplemented conditions. b. Quantification of
p110a expression relative to tubulin. c. Quantification of pAKT levels relative to total AKT. Results are representative of triplicate experiments. * indicates
statistical significant difference from controls (Adjusted, P < 0.05) according to Student’s t test, adjusted using Bonferroni's test for multiple comparisons.
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phosphorylation of AKT (Ser473) levels relative to controls
(33-73 %; mean 53 % reduction, Student’s t test; Adjusted
P <0.05). shRNA KD1 expression had the most profound
effect in all 3 cell lines, compatible with it's more significant
effect on PIK3CA expression (Fig. la & ¢).

PIK3CA-KD cells showed significantly reduced prolifera-
tion relative to controls (ANOVA test, P < 0.05), with cells
expressing KD1 shRNA showing the greatest reduction
(Fig. 2a). Annexin V cell staining showed no difference be-
tween PIK3CA-KD and control cells, indicating that apop-
tosis does not make a major contribution to the observed
reduction in population growth (data not shown). Further-
more, treatment of PIK3CA-KD VM-CUB-3 cells with
hydrogen peroxide in serum-supplemented and serum-
depleted medium induced similar apoptotic indices to con-
trols, indicating no change in sensitivity to apoptotic stimuli
(data not shown).

Anchorage-independent growth was tested in BFTC909
cells, where a significant reduction in colony formation
was found for PIK3CA-KD cells compared to controls,
with statistical difference for KD1 cells (unpaired t test, P
<0.05) (Fig. 2b). VM-CUB-3 and 253] parental cells do
not show measurable anchorage-independent colony

formation. Cell migration through Transwell filters to-
wards a chemoattractant (serum) was measured. PIK3CA-
KD VM-CUB-3 cells showed a significant reduction in cell
migration compared to controls (ANOVA test, P value <
0.001) (Fig. 2c). No significant differences in migration
were observed between BFTC909-KD and 253]-KD cells
and controls (data not shown). Taken together these re-
sults suggest that mutant PIK3CA drives increased prolif-
eration in PIK3CA-mutant urothelial tumor cells, though
other phenotypic consequences such as anchorage-
independence and increased cell motility are not driven by
PIK3CA alone. A summary of the PIK3CA-knockdown
induced changes in cellular phenotypes in all the UC cell
lines is illustrated in Additional file 2.

Reduced tumorigenicity following knockdown of E545K
PIK3CA

VM-CUB-3 cells can produce tumors iz vivo in nude
mice [43]. We tested the effect of knockdown of mutant
PIK3CA expression on growth as subcutaneous xeno-
grafts. Independent transductions with the most potent
shRNA (KD1) and NS shRNA generated p110a-KD and
control cell lines respectively. Following selection of
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puromycin-resistant cell populations, pl10a protein
levels (Fig. 3a) and AKT activation (data not shown)
were confirmed as described above. Cells were injected
subcutaneously. Tumor volume (mm?®) was measured
from day 5 to day 43. p110a-KD xenografts showed sig-
nificantly reduced growth rate compared with controls
(Mann-Whitney test, P<0.05) (Fig. 3b). Student t test
showed that by day 42, the difference between tumor
volume of KD and control xenografts was significantly
different (Adjusted P < 0.017; on day 43 P < 0.005).

No significant differences were identified in tumor
histology (data not shown) Sections were stained for
Ki67 and TUNEL to assess effects on proliferation and
apoptosis, respectively. A significant decrease in the pro-
liferative index of pl110a-KD tumors was found
(ANOVA test, P<0.05) (Fig. 3c and Additional file 3)
but significant numbers of apoptotic cells were not de-
tected, consistent with in vitro data.

Effects of GDC-0941 on cell viability

The effects of mutant PIK3CA knockdown in UC cells
suggest that this is a major driver of transformation in
this cell type and that mutant PIK3CA is a good candi-
date for therapeutic targeting in UC. Therefore we
assessed the effect of GDC-0941, a small molecule ATP-
competitive inhibitor of class IA PI3K isoforms (a, B, J),
on a panel of UC cell lines and TERT-NHUC. We se-
lected a panel of 17 UC cell lines with known mutation
status for PIK3CA, PIK3R1, AKT1, TSC1, PTEN and the
three RAS genes [9, 10, 13, 42] (Additional file 1). RNA

expression data for PIK3CA, PIK3CB and PIK3CD were
available for these and for normal human urothelial cells
(Hurst and Knowles, unpublished data). In 13 of 17
lines, expression of PIK3CA was >2-fold higher than in
normal urothelial cells. Six of these also showed >2-fold
upregulation of PIK3CB. Expression of PIK3CD was >2-
fold lower than in normal urothelial cells in all but two
cell lines (Additional file 4).

