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Abstract

Background: mTOR inhibition of aromatase inhibitor (Al)-resistant breast cancer is currently under evaluation in the
clinic. Everolimus/RADOO1 (Afinitor®) has had limited efficacy as a solo agent but is projected to become part of
combination therapy for Al-resistant breast cancer. This study was conducted to investigate the anti-proliferative
and resistance mechanisms of everolimus in Al-resistant breast cancer cells.

Methods: In this study we utilized two Al-resistant breast cancer cell lines, MCF-7:5C and MCF-7:2A, which were
clonally derived from estrogen receptor positive (ER+) MCF-7 breast cancer cells following long-term estrogen
deprivation. Cell viability assay, colony formation assay, cell cycle analysis and soft agar anchorage-independent
growth assay were used to determine the efficacy of everolimus in inhibiting the proliferation and tumor forming
potential of MCF-7, MCF-7:5C, MCF-7:2A and MCF10A cells. Confocal microscopy and transmission electron
microscopy were used to evaluate LC3-Il production and autophagosome formation, while ERE-luciferase reporter,
Western blot, and RT-PCR analyses were used to assess ER expression and transcriptional activity.

Results: Everolimus inhibited the proliferation of MCF-7:5C and MCF-7:2A cells with relatively equal efficiency to
parental MCF-7 breast cancer cells. The inhibitory effect of everolimus was due to G1 arrest as a result of
downregulation of cyclin D1 and p21. Everolimus also dramatically reduced estrogen receptor (ER) expression
(mRNA and protein) and transcriptional activity in addition to the ER chaperone, heat shock protein 90 protein
(HSP9Q). Everolimus restored 4-hydroxy-tamoxifen (40HT) sensitivity in MCF-7:5C cells and enhanced 40HT
sensitivity in MCF-7 and MCF-7:2A cells. Notably, we found that autophagy is one method of everolimus
insensitivity in MCF-7 breast cancer cell lines.

Conclusion: This study provides additional insight into the mechanism(s) of action of everolimus that can be used
to enhance the utility of mTOR inhibitors as part of combination therapy for Al-resistant breast cancer.

Keywords: Breast cancer, Aromatase inhibitor, RADOO1, Everolimus, PI3K/Akt/mTOR, Estrogen receptor, Autophagy

* Correspondence: jlewis-wambi@kumc.edu

3Department of Cancer Biology, University of Kansas Medical Center, Kansas
City, KS 66160, USA

®The University of Kansas Cancer Center, Kansas City, KS 66160, USA

Full list of author information is available at the end of the article

- © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-016-2490-z&domain=pdf
mailto:jlewis-wambi@kumc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Lui et al. BMC Cancer (2016) 16:487

Background

Estrogen deprivation using aromatase inhibitors (Als)
is currently the standard of care for patients with es-
trogen receptor-positive (ER+) breast cancer. Unfortu-
nately, ~30 % of breast cancer patients develop
resistance to Als following long-term treatment [1]. The
mechanism by which Al resistance develops is still not
completely understood, however, several contributing fac-
tors have been identified including; alterations in ER sig-
naling, enhanced growth factor signaling, and imbalance
in the phosphoinositide 3-kinase/protein kinase B/mam-
malian target of rapamycin (PI3K/Akt/mTOR) pathway
[2, 3]. The activation of the PI3K/Akt/mTOR pathway is
considered clinically relevant for tumor escape from
hormone dependence in breast cancer, promoting the sur-
vival of breast cancer cells in estrogen-deprived conditions
[4]. Additionally, upregulation of the PI3K/Akt/mTOR
pathway is associated with poor outcome for breast cancer
patients and has been observed in Al-resistant breast can-
cer models [5, 6]. As a result, a variety of PI3K/Akt/
mTOR pathway inhibitors have been under study, includ-
ing everolimus/RADO001 (Afinitor®).

Everolimus is a rapamycin analog that is currently ap-
proved for treatment of metastatic breast cancer. It
inhibits the PI3K/Akt/mTOR signaling pathway by pre-
venting the phosphorylation of mTORC1, which inter-
rupts the signaling cascade and results in inhibition of
cell proliferation and growth [7]. Everolimus treatment
has shown promising anti-cancer effects in preclinical
studies; however, when used as a single agent, it does
not significantly decrease tumor size [8]. As a result, re-
cent clinical trials have focused instead on simultaneous
targeting of the PI3K/AKT/mTOR and ER pathways in
ER+ breast cancer [9-11]. The results from these trials
have been very encouraging due to significant improve-
ments in response rate and progression free survival for
both Al-sensitive and Al-resistant patients [12—14]. Sub-
sequent laboratory studies have focused on comparison
of everolimus in combination with endocrine therapies
[15, 16] as well as other PI3K/Akt/mTOR inhibitors in a
variety of breast cancer cell lines [17, 18] and these stud-
ies have reported synergy between tamoxifen or Al ther-
apy and everolimus. However, these studies have not
investigated the anti-cancer mechanisms of everolimus
alone in Al-resistant breast cancer cells.

