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Abstract

Background: Early detection of oral squamous cell carcinomas (OSCCs) is urgently needed to improve the
prognosis and quality of life (QOL) of patients. Oral leukoplakias (OLs), known as the most common premalignant
lesions in the oral cavity, often precede OSCCs. Especially, OLs with dysplasia are known to have a high risk of
malignant transformation. Here, we searched for the promoter methylation characteristic of high-risk OLs.

Methods: To identify methylation-silenced genes, a combined analysis of methylated DNA immunoprecipitation
(MeDIP) — CpG island (CGlI) microarray analysis and expression microarray analysis after treatment with a
demethylating agent was performed in two OSCC cell lines (Ca9-22 and HSC-2). The methylation statuses of each

gene were examined by methylation-specific PCR.

Results: A total of 52 genes were identified as candidates for methylation-silenced genes in Ca9-22 or HSC-2. The
promoter regions of 13 genes among the 15 genes randomly selected for further analysis were confirmed to be
methylated in one or more of five cell lines. In OSCC tissues (n = 26), 8 of the 13 genes, TSPYL5, EGFLAM, CLDNT]T,
NKX2-3, RBP4, CMTM3, TRPC4, and MAP6, were methylated. In OL tissues (n = 24), seven of the eight genes, except
for EGFLAM, were found to be methylated in their promoter regions. There were significantly greater numbers of
methylated genes in OLs with dysplasia than in those without dysplasia (p < 0.0001).

Conclusions: OLs at high risk for malignant transformation were associated with aberrant promoter methylation of

multiple genes.
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Background

Oral cancer is a major public health problem worldwide,
and OSCC is the most common type of oral cancer. The
survival rates of patients with OSCCs have remained
largely unchanged for decades, with a 5-year survival
rate of around 50 % despite advances in therapeutics [1—
4]. In addition to that, even when patients with advanced
OSCCs survive after surgery, large tissue defects of the
maxillofacial region pose a serious problem. Therefore,
early and accurate detection of OSCCs is important not

* Correspondence: abem-ora@h.u-tokyo.ac.jp

'Department of Oral & Maxillofacial Surgery, University of Tokyo Hospital,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

“Division for Health Service Promotion, University of Tokyo, Tokyo, Japan
Full list of author information is available at the end of the article

( BioMed Central

only to improve the survival rate of patients with OSCCs
but also to maintain good QOL of the patients.

For the early detection of OSCCs, a finding of oral
premalignant lesions with high-risk malignant trans-
formation is important. OL is the most common prema-
lignant lesion in the oral cavity, and OLs often precede
OSCCs. The transition frequency from OLs into OSCCs
ranges widely, from 0.13 % to 36.4 % [5]. Histologically,
the presence of dysplasia is often associated with the de-
velopment of OSCCs [6-8]. However, the molecular
mechanism underlying malignant transformation of OLs
has not been elucidated yet, and molecular markers to
identify patients at higher risk of developing OSCC have
not been isolated [9].
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As a molecular marker to identify lesions with a higher
risk of malignant transformation, DNA methylation
might be useful [10-14]. The accumulation of aberrant
methylation in non-cancerous lesions, such as gastric
mucosae with Helicobacter pylori infection, produces
epigenetic field defects leading to malignant transform-
ation [15, 16]. In the field of oral malignancy, although
many reports describe methylation silencing in OSCCs
[17-21], few reports focus on methylation in OLs, espe-
cially OLs with a high-risk of malignant transformation
[18, 22-26].

In this study, we aimed to identify aberrant pro-
moter methylation in OLs at high risk of malignant
transformation.