Cells were cultured in 0-2.0 uM GDC-0941 for 72 h
and cell viability measured relative to untreated controls.
Sensitivity values (ICso) to this compound were within
the same range as seen in other cancer cell types [25,
44]. Eight of the 10 cell lines with mutant PIK3CA
showed IC5, values from 0.4 uM to 1.25 uM (Fig. 4 and
Additional file 5). Six of these eight cell lines have only
PIK3CA mutation and 2 harbor additional PIK3RI
(LUCC3) or NRAS Q61R (HT-1197) mutations. Overall
cell lines with wild-type PIK3CA were significantly less
sensitive to GDC-0941 treatment than mutant PIK3CA
cell lines (Fisher exact test, P < 0.05; two-tailed based on
a cut off of >1 and <1 ICs, values). Figure 4c clearly il-
lustrates that sensitivity to GDC-0941 is dependent on
PIK3CA mutation status (according to an unpaired t
test, P value 0.0007). The two cell lines with PIK3CA
mutation but minimal response to the drug contained
either homozygous deletion of PTEN (J82) or mutation
of TSCI (639V). Furthermore, unlike the more GDC-
0941-sensitive cell lines that harbor hotspot PIK3CA
mutations, these two lines contain rare PIK3CA muta-
tions (P124L and A1066V), which have been shown
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previously to be 5 times less potent than hotspot mu-
tants in activating the PI3K pathway [32].

TERT-NHUC showed a higher IC5q (~1.5 uM) than
cell lines with mutant PIK3CA. Three wildtype PIK3CA
cell lines showed similar sensitivities to GDC-0941 treat-
ment as TERT-NHUC. These cell lines harbored a single
AKT1 (MGH-U3) or TSC1 (97-1) mutation or both
PTEN and RAS mutations (UM-UC3). Four wildtype
PIK3CA cell lines (RT4, KU19-19, DSH1 and LUCC1)
showed varying degrees of GDC-0941 resistance (<10 %
viability reduction at 2 uM), with RT4 (TSCI mutation)
showing extreme resistance. Of these, DSH1 and LUCC1
have loss of PTEN, KU-19-19 has mutant AKTI and
NRAS mutations. Therefore, downstream PI3K pathway
alterations in TSCI or PTEN or co-occurring AKTI and
RAS gene mutations were associated with GDC-0941
resistance.

Phosphorylation of AKT at Ser473 was examined in
cell lines treated for 1 h with GDC-0941. Drug treat-
ment reduced AKT phosphorylation to 0.5-7 % of that
in untreated controls in all sensitive cell lines (Fig. 4d).
Of the resistant cell lines, only LUCC1 (PTEN deleted)
exhibited similar levels of pAKT reduction (3 %). Treat-
ment of DSH1 (PTEN deleted) reduced AKT phosphor-
ylation to 24 % of untreated levels. However, treatment
of the resistant cell line KU-19-19 had little effect on
AKT phosphorylation levels. This may be due to the
presence of two mutations in AK7T1 (E17K and E49K),
which was shown to increase AKT activity in compari-
son to the single mutant E17K found in the sensitive
MGHUS cell line [10]. Interestingly, no AKT phosphor-
ylation was observable in RT4 under either untreated or

GDC-0941-treated conditions, which is in agreement
with previous studies [20].

To examine whether GDC-0941 treatment effects
were cytostatic or cytotoxic, 8 sensitive cell lines with
ICsy values up to 1.2 uM, and TERT-NHUC, were
assessed for effects on cell cycle distribution and apop-
tosis. An increase in the proportion of cells in G; ac-
companied by a decrease in S phase was observed in all
cell lines except 253] and HT-1197 after 48 h of drug ex-
posure, with the least effect in TCCSUP (Fig. 5a-c).
However, only VM-CUB-1 and VM-CUB-3 showed sta-
tistically significant differences from TERT-NHUC (t
test, P <0.05). 253] and HT-1197 showed an increased
fraction of cells in G2/M (Fig. 5d), which is consistent
with the presence of a subset of larger cells. Five cell
lines (253], TCCSUP, VM-CUB-1, BFTC909 and CAL29)
showed a significant increase in apoptotic index after
48 h of treatment relative to TERT-NHUC, with the
greatest effect in TCCSUP (t test, P < 0.05) (Fig. 6a & b).