Everolimus and other PI3K/Akt/mTOR inhibitors are
known to induce autophagy in both solid and blood tumors
[19, 20]; however, to our knowledge, the phenomenon has
not been reported in breast cancer. Autophagy allows cells
to degrade dysfunctional organelles and proteins, and re-
cycle their components. Autophagy can support tumor sur-
vival during treatment, making it a possible mechanism for
Al-resistance [21, 22]. This process is dependent upon the
cleavage of microtubule associated light chain 3 (LC3) to
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LC3-I and subsequent lipidation to LC3-II which allows for
final formation of the autophagosome membrane [23]. A
group of small proteins, called heat shock proteins (HSPs),
promote cell survival during stress reactions by promoting
the refolding of denatured proteins and directly regulating
autophagy. Specifically, HSP70 is thought to be required for
the induction of autophagy [24, 25] in response to inhib-
ition of the PI3K/Akt/mTOR pathway by either starvation
or rapamycin treatment [26, 27]. Another heat shock pro-
tein, HSP27, allows cells to survive a variety of cytotoxic
stimuli [28, 29] and is thought to be degraded during star-
vation and rapamycin-induced autophagy [30]. Due to the
link between drug resistance and autophagy, we hypothe-
sized that the induction of autophagy may contribute to
everolimus insensitivity in MCF-7 breast cancer cell lines.

In this study, we investigated the effects of everolimus, as
a single agent, or in combination with 4-hydroxy tamoxifen
(4-OHT) or chloroquine on cell proliferation, anchorage-
independent growth, PI3K/Akt/mTOR signaling, ER ex-
pression and transcriptional activity, LC3 turnover, and
autophagosome induction in Al-sensitive MCF-7 and Al-
resistant MCF-7:5C and MCEF-7:2A breast cancer cells. We
report that everolimus exerts similar anti-proliferative ef-
fects in both the Al-sensitive and Al-resistant breast cancer
cell lines and that its inhibitory activity is associated with
G1 arrest and down regulation of ERa expression. Everoli-
mus also reverses and enhances 4OHT sensitivity during
long-term co-treatment of the Al-resistant cell lines. Lastly,
we report that autophagy is a mechanism of everolimus in-
sensitivity in MCF-7, MCE-7:5C and MCE-7:2A cells, pos-
sibly explaining the equal response of these cell lines to
treatment. The information from this study may enhance
future selection of everolimus containing combination ther-
apies for Al-resistant breast cancer.

Methods

Cell lines and culture conditions

The MCEF-7 cell line [31, 32] was obtained from Dr. V.
Craig Jordan (University of Texas MD Anderson Cancer
Center, Houston) and maintained in RPMI-1640 medium
supplemented with 10 % fetal bovine serum, 2 mM glu-
tamine, Antibiotic/Antimitotic mix, MEM Non-Essential
Amino Acids (Invitrogen, Waltham, MA), and bovine in-
sulin at 6 ng/mL (Sigma Aldrich, St. Louis, MO). The
long-term estrogen deprived human breast cancer cell
lines; MCF-7:5C [31, 33] and MCF-7:2A [32, 34] were
cloned from parental MCEF-7 cells following long term
(>12 months) culture in estrogen-free medium composed
of phenol red-free RPMI-1640, 10 % fetal bovine serum
treated three times with dextran-coated charcoal (SFS),
2 mM glutamine, bovine insulin at 6 ng/mL, Antibiotic/
Antimitotic mix, and MEM Non-Essential Amino Acids
(Invitrogen). The MCF10A cell line was purchased from
the American Type Tissue Culture Collection. They are
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maintained in Dulbecco's Modified Eagle Medium: Nutri-
ent Mixture F-12 (DMEM/F12) in a 1:1 mixture and
supplemented with 5 % horse serum, Antibiotic/Antimi-
totic mix (100 IU/mL penicillin, 100 ug/mL streptomycin,
25 pg/mL of Fungizone® from Invitrogen, Grand Island,
NY), 20 ng/ml EGF (Millipore), 0.5 mg/ml hydrocortisone,
100 ng/ml cholera toxin (Sigma Aldrich). All cell lines
were cultured at 37 °C under 5 % CO,. After over-
night acclimatization period, cells were cultured with
20 nM everolimus alone or in combination with
1 uM 4-hydroxytamoxifen (Sigma Aldrich) or 50 pM
Chloroquine (InvivoGen, San Diego, CA), in their
normal culture medium.

Cell viability

Cells were assayed for viability in 24-well plates using
the Cell-Titer Blue Assay Kit (Promega, Madison, WI)
per the manufacturer’s instructions. Assay plates were
kept at 37 °C in 5 % CO, for 3 h and read at 560-590
nM on a BioTek Synergy 4 microplate reader using
the Gen 5 data analysis software (BioTek Instruments,
Winooski, VT).