Methods

Cell lines, tissue samples, and DNA extraction

Human OSCC cell lines (Ca9-22, HSC-2, HO-1-N-1,
HSC-3 and SCC-4) were purchased from the Human
Science Research Resources Bank (HSRRB, Osaka,
Japan). A total of 24 OL tissues (average age, 64.0 years
[range, 38—84 years]; 10 male and 14 female) and a total
of 26 OSCC tissues (average age, 64.6 years [range, 42—
89 years]; 17 male and 9 female) were obtained from pa-
tients who underwent biopsies or operations at the Uni-
versity of Tokyo Hospital between Dec. 2009 and Nov.
2011. The OSCCs were graded according to the Union
for International Cancer Control (UICC)’s TNM classifi-
cation. OL was defined as “a predominantly white lesion
of the oral mucosa that can not be characterized as any
other definable lesion”[27]. The presence or absence of
dysplasia in OLs is determined by the degree of cellular
abnormality above the epithelial basement membrane as
originally defined by the World Health Organisation
(WHO) [28]. Normal oral mucosae were obtained from
16 healthy volunteers. Samples were stored in RNAlater
(Applied Biosystems, Foster City, CA, USA) at -80 °C
until the extraction of genomic DNA. Genomic DNA
was extracted by the phenol-chloroform method. This
research was approved by the research ethics committee
of Graduate School of Medicine and Faculty of Medi-
cine, The University of Tokyo, approval #2819-(1), and
informed consent was obtained from all patients and
volunteers. Each patient’s tobacco smoking history was
obtained in an interview.

5-Aza-2'-deoxycytidine treatment

Ca9-22 and HSC-2 cells were seeded at a density of 2 x
10° cells /10 cm plate on day 0. For 5-aza-2'-deoxycyti-
dine (5-aza-dC; Sigma, St Louis, MO, USA) treatment,
the cells were exposed to medium containing 3-pM 5-
aza-dC or control medium for 24 h on days 1 and 3, and
then harvested on day 5. The doses of 5-aza-dC were
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adjusted so that the growth of the treated cells was sup-
pressed to 40—80 % that of nontreated cells.

Methylated DNA immunoprecipitation (MeDIP) — CpG
island (CGI) microarray analysis

MeDIP - CGI microarray analysis was performed as pre-
viously described [29, 30]. Briefly, 5 pg of genomic DNA
was immunoprecipitated with an anti-5-methylcytidine
antibody (Diagnode, Liége, Belgium), and the precipi-
tated DNA and input DNA were labeled with Cy5 and
Cy3, respectively. A human CGI oligonucleotide micro-
array (Agilent Technologies, Santa Clara, CA, USA) was
hybridized with the labeled probes and scanned with a
G2565BA microarray scanner (Agilent Technologies).
Scanned data were processed with Feature Extraction
9.1 and ChIP Analytics 1.3 software (Agilent Technolo-
gies). The signal of the probe was converted into a “Me
value,” which represents the methylation level as a value
from 0 (unmethylated) to 1 (methylated) [29]. Differen-
tially methylated regions were detected by a comparison
of the Me values of the two samples. When three or
more consecutive probes in a locus showed differences
in the Me value larger than 0.6, the locus was considered
to have different methylation statuses. Promoter regions
of three genes (HOXA11, NPY, and UCHLI) reported as
frequently methylated in multiple cancers, including
OSCCs, were used as a methylated control [31-33]. Pro-
moter regions of three genes (ACTB, B2M, and GAPDH)
known as housekeeping genes were used as unmethy-
lated control.

Gene expression analysis by oligonucleotide microarray
Expression microarray analysis was performed by a Gen-
eChip Human Genome U133 Plus 2.0 expression micro-
array (Affymetrix, Santa Clara, CA, USA). From 8 pg of
total RNA, first-strand c¢cDNA was synthesized with
SuperScript III reverse transcriptase (Invitrogen) and
T7-(dT)24 primer (Amersham Biosciences, Little Chal-
font, UK). Double-stranded cDNA was then synthesized,
and biotin-labeled cRNA was synthesized using a Bio-
Array HighYield RNA transcript-labeling kit (Enzo Life
Sciences, Farmingdale, NY, USA). Twenty micrograms
of labeled cRNA was fragmented and hybridized to the
GeneChip oligonucleotide microarray with a GeneChip
hybridization control kit. The microarray was stained
and scanned according to the Affymetrix protocol. The
scanned data were processed using GeneChip operating
software 1.4. The signal intensity of each probe was nor-
malized so that the average signal intensity of all the
probes on a microarray would be 500. The average signal
intensity of all the probes for a gene was used as its tran-
scription level. Genes were classified into those with
high (>1000), moderate (250—1000), or low (<250) tran-
scriptions according to their signal intensities [30].
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Sodium bisulfite modification and methylation-specific
PCR (MSP)

