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Systematic interactome mapping of acute
lymphoblastic leukemia cancer gene
products reveals EXT-1 tumor suppressor as
a Notch1 and FBWX7 common interactor
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Abstract

Background: Perturbed genotypes in cancer can now be identified by whole genome sequencing of large number
of diverse tumor samples, and observed gene mutations can be used for prognosis and classification of cancer subtypes.
Although mutations in a few causative genes are directly linked to key signaling pathways perturbation, a global
understanding of how known cancer genes drive oncogenesis in human is difficult to assess.

Methods: We collected available information about mutated genes in Acute Lymphoblastic Leukemia (ALL). Validated
human protein interactions (PPI) were collected from IntAct, HPRD and BioGRID interactomics databases, or obtained
using yeast two-hybrid screening assay.

Results: We have mapped interconnections between 116 cancer census gene products associated with ALL. Combining
protein-protein interactions data and cancer-specific gene mutations information, we observed that 63 ALL-gene
products are interconnected and identified 37 human proteins interacting with at least 2 ALL-gene products. We
highlighted exclusive and coexistence genetic alterations in key signaling pathways including the PI3K/AKT and
the NOTCH pathways. We then used different cell lines and reporter assay systems to validate the involvement of
EXT1 in the Notch pathway.

Conclusion: We propose that novel ALL-gene candidates can be identified based on their functional association
with well-known cancer genes. We identified EXT1, a gene not previously linked to ALL via mutations, as a common
interactor of NOTCH1 and FBXW7 regulating the NOTCH pathway in an FBXW7-dependend manner.
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Background
The identification of genes responsible for oncogenesis is
a major goal in cancer research. These genes are mostly
defined as “altered genes directly promoting malignant
progression”. After three decades of molecular cancer re-
search, different strategies have been used to define the
cancer genetic landscape. The catalogue of somatic muta-
tions in cancer (COSMIC) (http://cancer.sanger.ac.uk) is a
comprehensive resource of somatic mutations in human

cancer samples curated from published studies and cancer
genomes sequencing [1]. As of May 31, 2015, COSMIC
reports a set of 572 genes, called the cancer gene census,
for which mutations are associated with cancer develop-
ment. In cancer samples, it is challenging to analyze and
prioritize sequential mutation accumulation events, which
occur in oncogenes and tumor suppressors genes. The
mutations that provide a selective growth advantage in
any step of tumorigenesis (initiation, clonal expansion,
tumor formation) are known as driver mutations. Out of
572 cancer gene census, about 140 genes including 71
tumor suppressors and 54 oncogenes are well-accepted as
cancer driver genes because mutations in those genes
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promote tumorigenesis [2]. These numbers are not static
and should increase as more cancer genomes are se-
quenced. Other approaches are being used to identify
novel candidate cancer genes including Genome Wide As-
sociation Studies (GWAS) for the identification of cancer-
associated loci [3], in vivo transposon mutagenesis screens
in mice “sleeping beauty technology”, for genes potentially
implicated in tumorigenesis [4–6], and protein-protein
interactions screens of gene products targeted by onco-
genic viruses [7–9]. Integrating information from all the
above resources in a “guilt-by-association” model that also
considers interacting partners of cancer-associated gene
products allowed prioritization of ~ 3000 genes potentially
associated with cancer [10]. However, analyzing variations
of mutations in time and space in different cancer types
and subtypes (e.g., what driver genes are important for
what cancer type at what stage) has been challenging. Few
studies led to the discovery of a number of genes implicated
in specific tumor types. As an example, children medullo-
blastoma tumor samples exhibit an average of 11 gene
alterations compared to 55–121 in adult tumors [11], whilst
lung and colorectal cancers require only 3 driver gene
mutations [12]. In liquid tumors such as leukemia and
lymphomas, it believed that, one of the most prevalent
category of mutations involving cancer driver genes are
chromosomal rearrangements such as BCR-ABL1 in
chronic mylogenous leukemia (CML) [13], fusions involv-
ing nucleopins 98 and 124 and MLL gene fusions in acute
myelogenous leukemia (AML) [2, 14, 15], and TEL-AML1
and TCF3-PBX1 in acute lymphoblastic leukemia (ALL)
[16–18]. These gene fusions alone are often insufficient
and may require additional genetic perturbations for
leukemogenesis [19, 20].
We previously showed that protein-protein interactions

(PPI) data could be used for interpretation of expression
profiles in cancer samples in order to identify and
prioritize target genes and pathways [20]. Here, we used
PPI mapping strategies to explore information on cancer
genes frequently mutated in ALL. We highlighted mutated
hub proteins interconnected in an ALL-cancer gene prod-
ucts network and identified novel interacting partners that
link key ALL-cancer driver gene products [21, 22].