Discussion

Activating mutations of PIK3CA are found in bladder
tumors of all grades and stages. Whilst these are more
common in tumors of low grade and stage (26—34 %)
they are also found at significant frequency (12-20 %) in
advanced UC (> stage T2) [8, 9, 22] (Hurst, Platt, and
Knowles, unpublished data), which are commonly
treated with systemic therapies and for which novel
therapeutic approaches are urgently needed. Our object-
ive was to examine the effects of specific inhibition of
mutant PIK3CA in bladder tumor cells to determine
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whether mutant PIK3CA can be considered a valid
therapeutic target in bladder cancer.

Stable knockdown of mutant E545K/E545G PIK3CA
in three UC cell lines reduced PIK3CA protein levels by
up to 92 % and was associated with reduced AKT activa-
tion, proliferation and in vivo tumor growth. This is con-
sistent with observations reported in colon, gastric and
ovarian cancer cell types [45-47], and with our previous
data on the effects of expression of mutant PIK3CA in
TERT-NHUC [32] and in other cell types [48—50]. Im-
portantly, the intensity of reduction of these pheno-
types was linked to the level of PIK3CA protein
knockdown and the related reduction in AKT

phosphorylation. We only observed inhibition of dir-
ectional migration in VM-CUB-3 cells, which suggests
that additional molecular alterations may contribute
to this phenotype. It is possible that invasion may
also be affected by PIK3CA and further investigation
is warranted to investigate this. It is also important to
note that the mice used for the in vivo work were
immunodeficient. Whilst the in vivo results show a
clear effect, and using immunodeficient mice allows
the use of human tumor cells, there is a caveat in
that interfering with the PI3K pathway can influence
the immune system, and examination in a syngeneic
model system could be relevant.
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Fig. 5 Flow cytometric analysis of cell cycle effects of GDC-0941 in bladder cancer cell lines and TERT-NHUC. a. Examples of FACS analysis of cells treated
with DMSO vehicle (nontreated) or 1 uM GDC-0941 for 48 h. X-axis; DNA content assessed by propidium idodide staining and Y-axis; relative cell number.
The legend to the right of each plot shows the percentage of cells in G1, S, and G2/M phase of the cell cycle. b-d. Quantification of replicate cell cycle
assays as shown in (a, b). Fold difference of G1. c. Fold difference in S phase. d. Fold difference in G2/M. Values represent mean + S.E and are representative
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The class IA PI3K inhibitor GDC-0941 greatly reduced
cell viability of UC cell lines with hotspot PIK3CA muta-
tion status, similar to findings in other preclinical
models [25-27, 41, 51]. The two cell lines with rare
PIK3CA mutations had minimal response to the drug
and contained either homozygous deletion of PTEN
(J82) or mutation of TSCI (639V), suggesting that co-
existing PTEN or TSCI mutations confer some resist-
ance to PI3K inhibition. Cell lines with wildtype PIK3CA
were less sensitive or lacked sensitivity to GDC-0941
completely, in agreement with studies in breast cancer,
multiple myeloma, lung cancer, and endometrial cancer,
where PIK3CA mutations are also frequent [25, 26, 51].
Interestingly, our data support the findings of a study

that examined the effect of the pan-AKT inhibitor, MK-
2206, on the viability of UC cell lines [20]. Hotspot mu-
tant PIK3CA expressing cell lines, 253], HT1197 and
VMCUB-1 were sensitive to AKT inhibition, whereas
cell lines with rare PIK3CA mutations (J82 and 639V) or
those with PTEN and RAS gene or TSCI mutations
(UMUCS3 and RT4) had ICsq values above 2 uM (classed
as resistant).

As reported in several other tumor types, additional in-
formation on PI3K pathway mutational status is needed to
correctly predict the response to PI3K inhibition. There
have been conflicting reports of the effect of PTEN muta-
tion on sensitivity to class I PI3K inhibition. For example,
in non-small cell lung carcinoma, endometrioid and breast
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Fig. 6 Flow cytometric analysis of apoptotic effects of GDC-0941 in bladder cancer cell lines and TERT-NHUC. a. Examples of FACS Annexin /Pl
assay analysis of induction of apoptosis in cells treated with DMSO (nontreated) or 1 pM GDC-0941 for 48 h. X-axis, Annexin V; Y axis, Propidium
lodide (PI). Lower-right quadrant; Annexin V+ and PI- (early apoptotic cell population). b. Quantification of fold difference of early apoptotic cells
in population treated with 1 uM GDC-0941 relative to nontreated cells from replicate assays to those shown in A. Values represent mean + S.E
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carcinoma cell lines, PTEN loss of expression or mutation
was associated with sensitivity to GDC-0941 [25, 26, 51]
but in multiple myeloma cell lines [27], PTEN loss had no
predictive value. In the present study, all UC lines with
PTEN loss as a single alteration showed resistance. PI3K
pathway-dependent cells with mutations in genes that act
below PIK3CA in the pathway are predicted to be resist-
ant to PI3K inhibition. Indeed, our data showed that
PTEN, AKTI and TSCI mutant UC cell lines were less
sensitive than those with PIK3CA mutations, and in the
case for RT4 (TSC1 mutant), resistant to PI3K inhibition.
Similarly, in some studies RAS mutation has been re-
ported to predict resistance to PI3K inhibition and in
others to have no impact on sensitivity [25, 52]. Here we
found that HT-1197, which harbors both PIK3CA and
NRAS mutations, was sensitive to GDC-0941 but other
lines with RAS mutations co-occurring with PTEN or
AKTI mutations were less sensitive. This is likely to be