Sodium bisulfite treatment was performed as described
previously [29] using 500 ng of DNA digested with
BamHI (Toyobo, Tokyo, Japan) and suspended in 20 pl
of Tris-EDTA (TE) buffer. For MSP, 1 pl of solution was
used for PCR reaction with primers specific to methyl-
ated (Additional file 1: Table S1) and with primers that
targeted the Alu repeat sequence; the latter were used as
a control of the amount of bisulfite-treated DNA [34].
Fully methylated DNA was prepared by methylating gen-
omic DNA using SssI-methylase (New England Biolabs,
Beverly, MA, USA). Fully unmethylated DNA was pre-
pared by amplifying genomic DNA with phi29 DNA
polymerase (GenomiPhi DNA Amplification kit; GE
Healthcare UK, Buckinghamshire, UK).

Statistical analysis

Associations between methylation status and various
clinical parameters were evaluated by Fisher’s exact test
(two-sided). SPSS Statistics (IBM Corporation, Somers,
NY, USA) software version 21.0 (SPSS Inc., Chicago, IL,
USA) was used for analysis. P values < 0.05 were consid-
ered to indicate significance.

Results

Chemical genomic screening of methylation-silenced
genes in OSCC cell lines

To identify methylation-silenced genes in OSCC, we
took a combined approach of MeDIP-CGI microarray
analysis in two OSCC cell lines (Ca9-22, HSC-2) and
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expression microarray analysis before and after treatment
of the two cell lines with a demethylating agent, 5-aza-dC.
In the Ca9-22 cell line, the MeDIP — CGI microarray
showed that 797 promoter CGIs were hypermethylated,
and the expression microarray data showed that the ex-
pression levels of 675 genes were upregulated three-fold
or more after 5-aza-dC treatment. By integrating the
MeDIP - CGI microarray data and the expression micro-
array data, 50 genes were indicated to be methylation-
silenced in the Ca9-22 cell line (Fig. 1). In the HSC-2 cell
line, the MeDIP — CGI microarray showed that 513 pro-
moter CGIs were hypermethylated, and the expression
microarray data showed that the expression levels of 212
genes were upregulated three-fold or more after 5-aza-dC
treatment. By integrating the MeDIP — CGI microarray
data and the expression microarray data, eight genes were
indicated to be methylation-silenced in the HSC-2 cell line
(Fig. 1). After duplicates were removed, 52 genes were in-
dicated to be methylation-silenced in either OSCC cell
line. Of these 52 genes, 15 genes were “randomly” selected
for further analysis (Fig. 1).

Methylation profiles of the 15 promoter CGls in OSCC cell
lines

The selected 15 genes were analyzed in five OSCC cell
lines by MSP. Of the 15 genes, 13 were methylated in
one or more of these cell lines (Fig. 2a) and selected for
further analysis. Representatively, a promoter CGI of
TSPYLS5 (Testis-specific protein, Y-encoded-like 5) was
methylated in all five cell lines (Fig. 2b). A promoter
CGI of TRPC4 (Transient receptor potential cation

Ca9-22

5-Aza-dC - cDNA
microarray

MeDIP - CGI
microarray

HSC-2
MeDIP - CGl 5-Aza-dC - cDNA
microarray microarray

# of methylation-silenced
genes in either cell line

52 genes, 15 genes were randomly selected for further analysis

52 (6 overlapped)

# of analyzed genes 15

Fig. 1 Isolation of methylation-silenced genes in two OSCC cell lines. MeDIP-CGI microarray analysis showed that 797 and 513 promoter CGls
were hypermethylated in Ca9-22 and HSC-2, respectively. 5-aza-dC — cDNA microarray analysis showed that the expression levels of 675 and 212
genes were upregulated in Ca9-22 and HSC-2, respectively. By integrating these data, 50 and 8 genes were indicated methylation-silenced in
Ca9-22 and HSC-2, respectively. After duplicates were removed, 52 genes were indicated to be methylation-silenced in either cell line. Of these
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Fig. 2 Methylation profiles of 15 promoter CGls in five OSCC cell lines. a Promoter CGls of 13 of the 15 genes were methylated in one or more of
the five OSCC cell lines (Ca9-22, HSC-2, HO-1-N-1, HSC-3 and SCC-4). Closed box, methylated DNA detected; open box, methylated DNA not
detected. b Representative results of MSP in the five OSCC cell lines are shown. Methylated DNA-specific primer sets were used to detect aberrant
DNA methylation. Primer sets that target the Alu repeat sequence were used as a control of the amount of bisulfite-treated DNA. M-cont and

channel, subfamily C, member 4) was methylated in
three cell lines.