Methods
Databases and literature PPI curation
Information about genes containing mutations in their
coding regions was retrieved from the COSMIC database,
evaluated; organized and selected genes were submitted for
experimental analysis. To establish a catalog of genes and
mutations associated with Acute Lymphoblastic Leukemia
(ALL), we used the version 71 of COSMIC, previously
downloaded to a local server and we extracted data only
related to ALL. We developed and implemented a proced-
ure that automatically collects information and check the

consistency of changes with the coding sequences and find
the corresponding positions on clones from the human
ORFeome (http://horfdb.dfci.harvard.edu/).
The retrieved information include details provided at ei-

ther nucleotide or protein level (mutation syntax), sample
id (portion of a tumor being examined for mutations), tis-
sue from which the sample originated, histological classifi-
cation of the sample and the Pubmed id of the article that
published the study. For each gene tested for PPIs using
the yeast two-hybrid, we identified mutations positions on
the ORFeome clone by sequence alignment (BLAST) then
we verified if the protein sequence has undergone modifi-
cations as described by mutation syntax.
Human PPIs were collected and verified from the dif-

ferent interactomics databases IntAct [23], HPRD [24]
and BioGRID [25]. Only physical PPIs validated at least
in two independent references or by two methods were
considered as confident and maintained for the analysis.

Network data analyses and visualization
Network analyses and visualization of protein-protein in-
teractions were carried out with Cytoscape software, which
is a free software for visualizing, modeling and analyzing
molecular and genetic interaction networks. Due to its fea-
tures, Cytoscape and its plugins provide a powerful tool kit
allowing to answer specific biological questions using large
amounts of cellular network and molecular profiling infor-
mation [26]. In our maps, the nodes represent proteins that
are connected with edges representing pairwise interac-
tions extracted from interaction databases and from our
Y2H experimental assay.

Cell culture and transfection
HEK293, HeLa and HeLa Notch1ΔE-eGFP cells were cul-
tured in DMEM supplemented with 10 % fetal bovine
serum (FBS), 2 mM glutamine and penicillin/streptomycin.
The same medium was used for U2OS Tet-on flp-in cells
bearing isogenic transgenes encoding Notch1-Gal4. As for
K562-control and K562 expressing Dll4 cells, they were
grown and maintained in RPMI 1640 supplemented with
15 % FBS and antibiotics. T-ALL cell lines were grown and
maintained in RMPI containing 10–20 % FBS and supple-
mented with antibiotics.
HEK293 cells were DNA-transfected with polyethyleni-

mine (PEI) purchased from Sigma, reagent was dissolved
in water at 1 mg/ml and preserved at −80 °C. Transfection
with PEI was performed on HEK cells cultured in DMEM
at 80 % confluence. Medium was changed before transfec-
tion and cells were collected 24 h post-transfection.
HeLa cells and HeLaN1ΔE-eGFP cells were DNA-

transfected with lipofectamine 2000 reagent (Invitrogen)
according to manufacturer’s instructions and collected
24 h post-transfection.
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SiRNA transfection was performed with Calcium Phos-
phate using ProFection Mammalian Transfection kit from
Promega according to manufacturer’s instructions on cells
cultured in DMEM at 40–50 % confluence. Medium was
changed 24 h later and cells were collected 48 h post-
transfection.
For experiments involving both DNA and siRNA trans-

fections, siRNA-transfection was performed according to
manufacturer’s instructions and 24 h later after changing
medium cells were transfected with DNA using lipofecta-
min 2000 reagent (Invitrogen) and cells were collected
24 h post DNA-transfection.
For proteasomal degradation inhibition, cells were treated

with 10 μg/ml MG132 for 6 h before being collected.
siRNA sequences:

siEXT1: 5′-GGAUUCCAGCGUGCACAUUtt-3′
siFBXW7: 5′- GCAUAGAUUUUAUGGUAAtt-3′
siCtrl: 5′- GGCUGCUUCUAUGAUUAUGtt-3′

qRT-PCR
Total RNA was extracted using GeneJET RNA Purifica-
tion Kit (Thermo scientific), DNaseI-treated on the col-
umn (Thermo Scientific) and reverse-transcribed with
random primers (Thermo scientific). qPCR was performed
using SYBER Green detection from Roche and run on
Lightcycler 480 (Roche). mRNA quantification was per-
formed relative to GAPDH housekeeping gene. Relative
expression levels were calculated for each gene using the
ΔΔCt method.