Western blotting

Cells were seeded in 6-well plates, collected using a cell
scraper and suspended in RIPA buffer (Thermo Scien-
tific, Pittsburgh, PA) supplemented with protease inhibi-
tor cocktail and phosphatase inhibitor (Sigma Aldrich).
Cells were homogenized over ice by sonication. After
purification of the sample by centrifugation, protein con-
centration was determined by protein assay (Bio-Rad,
Hercules, CA). The proteins were separated by 4-12 %
SDS—polyacrylamide gel electrophoresis (SDS-PAGE)
and electrically transferred to a polyvinylidene difluoride
membrane (Santa Cruz Biotechnology). After blocking
the membrane using 5 % non-fat milk, target proteins
were detected using either Anti-mTOR, anti-phospho-
mTOR, anti- LC3A/B (Cell Signaling, Beverly, MA),
anti-p70S6K, anti-phospho-p70S6K, anti-AKT, anti-
phospho-AKT (S473) or anti-ERa (Santa Cruz Biotechnol-
ogy) antibodies. Membranes were stripped and re-probed
for B-actin (Cell Signaling) or B-tubulin (Sigma Aldrich).
The appropriate horseradish peroxidase (HRP)-conjugated
secondary antibody was applied and the positive bands
were detected using Amersham ECL Plus Western blot-
ting detection reagents (GE Health care, Piscataway, NJ).
In the case of LC3 analysis, cells were treated with 50 uM
chloroquine (CQ) for 24 or 48 h to allow for LC3-II accu-
mulation. Immunoreactivity was detected using anti-
mouse or anti-rabbit IgG conjugated to Dylight 680 or
800 fluorochromes (Thermo Scientific, Waltham, MA),
respectively. Blots were visualized on Odyssey imager
(LiCor, Lincoln, NE). Quantitation of immunoreactive
signals was done by densitometry using Image] 1.46r
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software (NIH, Bethesda, MA). The ratio of protein ex-
pression to B-tubulin in each lane was calculated and pre-
sented relative to the respective controls within each
experiment.

Cell cycle analysis

Cells were incubated in the appropriate cell culture media
with and without drug treatment. Cells were harvested at
the indicated time points by trypsinization. They were
washed once with cold PBS and stained with 50 pg/mL
Propidium Iodide and 100 pg/mL RNase A in PBS (Invi-
trogen). Samples were analyzed using a BD FACSAria™ II
Flow Cytometer (BD, Franklin Lakes, NJ) and the data
were analyzed with FlowJo software (Ashland, OR).

Clonogenic proliferation assay

Cells were seeded at 1,000 cells per well in 6-well plate
in singe cell suspension. After 24 h acclimatization, they
were treated every three days and allowed to proliferate
and establish colonies for 9 days. Cells were stained with
0.5 % crystal violet in 1:7 acetic acid: methanol and im-
aged at 1X in a Bio-Rad ChemiDoc™ XRS+ System with
Image Lab™ Software (Bio-Rad Laboratories Inc.,
Hercules, CA). Colonies were counted and measured
using Image J software (The National Institute of Health,
Bethesda, MD).

Soft agar anchorage-independent growth assay

6-well plates were coated with 1 mL of 0.8 % agarose in
the appropriate culture media. Cells were then sus-
pended in 0.48 % agarose and immediately overlaid on
the pre-coated plates. Once the agarose was solid, 1 mL
of culture medium with or without 20 nM everolimus
was added and replaced every 4 days for 15 days. Cul-
tures were then stained with 0.005 % crystal violet in
PBS, washed with PBS until the background was clear
and imaged microscopically at 10X for measurement of
colony diameter. Plates were also imaged at 1X in a Bio-
Rad ChemiDoc™ XRS+ System with Image Lab™ Soft-
ware (Bio-Rad). Colonies were counted and measured
using Image | software (NIH).

Real time PCR

Cells were seeded in 6-well plates and allowed to
acclimatize overnight. Following 72 h treatment with 20
nM everolimus, cells were harvested by cell scraping in
RLT lysis buffer and total RNA was isolated using the
Qiagen RNeasy kit (Venlo, Limburg). First strand cDNA
synthesis was performed from 3 pg total RNA using MulV
Reverse Transcriptase (Applied Biosystems, Carlsbad, CA)
on a Bio Rad MyCycler™. RT-PCR was conducted using
the ViiA™ 7 Real-Time PCR system (Applied Biosystems)
and SYBR Green Reagent (Life Technologies, Carlsbad,
CA) with primers specific for ERa and the housekeeping
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gene PUMI. Primers for ERa: Forward 5-AAGAG
GGTGCCAGGCTTTGT-3, Reverse 5-CAGGATCTC
TAG CCAGGCACAT -3'. Primers for PUM1: Forward-
TCACCGAGGCCCCTCTGAACCCTA Reverse- GGCA
GTAATCTCCTTCTGCATCCT (Integrated DNA Tech-
nologies, Coralville, lowa). Relative ERa mRNA expression
level was determined as the ratio of the signal intensity to
that of PUM1 using the formula: 2"*“". When treated
with everolimus, fold change in ERa expression was nor-
malized to PUM1 and then compared to the untreated
value for that cell line using the formula: 224",