Methylation profile of the 13 promoter CGls in OSCC
tissues
Promoter methylation of genes expressed in normal oral
mucosae can affect gene function, and is potentially im-
portant for malignant transformation. On the other hand,
promoter methylation of genes unexpressed in normal
oral mucosae is considered to be passenger methylation
during OSCC carcinogenesis [34]. Therefore, the expres-
sion levels of the 13 methylated genes in OSCC cell lines
were investigated in normal oral mucosae using the GEO
database (GEO database; http://www.ncbi.nlm.nih.gov/
geo/). Eight of those genes - CMTM3 (CKLF-like MAR-
VEL transmembrane domain containing 3), RBP4 (Ret-
inol-binding protein 4), NKX2-3 (NK2 homeobox 3),
TSPYLS, CLDNI1 (Claudin 11), EGFLAM (EGF-like, fi-
bronectin type Il and laminin G domain), CRIP1 (Cyst-
eine-rich protein 1), and EHD3 (EH-domain containing 3)
—were expressed in normal oral mucosae (GSM447398,
GSM447399, GSM447408, GSM447404, GSM447406 and
GSM447407 in the GEO database). Five of the 13 genes -
TRPC4, MAP6 (Microtubule-associated protein 6), DTX1
(Deltex homolog 1), ST8SIAL (ST8 alpha-N-acetyl-neura-
minide alpha-2, 8-sialyltransferase 1), and MICB (MHC
class 1 polypeptide-related sequence B) — were unexpressed
in normal oral mucosae (Fig. 3).

Of the eight expressed genes, six (CMTMS3, RBP4,
NKX2-3, TSPYLS5, CLDNI1, and EGFLAM) showed

promoter methylation in 10, 9, 8, 8, 7, and 5 of 26 OSCC
tissues, respectively. Two of the five unexpressed genes
(TRPC4 and MAP6) showed promoter methylation in 11
and 8 of the 26 OSCC tissues, respectively (Fig. 3).

Clinicopathological analysis was performed to examine
the association between the methylation status of the eight
identified genes and the clinical parameters. The cate-
gorizations of cases for each parameter are shown in
Additional file 2: Table S2. The methylation status of
TSPYLS5 was inversely associated with the differentiation
levels of OSCCs (p <0.01) and was prone to be methyl-
ated in the tongue rather than in the other sites (p <
0.05). However, none of the other genes showed an as-
sociation between methylation status and age (above
average or below average), sex (male or female), stage
(early or advanced), or smoking history (presence or
absence).

Methylation profile of the eight promoter CGls in OL
tissues and identification of aberrant methylation in OLs
with dysplasia

The methylation statuses of the eight (six expressed and
two unexpressed) genes that showed promoter methyla-
tion in OSCC tissues were examined in 13 and 11 OLs
with- and without dysplasia, respectively (Fig. 4a). Of the
six expressed genes, five (CMTM3, RBP4, NKX2-3,
TSPYLS, and CLDNI11) were methylated in 6, 3, 3, 1,
and 1 OL(s), respectively. The two unexpressed genes
(TRPC4 and MAP6) were methylated in four and three
OLs, respectively.
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Fig. 3 Methylation profiles of the 13 promoter CGls in OSCC tissues. The methylation statuses of the 13 genes showing promoter methylation in
the OSCC cell lines were examined in 16 normal oral mucosae and 26 OSCC tissues. Eight genes were expressed in normal oral mucosae, six of
which showed promoter methylation in the OSCC tissues. Five genes were unexpressed in normal oral mucosae, two of which were methylated
in their promoter regions in the OSCC tissues. Closed box, methylated DNA detected; open box, methylated DNA not detected
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Fig. 4 Methylation profiles of the eight promoter CGls in OL tissues and identification of aberrant methylation in OLs with dysplasia. a The
methylation statuses of the eight genes showing promoter methylation in OSCC tissues were examined in 24 OL tissues. Six and two of the eight
genes were expressed and unexpressed, respectively, in normal oral mucosae. Thirteen and 11 cases were OLs with and without dysplasia,
respectively. The OLs with dysplasia were categorized into mild (n = 5), moderate (n = 6), and severe grade (n = 2). Five of the six expressed genes
and both of the unexpressed genes showed promoter methylation in OL(s) with dysplasia. b When the number of methylated genes was
summed and compared between OLs with and without dysplasia, the methylation status showed a significant association with the presence of
dysplasia (p < 0.0001)