Plasmids
Open reading frames (ORF) encoding Notch1 partners
(tested for Protein complementation assay) were ob-
tained from human ORFeome v5.1 (center of cancer sys-
tems biology: CCSB) as entry clones. Human NICD
plasmid, was obtained from Addgene. FBXW7α express-
ing vector was kindly provided by Dr. E. Dejardin from
the laboratory of molecular immunology and signal
transduction—(GIGA-ULg). ORFs that were not avail-
able from the hORFeome V5.1 (BRAF, HRAS, ABL1,
JAK2 and SMARCB1 and NOTCH1 genes), were pur-
shassed from Genecopea and cloned by Gateway recom-
bination technology (Invitrogen) using specific primers
flanked with the following AttB1 and AttB2 Gateway
sites: 5′- GGGGACAACTTTGTACAAAAAAGTTGGC
ATG-3′ (AttB1) and 5′- GGGGACAACTTTGTACAAG
AAAGTTGA-3′ (AttB2). These constructions were veri-
fied by PCR and sequencing.
Inserts from pDONR223 were transferred by LR clon-

ing (Invitrogen) into different destination vectors: pAD-
destCYH and pDB-dest the Y2H expression vectors, and
pDEST1899 (flag tag), pDEST491 (YFP-tag) and pDEST-
mcherry for mammalian expression studies.

High-throughput yeast Two-hybrid (HT-Y2H)
We used the hORFeome version 5.1, a collection of hu-
man ORFs cloned from the Mammalian Gene Collection
(MGC) resource, representing a resource of ORFs that
can be transferred easily to any Gateway compatible des-
tination vectors. This collection contains 15 483 ORFs
representing almost half of the human genome. They are
cloned into the pAD-dest-CYH and pDB-dest encoding
the yeast Gal4 Activating and DNA-binding domains,
respectively. The resulting individual clones were trans-
ferred into MATa Y8800 (pAD) and MATα Y8930 (pDB)
S. cerevisiae strains. Twenty-one selected ALL-genes
were screened for interactions with the hORFeome V5.1
as described in [27].
One pool of 21 AD of selected genes into Y8800 yeast

strain was mated to each of the 15483 dB-ORFs Y8930
of the hORFeome v5.1 and each of ALL-genes-DB into
Y8930 yeast strain was mated to 165 pools of 94 AD-
ORFs of the hORFeome v5. One Y2H screening was per-
formed in the reciprocal orientation, as described in
[27]. Positive colonies for the GAL1:: HIS3 and GAL1::
ADE2 selective markers but negative for autoactivation
were selected for PCR-amplification (Zymolyase 20 T from
Seikagaku Biobusiness, and Platinum® Taq DNA Polymer-
ase from Invitrogen) and identification of interacting pro-
teins by sequencing of the respective AD- and DB-ORFs.

Luciferase reporter assays
Cells were seeded in 24-well plates and transfected with
300 ng of either TP1 luciferase reporter plasmid (TP1-luc)
or CBF1 reporter plasmid (CBF1-luc) and 30 ng of renilla
Luciferase (R-Luc). Twenty-four hours post-transfection
luciferase activity was measured in cell lysates.
U2OS N1-Gal4 cells they were transfected 300 ng of

Gal4-firefly luciferase and 30 ng R-Luc reporter plasmid.
After 24 h, K562 cells expressing Notch ligands DLL4 or
K562 control cells were added to the transfected cells in
the presence of tetracycline (2 μg/mL). After 24-h of co-
culture, luciferase activity was measured in cell lysates.
Cell lysis and luciferase assays were performed in tripli-

cate using Dual-luciferase reporter assay system from Pro-
mega. Luciferase measurements were performed in 96 well
plates using DLR automated machine. Firefly luciferase
values were normalized to R-luc values and calculated ratio
represent luciferase activity.

Immunofluorescence and confocal microscopy
HeLa Notch1ΔE-eGFP cells were seeded onto coverslips
in 24-well plates and transfected with 1 μg of EXT1-
mcherry plasmid using lipofectamine2000 (Invotrogen).
Twenty-four hours post-transfection, cells were washed
in warm PBS, fixed in 3,7 % PBS-paraformaldehyde for
20 min at room temperature, washed 3 times with PBS,
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and mounted on glass coverslips using ProLong Gold
Antifade montant with DAPI (life technologies).
Slides were examined by confocal microscopy using

the Nikon A1R confocal system and images processed
with the IMAGI software.

Protein complementation assay (PCA)
NICD and FBXW7 were cloned in pN1Gluc vector and
pN2Gluc vectors respectively (for Gaussia luciferase 1
and 2) using the Gateway cloning technology. HEK293
cells were seeded in 24 well-plates at a concentration
5.10 4 cell/well, then transfected with GL1 or/and GL2
plasmids and 24 h post-transfection, luciferase activity
was measured on lysates transferred into 96-well plate
using and automated machine DLR with Renilla lucifer-
ase substrate. Normalized luciferase ratio was calculated
as follows: NLR = luciferase value GL1 + GL2/(luciferase
value GL1 + luciferase value GL2). An interaction is con-
sidered positive or validated when NLR ≥ 3.5. Cell lysis
and luciferase assays were performed in triplicate for
each condition.