Luciferase reporter assay

Cells were seeded in 12-well tissue culture plates over-
night for attachment before transfection. The cells were
transfected using Lipofectamine 2000™ Transfection Re-
agent (Invitrogen, San Diego) according to the manufac-
turer's recommendations. Briefly, 4 uL of Lipofectamine
2000, 0.8 pg of ERE Luciferase plasmid DNA and
0.01 pg of the pRL CMV Renilla (Promega) were diluted
individually in 250-pl aliquots of OptiMEM Reduced-
Serum Medium (Invitrogen). Cells were incubated for
24 h after transfection, and then treated with 20 nM EVE
or vehicle in complete media for 24 h. The Luciferase and
Renilla activities were measured using the dual luciferase
assay kit (Promega) according to the manufacturer's in-
structions. To confirm the specificity of the ERE Lucifer-
ase construct, EVE treated cells were also compared to
those treated with 1nM 17f-estradiol and 1nM Fulves-
trant, a pure anti-estrogen (Sigma). Relative Fluorescence
Units (RFUs) were calculated as a ratio of Luciferase to
Renilla signal intensity. The ERE Luciferase reporter
construct was a kind gift from Dr. Clodia Osipo (Loyola
University, Chicago, IL).

Immunofluorescence microscopy

Cells grown on glass coverslips were washed in PBS and
fixed with 100 % ice cold methanol for 10 min. After
permeabilization by 0.1 % Triton X-100 in PBS for
10 min, cells were incubated with 5 % normal horse
serum/PBS for 30 min, followed by incubation with ERa
or LC3B antibody, 2 pg/mL in 0.01 % Triton X-100 /PBS
overnight (Santa Cruz Biotechnology). Cells were stained
with fluorescein isothiocyanate (FITC)-conjugated la-
beled goat anti-rabbit IgG (Cell Signaling), 4 pg/mL in
PBS for 1 h, followed by coverslip mounting with the
ProLong® Gold anti-fade reagent with DAPI (Life Tech-
nologies). Samples were imaged on a Leica TCS SPE
confocal microscope in the Confocal Imaging Core at
The University of Kansas Medical Center. Images were
collected and analyzed using the Leica LAS AF Lite soft-
ware (Leica Biosystems, Nussloch, Germany). For quan-
tification, mean fluorescent intensity was determined
using Image ] software on green (FITC) channel images.
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Electron microscopy

1 x10° cells were seeded in 6-well plates and treated
after an overnight acclimatization. After 72 h of treat-
ment cells were harvested by scraping and fixed for 24 h
at 4 °C in 0.1 M cacodylate buffer supplemented with
2 % glutaraldehyde. Samples were then processed in The
Electron Microscopy Research Laboratory at KU Med-
ical Center as follows. Briefly, cell pellets were washed in
0.1 M cacodylate buffer for 10 min, and resuspended.
Cell pellets were post fixed in 1 % osmium tetroxide
buffered in 0.1 M cacodylate, rinsed in distilled water
3X’s and then dehydrated in a graded series of ethanol
as follows: 50 %, 70 %, 80 %, 95 %, 100 %, 100 % 10 min
each step. Cells were placed into propylene oxide for
20 min, then into a 50:50 mixture of propylene oxide
and Embed 812 resin medium overnight at room
temperature. Samples were cured overnight in beem
capsules at 60 degrees and then sectioned with a dia-
mond knife on a Leica UC-7. Sections were cut at
80 nm and contrasted with uranyl acetate and lead cit-
rate and imaged on a JEOL 100CX II Transmission Elec-
tron Microscope (Tokyo, Japan).

Statistical analysis

At least three separate experiments were performed for
each measurement unless otherwise indicated. All quanti-
tative data were expressed as means with error bars repre-
senting 1 standard deviation (mean + 1SD). Comparisons
between two treatments were analyzed using a two-way
student t-test with P-value of < 0.05 considered to be statis-
tically significant. *p <0.05, **p <0.01, ***p <0.001 unless
otherwise indicated.

Results

Everolimus inhibits proliferation through induction of G1
arrest

We tested the anti-proliferative effect of everolimus in
two Al-resistant breast cancer cell lines, MCF-7:5C and
MCE-7:2A and their parental Al-sensitive cell line,
MCE-7. We found that everolimus inhibited the prolifer-
ation of MCF-7:5C and MCE-7:2A cells with relatively
equal efficiency compared to MCF-7 breast cancer cells
(Fig. 1a, upper panel). The ICs values for MCF-7, MCE-
7:5C and MCF-7:2A cells were 25 nM, 38 nM and 20
nM, respectively, indicating only minor differences in
sensitivity to everolimus between these cell lines (Fig. 1a,
lower panel). Treatment with 20 nM everolimus achieved
maximal inhibition of all three cell lines (Fig. 1a) as early
as 24 h post-treatment (Fig. 1b). Additionally, the everoli-
mus mediated inhibition of proliferation could be main-
tained with treatment every three days under clonogenic
assay conditions (Fig. 1c). In contrast, everolimus had no
effect on the proliferation of the immortalized normal
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Fig. 1 Everolimus inhibits the proliferation of Al-sensitive and Al-resistant breast cancer cells. a MCF-7, MCF-7:5C and MCF-7:2A cells were treated
with 20 nM everolimus or vehicle (control) for 72 h. The percent of viable cells after everolimus treatment was determined by cell viability assay
and compared to control. ICs, values for each of the cell lines were determined by nonlinear regression on normalized values. Values represent
means of three experiments conducted in quadruplet. b MCF-7, MCF-7:5C and MCF-7:2A cells were seeded in 24-well plates and treated with
20 nM everolimus or vehicle after overnight acclimatization (Day 0). The percentage of viable cells was determined at 24, 48, 72 and 96 h post
treatment by comparison to vehicle treated cells. ¢ Cells were seeded in single cell suspension and allowed to proliferate for 9 days in the
presence of 20nM everolimus or vehicle (control). The plates were photographed at 1X magnification (left panel) and the number of colonies
and colony size were quantified using Image J (right panel). Bar graphs represent the data from three independent experiments in triplicate and
values are mean + SD. ** p < 0.01