related to relative dependence on RAS-MAPK and PI3K
pathways in individual cases. Recent observations have
highlighted the effect of context-dependent crosstalk on
MEK signaling associated with inhibition of PI3K in
breast cancer [53, 54]. Interestingly, a phase I clinical
trial of GDC-0941 in solid cancers showed that a melan-
oma patient with good response had a BRAF mutation
and wild-type PIK3CA [30]. As many bladder cancers
have alterations that are known to activate the MAPK
pathway [4], it is likely that dual MEK and PI3K inhib-
ition may be advantageous. Results from ongoing clinical
trials of GDC-0941 in combination with drugs including
GDC-0973 (MEK inhibitor), erlotinib (EGFR inhibitor),
fulvestrant, and cisplatin are awaited.

In this study, shRNA knockdown of PIK3CA in three
cell lines clearly demonstrated dependence on this p110
isoform. However, as many of the cell lines examined
expressed PIK3CB, we cannot rule out that the effects of
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GDC-0941 on PIK3CB may have contributed to the ob-
served effects of this inhibitor. As p110a-specific drugs
e.g. NVP-BYL719 [55], are now in clinical trials, it will
be important to assess the relative dependence of each
isoform in UC, prior to consideration of potential clin-
ical studies.

Levels of pAKT (Ser473) were decreased by GDC-
0941 treatment, independent of whether a cell line was
sensitive or resistant, as previously reported [26, 27, 56].
Resistant cell lines may not be dependent on AKT sig-
naling or may have additional mechanisms to activate
the PI3K pathway. Interestingly, RT4, the most resistant
cell line in this study, had an undetectable basal level of
AKT activation compared to the other cell lines studied.
As this cell line has mutant 7SCI, this implies that only
the mTOR branch of the pathway is active in this case,
as shown previously [20]. As many PIK3CA mutant can-
cers rely on effectors other than AKT, such as PDK1 and
its substrate SGK3 [57], phospho-AKT may not be an
ideal pharmacodynamic biomarker for relevant PI3K
inhibition.

The effect of GDC-0941 in the majority of sensitive
bladder cancer cells was via induction of both GI1 cell
cycle arrest and some apoptosis. Thus in some contexts,
single agent GDC-0941 may exert cytotoxic and cytostatic
effects in UC as seen in other tumor models [26, 27, 58].
Dual inhibition of mTOR and PI3K has been shown to be
a promising approach in cell lines from other cancer types
[29] and may be particularly efficacious in bladder where
molecular lesions are found in multiple genes in the PI3K
pathway, often concurrently [4].

Conclusions

Our observations indicate a good therapeutic window
for PI3K inhibitors in some bladder cancers that harbor
PI3K hotspot mutations, as well as those with co-
existing NRAS mutations. The first in human phase I
clinical study of GDC-0941 in patients with advanced
solid tumors has recently been completed and showed
promising results with minimal toxicities at doses suffi-
cient to decrease PI3K pathway activation [30]. In UC, a
disease for which targeted therapy is still in early stages,
our data suggest that PI3K targeted therapy can benefit
patients with PIK3CA mutations and that mutation can
act as a biomarker for patient selection. Additional pre-
clinical work is warranted to assess the impact of dual
mTOR-PI3K and MEK-PI3K inhibition on a large panel
of UC cell lines with a range of PI3K/AKT and MEK/
ERK pathway genetic alterations to fully understand the
context for optimal therapy of PI3K pathway-dependent
bladder tumors. Currently, trials of GDC-0941 in com-
bination with other agents suggested by preclinical stud-
ies, such as paclitaxel and inhibitors of MEK1 and EGFR
[59-61], are in progress.
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