EXT1 silencing in zebrafish
Transgenic zebrafish line Tp1bglob:eGFP line [28] were
maintained according to EU regulations on laboratory
animals. Knockdown experiments were performed by
injecting embryos at the one- to two-cell stage with
10 ng of single splice-blocking morpholino designed spe-
cifically for both EXT1 a and b orthologs.

RNA sequencing
Total RNA was extracted from HeLaN1ΔE-eGFP cells
(siCTRL, siEXT1, siFBXW7), quantified and tested for
RNA quality controlled using Agilent 2100 bioanalyzer
using the Eukaryote Total RNA Nano assay. Total RNA
strands were used to generate libraries and sequenced by
HiSeq2000 sequencer.

Statistical analysis
Graph values are presented as mean +/− standard devi-
ation, calculated on at least three independent experiments.
Unless stated otherwise, significance was determined using
a two-tailed Student’s t-test (comparison of means). P-value
thresholds are depicted as follows; *: p < 0.05; **: p < 0.01;
***: p < 0.001 and ****: p < 0.0001.
To prioritize ALL-genes, we combined the ranking

from separate results (rank per number of mutation,
rank per number of samples, rank per degree) by using
order statistics. First, ranks are divided by the total num-
ber of ranked genes and we calculated the Q statistic
[29], which represents the probability of obtaining the
observed ranks r by chance, calculated using joint cumu-
lative distribution of order as:

Q r1; r2 ;…; rNð Þ ¼ N !VN

V 0 ¼ 1;

Vk ¼
Xk

i¼1
−1ð Þ

i − 1 Vk − i

i!
riN−kþ1

Where ri is the rank ratio for result i, N is the number
of genes used.

Results and Discussion
Mutations associated to ALL in cancer gene census
In order to identify cancer genes associated with acute
lymphoblastic leukemia (ALL), we searched the COS-
MIC database version 71 and collected all available
information about mutated genes in ALL samples. COS-
MIC V71 contains over 1,058,292 tumor samples con-
taining over 2,710,449 coding mutations in 28,977 genes
[1]. We found more than 2500 mutations in coding se-
quences of 366 genes that were reported in 36,909 ALL
samples. In the COSMIC database, a set of 572 genes
whose mutations are causally linked to oncogenesis, are
called human Cancer Gene Census [30]. This set includes
140 genes well accepted as “cancer driver genes” because
mutations in those genes directly promote tumorigenesis
[2]. In ALL samples, we found that 20 % of the cancer
gene census is affected by mutations in coding regions of
116 genes (Additional file 1: Table S1A). This high num-
ber of mutated genes is not due to over representation of
ALL samples in COSMIC, as ALL samples count for
about 3 % of tumor samples compiled in the COSMIC
V71 (Fig. 1a). The “ALL-genes” set contains 74 well-
known driver genes including 35 oncogenes and 39 tumor
suppressor genes (TSG) (Additional file 1: Table S1B).
For each ALL-gene we extracted the number of samples

as well as the number of distinct mutations. Figure 1b rep-
resents the top 20 frequently mutated genes among the
116 ALL-genes. Each gene that has at least 2 distinct mu-
tations observed in at least 556 different samples, from a
total of 36,909 ALL samples was examined. Seven genes
were found mutated in more than 5 % of ALL samples, in-
cluding genes encoding for FLT3 (9.9 %), NRAS (6.14 %),
JAK2 (6.08 %), NOTCH1 (5.87 %), IKZF1 (5.67 %), KRAS
(5.52 %) and PTPN11 (5.32 %) (Fig. 1b and c). We also
ranked ALL-genes according to the number of distinct
mutations found in ALL samples (Fig. 1b and d). The top
ranked gene was NOTCH1 with 595 distinct mutations
mostly found in its heterodimerization (HD) domain
(63 % of mutations) and in its proline, glutamic acid,
serine, threonine-rich (PEST) domain (27 % of mutations)
(Additional file 2: Figure S1). Mutations in the HD domain
that enhance NOTCH1 cleavage and nuclear translocation
of the intracellular NOTCH1 protein (ICN), and muta-
tions in the PEST domain that result in the stabilization of
ICN, are gain-of-function mutations affecting the tran-
scriptional activation of Notch1-target genes. The majority
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of these activating mutations were found in human T lym-
phocytes ALL (T-ALL) samples, as previously reported
[31]. Other highly mutated ALL-genes include PTEN (140
distinct mutations) WT1 (86 distinct mutations), TP53 (85
mutations), PAX5 (79 mutations), and IL7R (73 mutations)
(Fig. 1d).
For the majority of ALL-genes, the number of distinct