breast epithelium cell line, MCF10A (Additional file 1:
Figure Sla and b).

Cell cycle analysis of MCF-7, MCEF-7:5C, and MCEF-
7:2A cells treated with everolimus indicated that the
anti-proliferative effect of the drug was due to G1 arrest.
The percentage of cells in G1 phase increased by at least
20 % in all three cells lines as early as 24 h after treat-
ment (Fig. 2a) and this persisted through 72 h (Fig. 2b).
Everolimus had no effect on the cycling of the normal
breast epithelial cell line MCF10A (Additional file 1:
Figure Slc). Additionally, we found that the expression
of cyclin D1 and p21 were significantly reduced in MCE-
7, MCE-7:5C and MCEF-7:2A cells 48 and 72 h after
treatment (Fig. 2c). This data indicates that everolimus

is effective at inhibiting the proliferation of breast cancer
cells due to marked induction of G1 arrest.

Everolimus reduces the anchorage-independent growth

The ability of cancer cells to grow in an anchorage-
independent manner is a critical marker of tumor form-
ing and metastatic potential. We compared the abilities
of MCEF-7, MCE-7:5C and MCEF-7:2A cells to grow in an
anchorage-independent manner using the soft-agar 3D
colony formation assay. We found that MCF-7:5C cells
produced three times more 3D colonies than the MCF-7
and MCF-7:2A cells. Additionally, 20 nM everolimus sig-
nificantly reduced the number of 3D colonies in all three
cell lines (Fig. 3a). The 3D colonies formed by the MCF-
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Fig. 2 Everolimus induces G1 arrest. a MCF-7, MCF-7:5C and MCF-7:2A cells were treated for 24 h with 20 nM everolimus or vehicle and then
harvested by trypsinization. Samples were fixed with methanol, stained with propidium iodide and analyzed by flow cytometry. The percent of
cells in each phase of the cell cycle from a representative experiment are indicated in pie charts. b Samples from cells treated for 24, 48 and

72 h are summarized in the table. Values are means from three independent experiments analyzed in duplicate and are displayed as mean =+ SD.
**p<0071. ¢ Cyclin D1 and p21 expression in MCF-7, MCF-7:5C and MCF-7:

2A cells following treatment with everolimus (20 nM) for 48 and 72 h

7:5C cells averaged 18 puM?, while those formed by the
MCE-7 and MCF-7:2A cells averages 40 and 35 pM? re-
spectively. Upon microscopic inspection, we found that
20 nM everolimus dramatically reduced the size of 3D
colonies in all three cell lines, with the most pronounced
effect being on the MCF-7:5C cells (Fig. 3b). These data
indicate that everolimus inhibits not just the prolifera-
tion of breast cancer cells, but also their tumor forming
and metastatic potential.

Effects of everolimus on the PI3K/Akt/mTOR pathway

We also examined the effect of everolimus treatment on
the activation of the PI3K/Akt/mTOR pathway. We
found that everolimus significantly inhibited mTOR
phosphorylation as early as 30 min post treatment but

not Akt, p70S6K and 4EBP1 (Fig. 4, upper panels).
Everolimus inhibited the phosphorylation of downstream
members of the PI3K/Akt/mTOR pathway at 12 h. This
was most prominent at 24 h in MCF-7, MCF-7:5C and
MCE-7:2A cells (Fig. 4, bottom panels). 25 nM everoli-
mus was sufficient to inhibit PI3K/mTOR/Akt signaling
at 12 and 24 h but higher doses were more effective at
blocking phosphorylation. Notably, inhibition of p70S6K
phosphorylation was observed by 60 min in the AI-
sensitive MCF-7 cell line, especially with higher doses,
but not in the Al-resistant MCF-7:5C and MCF-7:2A
cells until 12 h post-treatment (Fig. 4). Reduction of
phospho- mTOR, p70S6K and Akt were maintained by
20 nM everolimus through 48 and 72 h (Additional file
2: Figure S2). Everolimus successfully targets the Akt/
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mTOR pathway in Al-sensitive and Al-resistant breast
cancer cells.