Abe et al. BMC Cancer (2016) 16:350

When the number of methylated genes in an OL was
compared between OLs with and without dysplasia, it was
found that OLs with dysplasia had significantly more meth-
ylated genes (Fig. 4b, p < 0.0001). Only one OL tissue with-
out dysplasia, diagnosed as an acanthosis, showed an
aberrant promoter methylation. As for individual genes,
TRPC4 methylation was associated with the presence of
dysplasia in OLs (p = 0.04). The OLs with dysplasia were
categorized into mild (n =5), moderate (1 =6), and severe
grade (n = 2), however any association between the grade of
dysplasia and methylation status of the identified genes was
not observed (Fig. 4a).

Clinicopathological analysis was performed to examine
the association between the methylation status of each
of the seven genes and the clinical parameters. The cate-
gorizations of cases for each parameter are shown in
Additional file 2: Table S2. None of the genes showed an
association with age, sex, stage, site, or smoking history.

Discussion

We identified seven genes aberrantly methylated in their
promoter regions not only in OSCCs but also in OLs.
The number of methylated genes was significantly asso-
ciated with the presence of dysplasia in OLs, which is
known to be associated with a high risk of malignant
transformation into OSCCs [7, 8]. This result indicates
that accumulation of aberrant methylation might be as-
sociated with the malignant transformation of OLs, Ab-
errant promoter methylation is known to accumulate
also in other organs, in high-risk tissues such as gastric
mucosae with Helicobacter pylori infection, in liver tis-
sue at the precancerous stage, in colonic mucosae with
ulcerative colitis, and in esophageal mucosae [15, 16,
34-38]. These previous reports support the hypothesis
that the accumulation of aberrant methylation in OLs
produces epigenetic field defects leading to malignant
transformation.

In addition to the methylation of multiple genes, the
methylation silencing of a specific gene may be function-
ally involved in malignant transformation. The five genes
methylation-silenced in OLs (TSPYLS5, CMTM3, NKX2-3,
CLDN11, and RBP4) were expressed in normal oral mu-
cosae, which indicates the functional importance of these
genes [34]. Especially, TSPYL5 was most frequently meth-
ylated in OLs and was associated with differentiation
levels of OSCCs (p <0.01). The methylation silencing of
TSPYLS5 has been reported in esophageal cancers, gastric
cancers and malignant gliomas [33, 39, 40], and TSPYLS
has been suggested to be a tumor suppressor gene [40].
Furthermore, TSPYLS is located on chromosome 8q22,
which shows loss of heterozygosity (LOH) in OSCCs with
high frequency [41].

In histopathological diagnosis, the presence of dysplasia,
remains the golden standard for predicting the risk of

Page 6 of 8

cancerization in oral premalignant lesions [42]. However,
this invasive approach cannot be repeated frequently be-
cause of its poor acceptance by patients. Furthermore, a
diagnosis of dysplasia is also subject to the experience of a
pathologist, and the consensus among pathologists is still
poor [43]. On the other hand, quantitative DNA methyla-
tion analysis is currently available and is considered to be
objective. Moreover, sufficient numbers of cells for methy-
lation analysis can be obtained by non-invasive procedures
[44], such as scraping of the oral mucosae. Thus, the risk
characterization using aberrant DNA methylation in pa-
tients with OLs is considered clinically feasible. Accord-
ingly, the accumulation of identified aberrant methylation
is potentially useful as a risk marker of malignant trans-
formation from OLs to OSCCs.

We identified a novel promoter methylation associated
with the risk of malignant transformation of OLs. How-
ever, the number of OL samples was limited here.
Therefore, it is necessary to validate the association by
another larger population.

Conclusions

Here, we identified aberrant promoter methylation of mul-
tiple genes in high-risk OLs. This result demonstrates that
the accumulation of aberrant methylation in oral premalig-
nant lesions produces an epigenetic field of cancerization.
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