mutations per gene correlated with the number of mutated
samples (Fig. 1e, red circled), suggesting that a number of
somatic mutations occurred randomly during oncogenesis,
as previously observed for other types of cancers such as

ovarian carcinoma or acute myeloid leukemia [32]. An-
other set of eight genes (FBXW7, CDKN2A, PTPN11,
IKZF1, JAK1, JAK2, KRAS and NRAS) exhibit an aver-
age of 33 mutations in 1500–2500 examined ALL sam-
ples (Fig. 1e). These genes are characterized by similar
mutations occurring in distinct ALL samples, suggest-
ing their potential roles in clonal expansion of ALL.
Two genes are outliers, and display many more muta-
tions (NOTCH1) or are mutated in many more samples
than average (FLT3). These larger numbers reflect the
high rate of NOTCH1 mutations specifically in T-ALL

Fig. 1 a Distribution of ALL census genes and other census genes according to number of mutations and number of samples and their distribution
among driver genes. Red and bleu bars represent ALL census genes and other cancer census genes respectively (b) Mutations associated to ALL in
cancer gene census. Frequency of mutations in the top 20 genes (36,909 ALL samples). The number and proportion of ALL samples in which gene
mutations were detected are represented. c The 20 most frequently mutated genes in ALL samples; X-axis represents the proportion of samples where
mutations were reported. d Number of distinct mutations per genes in ALL samples; X-axis represents the number of distinct mutations found in the
coding sequences and Y-axis the top 20 genes with higher number of distinct mutations. e Occurrence of mutations per gene in ALL samples. Data
source: COSMIC database
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samples (99,9 % of NOTCH1 mutations); and the involve-
ment of FLT3 in childhood ALL, as previously described
[33]. Interestingly, NOTCH1 and FLT3 mutations, mostly
localized in two functional domains (HD and PEST for
NOTCH1, juxtamembrane (JM) and tyrosine kinase
(TKD) for FLT3) (Additional file 2: Figure S1), are found
respectively in 1897 and 723 different patients (Fig. 1b),
without co-occurrence in examined ALL samples (Fig. 2b).

Interconnections between ALL-gene products
To analyze the connectivity between ALL-gene products,
we collected protein-protein interactions (PPI) data from
three databases: BioGRID [25], HPRD [24] and IntAct
[23] and filtered all reported interactions between the
116 ALL-gene products. Figure 2a shows that 63 out
116 ALL-gene products are interconnected. We then
prioritized ALL-gene products based on their degree of
interconnectivity (Additional file 1: Table S2B). One of
the top interconnected ALL-proteins is beta-catenin
(encoded by CTNNB1 gene), which is a central hub in
the Wnt/β-catenin signalling pathway and plays a crucial
role normal haematopoiesis [34]. It has been shown that
50–85 % of the childhood T-ALL patients overexpress
β-catenin [35], further supporting our finding that β-
catenin is an important hub in ALL. Other Wnt/β-ca-
tenin signaling pathway members such as APC, TCF3
and TCF7L2 interacting with β-catenin, are part of our
ALL-gene product set and were previously found differ-
entially expressed in T-ALL patients [35].

Another example is PIK3R1 with 8 partners including
PIK3CA that interacts with additional 4 ALL-gene prod-
ucts. PI3K members are essential effectors in the PI3K/
AKT/mTOR signaling pathway, which is activated in a
number of ALL samples [36]. Another example is ABL1
that interacts with 7 partners. The BCR-ABL1 fusion is
the driver chromosomal rearrangement in chronic mye-
loid leukemia (CML) [37] and is also found in more than
20 % of ALL patients [38]. Mutations in ABL1 gene were
associated to different types of cancer [39].

Co-occurrence of mutations in ALL-genes
We then explored the relationship between interacting
genes based on the occurrence of mutations in the same
ALL samples. We showed that, in addition to biophys-
ical interactions, several ALL-gene products are mutated
in the same patient samples, suggesting several ways of
deregulating cancer pathways (Fig. 2b). As shown on
Fig. 2b, our analysis revealed that ALL samples could be
classified into 4 distinct groups of affected pathways,
based on co-occurrence of mutations in important cancer
driver genes: PI3K/AKT and NOTCH pathways, JAK and
RAS pathways, Wnt/β-catenin and the cell cycle, and the
transcriptional regulation pathways. Interestingly, protein
phosphatases PTEN and PTPN11, and proteins important
in genome maintenance and chromatin modification P53
and CREB binding protein are centrals and connect with
deregulated pathways through different set of mutations
(Additional file 1: Table S3).