Everolimus reduces estrogen receptor (ER) expression and
transcriptional activity

The activity of ER can be regulated by the PI3K/Akt/
mTOR pathway and is critical to the survival and prolif-
eration of Al-sensitive MCF-7 cells, as well as the Al-
resistant MCF-7:5C and MCF-7:2A cell lines. The
ligand-independent activity of ER maintains the growth
and survival of Al-resistant breast cancer cells [35, 36].
We found that treatment with everolimus significantly
reduced ER transcriptional activity and protein expres-
sion (Fig. 5a and b). This was compared to the action of
the pure anti-estrogen fulvestrant (Fig. 5a and b). Evero-
limus also dramatically reduced ERa mRNA expression
(Fig. 5¢) in addition to protein expression of the ER
chaperone, HSP90 (Fig. 5d). Downregulation of ER ex-
pression was confirmed by immunofluorescent confocal
microscopy (Fig. 5e). Notably, there was higher ER tran-
scriptional activity in Al-resistant MCF-7:5C and MCE-
7:2A cells compared to parental MCE-7 cells, confirming
estrogen-independent ER action in the resistant cells
(Fig. 5a). Taken together, these data indicate that everoli-
mus, and therefore PI3K/Akt/mTOR signaling, is cap-
able of regulating ER expression and transcriptional

activity in both wild-type MCE-7 cells and Al-resistant
MCE-7:5C and MCEF-7:2A cells.

Everolimus reverses 4-OH tamoxifen resistance

Due to earlier studies that have found synergy between
tamoxifen and everolimus in endocrine-sensitive breast
cancer cell models and patients, we investigated the effi-
cacy of this combination in our MCF-7, MCF-7:5C and
MCE-7:2A cells. We have previously shown that the AI-
resistant MCF-7:5C cells are not responsive to 4OHT,
whereas MCF-7:2A are partially sensitive to 4OHT [36].
In this study, 1 uM 4OHT significantly inhibited the pro-
liferation of MCF-7 and MCEF-7:2A cells, reducing the
number of 2D colonies by 20 % and 10 % respectively, but
had no effect on MCF-7:5C cells (Fig. 6a). Treatment with
20 nM everolimus for 9 days significantly reduced the pro-
liferation of all three cell lines, reducing colony numbers
by ~60 % (Fig. 6a). Co-treatment of MCF-7, MCF-7:5C
and MCEF-7:2A cells with 1 uM 4OHT and 20 nM everoli-
mus reduced colony formation in MCF-7 and MCF-7:2A
cells by ~95 % and also had added benefit in the 4OHT-
resistant MCF-7:5C cells, bringing the anti-proliferative
effect from 60 % to 76 %. Synergy between 4OHT and
everolimus treatment was present despite reductions in
ERa expression in all three cell lines (Fig. 6b). This data
supports clinical observations that the combination of
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Fig. 4 Everolimus targets the mTOR/Akt pathway. Al-sensitive MCF-7 and Al-resistant MCF-7:5C and MCF-7:2A cells were treated with 25, 50 and
100nM everolimus. Phosphorylation of mTOR, AKT, p70s6K, 4EBP1 and total protein levels are shown at 30mins, 60mins, 12 and 24 h. Images are
representative of three independent experiments

tamoxifen with everolimus has therapeutic benefit in pa-
tients with ER+ breast cancer and can re-sensitize Al-
resistant breast cancer to endocrine therapy.

Everolimus induces autophagy in breast cancer cells,
which mediates insensitivity

We investigated whether everolimus treatment induced
autophagy in MCF-7, MCF-7:5C and MCEF-7:2A cells.
We found that everolimus reduced the levels of HSP70
and HSP27 in all three cell lines (Fig. 7a). Interestingly,
everolimus also induced PARP cleavage (Fig. 7a); how-
ever, this was not associated with apoptosis by annexin
v/PI staining (data not shown). Chloroquine was used as
an autophagic flux inhibitor, and basal autophagy was
assessed with and without everolimus treatment. Both
immunofluorescent microscopy and western blot (Fig. 7b
and 7c), indicate that everolimus markedly enhanced

LC3-II above basal level, respectively. A lysosomal prote-
ase inhibitor cocktail (100 uM leupeptin, 10 pg/mL pep-
statin A and 10 pg/mL e-64d for 24 h) was also used to
inhibit autophagic flux but results were not as robust as
with 50 uM chloroquine (data not shown). As further in-
dication of everolimus’ ability to induce autophagy, the
number of autophagosomes identified by electron mi-
croscopy in all three cell lines was also increased (Fig. 8a
and 8b). Combined inhibition of autophagy with 50 uM
CQ significantly improved the efficacy of everolimus
treatment on cell proliferation, indicating that autophagy
is a method of everolimus insensitivity in MCE-7 cell
lines (Fig. 8c). Under normal conditions, the MCF-7:5C
cell line displayed dilated endoplasmic reticulum, and
both Al-resistant cell lines had pleomorphic mitochon-
dria, indicating that aberrant metabolism is likely part of
the phenotype of these Al-resistant breast cancer models
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(Fig. 8a). These data suggest that MCF-7, MCF-7:5C and
MCE-7:2A cells use autophagy as a method of everoli-
mus resistance and that this response may be inhibited
to improve the efficacy of everolimus treatment in breast
cancer.