Fig. 2 a Interactions between proteins mutated in ALL samples. Protein-protein interactions were extracted from three databases: IntAct, HPRD
and BioGRID and only interactions reported with at least two publications, and detected by two experimental methods are represented in this
map. b Co-occurrences of mutations in ALL samples. Nodes represent proteins associated with ALL, with an area proportional to the number of
distinct mutations. Edges join pairs of interacting proteins for which mutations co-occur in the same samples. Edge widths are proportional to
the number of samples with co-occurring mutations
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Combining all the above criteria: frequency of muta-
tions in individual cancer genes in ALL samples, num-
ber of distinct mutations and their pattern in ALL-gene
(Fig. 1 and Additional file 2: Figure S1), interconnec-
tions between ALL-gene products and co-occurrence of

mutated genes in the same samples (Fig. 2), we priori-
tized ALL-genes and suggest that TP53, NOTCH1,
CREBBP, PTEN, EGFR, JAK2, ABL1, PTPN11, CBL and
EP300 are the top 10 ALL driver genes (Additional file
1: Table S4).

Fig. 3 Interactome map of proteins involved in ALL and their partners (a) Literature curation of interactions between the 116 proteins mutated in
ALL (grey nodes) and their human partners (purple nodes). b Interactions identified by high throughput Y2H screen. Cancer census gene encoded
proteins are represented in grey and their partners in green. c The graph represents a ranking 37 candidates among the ALL-related partners based on
the number of interactions between human proteins and ALL related proteins. In addition these genes are among the cancer gene census and they
are expressed in 60 % of ALL-cell lines (purple bars represent literature-curated interactors and green bars represent Y2H interactors). The X-axis represents
gene symbols; the Y-axis represents the number of partners. d Interactions between the 37 identified ALL-candidate genes and their partners among the
ALL gene census
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Fig. 4 EXT1 depletion promotes NOTCH1 transcriptional activity. a Interactions between NOTCH1, EXT1 and FBXW7. Grey nodes represent proteins
associated with ALL, with an area proportional to the number of distinct mutations. Bleu edges join pairs of interacting proteins for which mutations
co-occur in the same samples. Edge widths are proportional to the number of samples with co-occurring mutations. The green node represent EXT1
and grey edges interactions identified in Y2H (b) Luciferase reporter assay using TP1-luciferase construct in HeLa NotchΔE-eGFP cell lines transfected
with EXT1 siRNA or control siRNA as indicated. The relative luciferase values are normalized using a Renilla luciferase construct. Knock-down of EXT1
was analysed by qPCR. c mRNA expression levels of Notch1 target genes; cMYC and EXT1 analysed by qPCR following EXT1 Knock down. d A zebrafish
transgenic line Tg (Tp1bglob:eGFP) um13, reporter for Notch1 transcriptional activity, were treated with control or Ext1 a and c ortholog-targeted
morpholinos. Left panel represents TP1 bglob:hngb1-eGFP construct. The graph represents the percentage eGFP cells sorted by FACS. Data represent
the means ± SEs of three independent experiments
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Functional associations between ALL-gene products and
their partners in the human proteome
We hypothesized that the ALL-genes set is not limited to
mutated genes in ALL samples, but could be extended to
functional related genes and their products. In order to
identify ALL-gene products interactors, we filtered from 3
different PPI databases (BioGRID, HPRD and IntAct),
proteins that interact with at least 2 of the 116 ALL-gene
products (Additional file 1: Table S5A). The obtained
interactome map (Fig. 3a) shows that inter-connected
ALL-gene products have also several common partners,
prioritized according to the number of interacting ALL-
gene products (Additional file 1: Table S5B). PPI stored in
databases are curated from the literature and some pro-
teins such as P53, BRCA1 or ATM heavily studied with
hundreds of publications, have more PPI reported than
others that are not studied with equal intensity. Previ-
ous studies suggested that unbiased PPI mapping allow
characterization of overlooked PPI and identification of
unknown diseases-related candidates [10]. Our previous
interactome analysis for the ALL-gene products derive
from database interrogations, we then performed an
experimental yeast-hybrid (Y2H) unbiased PPI detec-
tion assay using a set of ALL-genes and the human

ORFeome collection. We identified 193 interactions be-
tween 13 ALL gene products and 168 human partners.
This experiment confirmed our observations using litera-
ture curated interactions, that interconnected ALL-gene
products are also connected through several common part-
ners in complex macromolecules (Fig. 3b). We identified
several novel central hubs such as GOLGA2 that interacts
with ALL-gene products NOTCH1, SMARCB1, PTPN11
and WT1, and CDC33, which is a common interactor of
ALL-gene products MLH1, QT1, and SMARCB1 (Fig. 3b,
Additional file 1: Table S4B).
As suggested by other studies, interconnected pro-

teins are more associated with common diseases than
expected by chance [40] and the same cancer driver
genes are often involved in different cancer types, as
evidenced by several examples [2]. To identify novel
ALL-gene candidates through a “guilt-by-association”
prediction, we prioritized ALL-gene products interac-
tors using three criteria: (1) the number of ALL-gene
products partners, (2) their implications in other types
of cancer and (3) their expression in 24 common ALL
cell lines. In total, we identified 37 ALL-gene products
interactors that could be considered as ALL-associated
candidates (Fig. 3c and d).