Discussion
This study was conducted to provide mechanistic in-
sights into the anti-proliferative effects of everolimus in

Al-resistant MCF-7:5C and MCF-7:2A breast cancer cells,
and Al-sensitive MCEF-7 cells. We found that everolimus
was equally effective against all three breast cancer cell
lines. The anti-proliferative mechanisms included down-
regulation of ER expression and transcriptional activity,
possibly through the suppression of HSP90. We also dem-
onstrated that everolimus enhanced 4OHT sensitivity in all
three cell lines. Everolimus treatment significantly induced
autophagy, which was associated with downregulation of
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ERa, HSP90 expression and cleaved PARP

HSP70 and HSP27 expression. Additionally, we confirmed
that everolimus inhibits the activation of the PI3K/Akt/
mTOR pathway, resulting in the downregulation of cyclin
D1 and p21 expression, which induced G1 arrest.

MCE-7 cells and their derivatives are more resistant to
everolimus as compared to other luminal A breast can-
cer cell lines [37, 38]. Our study is consistent with this
observation, as total inhibition of the MCF-7, MCEF-7:5C
and MCE-7:2A cells did not exceed 60 %, making them
suitable to model a patient population that is not highly
sensitive to everolimus. Additionally, our ICsy values
were consistent with the frequent use of 20 nM everoli-
mus when studying MCF-7 cell lines [17, 39, 40]. The
enhanced insensitivity of the MCF-7:5C cells may be due

to increased expression of c-myc, which is thought to
confer some resistance in ER+ breast cancer [41, 42].
The slightly enhanced sensitivity of the MCF-7:2A cells
to everolimus may be related to comparatively lower
levels of PTEN [42]. It should be noted that the MCF-7
and MCEF-7:2A cells are progesterone receptor-positive
(PR+), while the MCE-7:5C cells are PR-negative (PR-)
and they overexpresses interferon stimulated genes [43].
These differences do not seem to mediate any variances
in everolimus sensitivity, suggesting that the MCEF-7
background of these cell lines is the most prominent de-
terminant of response.

Elevated ER expression and signaling has been ob-
served in both endocrine resistance cells and endocrine
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resistant tumors [2, 3, 44, 45]. The ability of everolimus
to reduce ER transcriptional activity and phospho-ER
(p-ER) expression in MCF-7/LTED cells has been pre-
viously reported but was not assessed in wild type
MCEF-7 cells [15]. In our study, we found that the in-
hibition of ER transcriptional activity was due to pro-
found downregulation of total ER expression in all cell
models. MCF-7:5C and MCEF-7:2A cells are selected
clones maintained in estrogen-free media that have
retained ER transcriptional activity by upregulation of ER
expression and ligand-independent ER signaling. In

contrast, the MCF-7/LTED cells are a mixed population
of cells that have developed hypersensitivity to estrogen
[46]. Additionally, the studies by Martin and colleagues
were conducted after acute insulin deprivation, which
probably contributed to the enhanced sensitivity to evero-
limus and to the impact on both p-ER and p-Akt expres-
sion in their study. The clinical efficacy of everolimus as a
solo agent was thought to be limited by a compensatory
increase in Akt phosphorylation through mTORC2 [17].
We did not observe this reflexive increase in Akt phos-
phorylation in our cells lines. Our results suggest that
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everolimus as a single agent has the ability to func- The downregulation of ER expression was likely due
tion in a manner similar to combination therapy by to reduced expression of HSP90, a well-known ER
inhibiting both growth factor and ER signaling simul-  chaperone. HSP expression in general is controlled by
taneously in some systems. Downregulation of total the PI3K/Akt/mTOR pathway through phosphorylation
ER expression by everolimus has not, to our know- of the transcription factor HSF1 and is consistent with
ledge, been previously reported. the loss of HSP90, HSP27 and HSP70 expression
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observed in this study [47]. Everolimus induced loss of
HSP90 mRNA expression has been observed in other
cancers [19] and a loss of HSP90 expression has been
linked to autophagic cell death [48]. Two HSP90 inhibi-
tors, NVP-AUY922 and STA-9090, are currently in clin-
ical trials for the treatment of breast cancer [49, 50].
HSP90 inhibitor therapy has been limited by reflexive in-
crease in HSP signaling, especially enhanced HSP27 ex-
pression [51, 52]. Here, we report that everolimus
inhibits HSP27 in our cell lines, and so may potentiate
HSP90 inhibitor treatment. These results suggest that
everolimus may be combined with HSP90 inhibitors or
drugs that target HSP90 clients for the treatment of Al-
resistant breast cancer.

Al-resistant tumors are known to retain dependence
on ER signaling for growth and survival. Given that
everolimus reduces ER expression, our observation that
it also enhances 4OHT sensitivity during long-term co-
treatment is very interesting and warrants further inves-
tigation. It should be noted, however, that everolimus
has previously been shown to inhibit ER phosphorylation
on serine 167 despite documented synergy between
everolimus and tamoxifen in Al-resistant models and
patients [10, 15, 17]. It is likely that these two drugs ex-
hibit synergy by targeting ER signaling through separate
but complementary mechanisms. Our results indicate
that everolimus reduces ER expression through inhib-
ition of ER mRNA transcription, while tamoxifen targets
the ER protein. Combining everolimus and tamoxifen
ensures that ER signaling is inhibited continuously over
time in all cells within a heterogeneous breast tumor.
The improved efficacy of everolimus in combination
with 4OHT in our study is consistent with results from
the TAMRAD clinical trial, [10]. The data from our
study suggest that everolimus could benefit Al-resistant
patients with ligand-independent ER activity by targeting
ER expression and signaling.

We have demonstrated that everolimus dramatically
induces autophagy, and is associated with significant
downregulation of HSP90, HSP70 and HSP27. Loss of
HSP70 and HSP27 is associated with starvation-induced
autophagy and rapamycin treatment, both of which tar-
get the PI3BK/Akt/mTOR pathway [26, 30]. Autophagy is
a mechanism of drug insensitivity in cancer because it
allows tumors to recycle cellular components and survive
treatment [21, 22]. Inhibition of autophagy significantly
improved the anti-proliferative effects of everolimus in
MCE-7, MCE-7:5C and MCEF-7:2A cells. This is consistent
with a previous study reporting enhanced inhibition of
MCE-7 cell proliferation when combining chloroquine
and everolimus [53]. Everolimus and other PI3K/Akt/
mTOR inhibitors are known to induce autophagy in both
solid and blood tumors [19, 20]; however, to our know-
ledge, this phenomenon has not been reported in breast
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cancer cells. We conclude that the induction of autophagy
is likely a mechanism of everolimus insensitivity in MCF-7
[37, 38], MCF-7:5C and MCF-7:2A cells.

Although everolimus treatment induced PARP cleav-
age in all three cell lines, we did not observe apoptotic
cell death normally associated with PARP cleavage.
PARP cleavage is thought to mediate autophagy rather
than apoptosis in response to certain stimuli [54]. Since
HSP70 is known to stabilize PARP [55], loss of HSP70-
mediated stability offers an explanation for the everoli-
mus induced PARP cleavage seen in this study. While
there have been reports of autophagic and apoptotic cell
death in leukemia [19] and nasopharyngeal carcinoma
cells [56], everolimus is not known to induce cell death
in breast cancer cells on its own [19, 56]. To our know-
ledge, everolimus induced cell death in breast cancer has
only been observed in aromatase expressing MCF-7/Aro
cells when combined with letrozole [7]. We have shown
that induction of autophagy limits the anti-proliferative
response of everolimus treatment, hence a combination
of everolimus with the autophagy inhibitors chloroquine
or hydroxychloroquine, which are currently in clinical
trials as part of combination therapy [57], may be benefi-
cial in the treatment of Al-resistant breast cancer.

Conclusions

Overall, this study demonstrated that everolimus inhibits
the proliferation of Al-resistant breast cancer cells through
down regulation of ER expression and also that induction
of autophagy is a method of everolimus insensitivity. We
found that everolimus had similar effect on the prolifera-
tion of both our Al-sensitive (MCF-7) and Al-resistant
(MCF-7:5C and MCF-7:2A) models, suggesting that the
MCE-7 background of these cell lines overrides any other
differences that might impact everolimus sensitivity. The
inhibition of proliferation was seen regardless of PR
status, PTEN expression, type linterferon signaling,
and 40HT sensitivity, supporting a conclusion that
everolimus holds promise as part of combination
therapy for a wide variety of Al-resistant patients, for
whom Al treatment is not an option.

Additional files

Additional file 1: Figure S1. Everolimus does not impact the
proliferation or cycling of normal breast cells. (@) MCF10A cells were
seeded in 24-well plates and treated with a range of everolimus doses in
triplicate. The percentage of viable cells was determined after 72 h of
everolimus treatment. (b) MCF10A cells were seeded in 6-well plates in
single cell suspension and treated with 20 nM everolimus for 9 days. The
number and size of clones was quantified and represents means from
two independent experiments conducted in triplicate. (c) After 24, 48
and 72 h of 20 nM everolimus treatment in 6-well plates, MCF10A cells
were subjected to cell cycle analysis. The percent of cells in G1 phase is
highlighted. (PPT 507 kb)
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Additional file 2: Figure S2. Everolimus targets the phosphorylation
of the PI3K/mTOR/Akt pathway at 48 and 72 h. MCF-7, MCF-7:5C and
MCF-7:2A cells were seeded in 6-well plates and treated with 25, 50 or
100 nM everolimus or vehicle. Cells were harvested at 48 and 72 h and
protein expression analyzed by western blot. Image represents three
independent experiments. (PPT 674 kb)
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