Fig. 5 EXT1 regulates NOTCH1 degradation through FBXW7. a Protein complementation assay in HEK cells transfected with NICD-Gluc1 and/or
FBXW7-Gluc2, in addition to EXT1-yfp as indicated in the X-axis, Normalized Luciferase Value (NLR) is represented by the Y-axis. b, (c) and (d) HEK293 cells
were transfected with NICD-Flag and EXT1-YFP expressing plasmids as indicated. Twenty-four hours post-transfection cells were treated with proteasomal
inhibitor MG132 for 6 h and lysates analyzed by western blot using anti-Flag M2 and anti-GFP antibodies. In (d) 24 h before overexpression, cells were
transfected with siRNA for FBXW7 or a siRNA control using calcium phosphate. e Relative mRNA expression levels of FBXW7 analyzed by qPCR.
Data represent the means ± SEs of three independent experiments, each performed in triplicate
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EXT1 is functionally associated with the notch pathway
through its interaction with NOTCH1 and FBXW7
The following example illustrates the validity of com-
bining interactome approaches and gene mutations
characterization to identify specific cancer type-related
genes. Exostosin glycosyltransferase 1 (EXT1) is an endo-
plasmic reticulum transmembrane protein frequently
mutated in multiple osteochondromas [41–43]. We iden-
tified EXT1 as a common interactor of two ALL-gene
products NOTCH1 and FBW7 (Figs. 3b and 4a). We then

investigated the potential functional interplay between
EXT1 and the NOTCH pathway. Using NOTCH1
transcriptional-responsive luciferase reporter assay, we
showed that depletion of EXT1 using small interfering
RNA increased NOTCH transactivation activity in different
cell lines (Fig. 4b and Additional file 3: Figure S3a). We also
showed that depletion of EXT1 increases mRNA expression
levels of two important NOTCH1-target genes: HES1 and
MYC (Fig. 4c). Consistent with this finding, over-expression
of EXT1 inhibits NOTCH1-transactivation in different cell

Fig. 6 Genes coregulated by EXT1 and FBXW7. a HeLa NotchΔE-eGFP were treated siRNA for EXT1, FBXW7 or a control siRNA. Relative mRNA expression
levels of EXT1 and FBXW7 were then analyzed by qPCR and RNA samples subjected to high throughput Illumina sequencing (RNA-seq). Ven diagrams
represent a comparison between deregulated genes following knock down of EXT1 or FBXW7. b Relative mRNA expression levels of EXT1 and FBXW7
analyzed by qPCR. c Gene ontology enrichment analysis of common deregulated genes. GO-terms and node sizes are proportional to the number of
genes implicated in the same GO term
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lines (Additional file 4: Figure S2) and correlates with a re-
duction of NICD protein levels (Additional file 5: Figure
S4). We confirmed the effect of EXT1 on NOTCH1 path-
way using a zebrafish in vivo model. We treated transgenic
zebrafish line Tg (Tp1bglob:eGFP) um13 expressing fluor-
escent marker eGFP under the control of a Notch-
responsive element TP1, with morpholinos targeting EXT1a
and b zebrafish orhologs. As shown on Fig. 4d, we observed
a 40 % increase of NOTCH1 activity following depletion of
EXT1 zebrafish orthologs (Fig. 4d).
FBXW7 is an E3 ubiquitin ligase regulating NOTCH1

proteasomal degradation [44]. To determine whether
EXT1 interferes with FBXW7-NOTCH1 association, we
first showed that the interaction between NOTCH1 and
FBXW7 was dramatically enhanced in the presence of
EXT1 (Fig. 5a). Then, we showed that, in the presence
of EXT1, the level of NOTCH1 intracellular domain
(NICD) is reduced in a proteasome-dependent manner
(Fig. 5b and c: compare presence and absence of MG132
proteasome inhibitor). Interestingly, we also showed that
reduced levels of NICD in the presence of EXT1 are
FBXW7-dependent (Fig. 5d). To more deeply analyze the
functional relationship between EXT1 and FBXW7 in
regulating cellular homeostasis, a function well known for
FBXW7 [44], we performed a genome-wide analysis of the
transcriptome of HeLa-NICDdeltae-GFP [45] depleted for
EXT1 or FBXW7. We identified 479 mRNAs co-regulated
by both EXT1 and FBXW7, which represent more than
30 % of FBXW7 targets (Fig. 6a). GO analysis of these
EXT1/FBXW7 co-regulated genes finally indicated a
significant enrichment in genes encoding for kinases in-
cluding cyclin-dependent and MAP kinases (Fig. 6c and
Additional file 1: Tables S6). Together, these results sug-
gest that EXT1 is functionally linked to FBXW7, probably
through priming kinases and substrates such as Notch1
towards proteasomal degradation.

Conclusion
The sequencing of different cancer genomes allows identi-
fication and characterization of mutated genes in cancer
samples. However, the development of genome-based
therapies requires greater knowledge of the specific driver
genes implicated in diverse cancer types and subtypes. In
this study, we have analyzed mutated genes found in ALL
samples collected in the Sanger COSMIC database. We
proposed a list of genes more likely involved in ALL by
combining the frequency of mutations in ALL samples,
the number and pattern of distinct mutations, and the
interconnectivity between their products that determine
specific affected signaling pathways. We finally propose
that novel ALL-gene candidates can be identified based
on their functional association with well-known cancer
genes. Finally, we demonstrated that EXT1, a tumor sup-
pressor not previously linked to ALL, is involved in the

regulation of the NOTCH pathway trough its dual inter-
action with NOTCH1 and FBXW7.

Additional files

Additional file 1: Supplementary Tables. (XLSX 1285 kb)

Additional file 2: Figure S1. Distribution of mutations in ALL patients
for NOTCH1, FLT3 and FBXW7. Schematic representation for each protein and
its domains, the number of ALL samples with mutations localizations and its
percentage for each protein are represented above each domain. Notch1
domains: Epidermal growth factor repeats (EGF repeats), Lin12 and Notch
repeats (LNR), heterodimerization domain (HD), transmembrane domain (TD),
RBP-Jk-associated module (RAM), ankyrin repeats (ANK), transactivation domain
(TAD), proline, glutamic acid, serine, threonine-rich domain (PEST). FLT3
domains: extracellular domain (EC), transmembrane domain (TM),
juxtamembrane (JM), amino-terminal and carboxy-terminal kinase
domains (TK1 and TK2 respectively), kinase domain (K1), (STK). FBXW7
domains: tryptophan-aspartic acid 40 repeat (WD). (EPS 781 kb)

Additional file 3: Figure S3. (a) EXT1 depletion promotes NOTCH1
transcriptional activity. (a) Luciferase reporter assay using TP1-luciferase
construct in HEK293 cell lines transfected with EXT1 siRNA or control
siRNA as indicated. The relative luciferase values are normalized using a
Renilla luciferase construct. Knock-down of EXT1 was analysed by qPCR.
(b) HEK293 cells were transfected with siRNA for EXT1 or a siRNA control
using calcium phosphate. Twenty-four hours post-transfection cells were
transfected with NICD-Flag expressing plasmid as indicated, and after 24 h
lysates analyzed by western blot using anti-Flag M2 antibody. Knock-down of
EXT1 was analyzed by qPCR. (c) HeLaNotch1ΔE-eGFP cells were transfected
with EXT1 siRNA or control siRNA as indicated. Forty two hours pot-
transfection, cells were treated with proteasomal inhibitor MG132 for 6 h and
lysates were analyzed by western blot using a NICD antibody. Relative mRNA
expression levels of EXT1 analyzed by qPCR. (d) HeLaNotch1ΔE-eGFP
cells were transfected with EXT1-YFP expressing plasmid as indicated.
Eighteen hours post transfection, cells were treated with proteasomal
inhibitor MG132 for 6 h and lysates were analyzed by western blot
using a NICD antibody. (EPS 3297 kb)

Additional file 4: Figure S2. EXT1 inhibits Notch-1 transcriptional
activation. (a) Luciferase reporter assay using TP1-luciferase construct in
HEK293 and HeLa NotchΔE-eGFP cell lines transfected with PSG5C control
plasmid, NICD or EXT1 constructs as indicated. The relative luciferase
values are normalized using a Renilla luciferase construct. (b) Luciferase
reporter assay using Gal4-luciferase construct in U2OS N1-Gal4 cell line
transfected with PSG5C control plasmid or EXT1 construct and co-
cultured with K562 control cells or K562 cells expressing Notch ligand
DLL4 as indicated. Data represent the means ± SEs of three independent
experiments, each performed in triplicate (EPS 752 kb)

Additional file 5: Figure S4. EXT1 reduces NOTCH1 levels in
HelaNotch1ΔEeGFP cells. Confocal images of HeLaNotch1ΔE-eGFP cells
transfected with EXT1-mCherry during time—lapse experiment. Green
and red labeling corresponds to NOTCH1-GFP and EXT1-mCherry pro-
teins localizations, respectively. Arrows indicate cells in which overexpres-
sion of EXT1 induced a decrease in GFP fluorescence. (PDF 6860 kb)
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