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Abstract

Background: Gastric cancer is the fourth most common cancer and the second most deadly cancer worldwide.
Study on molecular mechanisms of carcinogenesis will play a significant role in diagnosing and treating gastric
cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis
and help to identify the potential biomarkers for the early diagnosis of gastric cancer.

Methods: In this study, we reported the metabolic profiling of tissue samples on a large cohort of human gastric
cancer subjects (n = 125) and normal controls (n = 54) based on 1H nuclear magnetic resonance (1H NMR) together
with multivariate statistical analyses (PCA, PLS-DA, OPLS-DA and ROC curve).

Results: The OPLS-DA model showed adequate discrimination between cancer tissues and normal controls, and
meanwhile, the model excellently discriminated the stage-related of tissue samples (stage I, 30; stage II, 46; stage III,
37; stage IV, 12) and normal controls. A total of 48 endogenous distinguishing metabolites (VIP > 1 and p < 0.05)
were identified, 13 of which were changed with the progression of gastric cancer. These modified metabolites
revealed disturbance of glycolysis, glutaminolysis, TCA, amino acids and choline metabolism, which were correlated
with the occurrence and development of human gastric cancer. The receiver operating characteristic diagnostic AUC
of OPLS-DA model between cancer tissues and normal controls was 0.945. And the ROC curves among different stages
cancer subjects and normal controls were gradually improved, the corresponding AUC values were 0.952, 0.994, 0.998
and 0.999, demonstrating the robust diagnostic power of this metabolic profiling approach.

Conclusion: As far as we know, the present study firstly identified the differential metabolites in various stages
of gastric cancer tissues. And the AUC values were relatively high. So these results suggest that the metabolic
profiling of gastric cancer tissues has great potential in detecting this disease and helping to understand its
underlying metabolic mechanisms.
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Background
Gastric cancer is the fourth most common cancer and
the second most common cause of cancer-related death
worldwide [1, 2]; it is particularly prevalent in Asian
countries, such as China [3, 4]. At present, no effective
treatment is available for this disease, and identification

of early stage gastric cancer is difficult because of its
relatively asymptomatic nature in the early stage and the
lack of adequate screening methods. So many patients
with gastric cancer are diagnosed at an advanced stage,
and they have a high rate of recurrence after resection
and a poor survival rate [5, 6]. The 5 years survival rate
for early gastric cancer confined to the mucosal or sub-
mucosal layer is above 90 % after surgical management
[7, 8], yet the 5 years survival rate for advanced gastric
cancer is just less than 10 %. Currently, endoscopy is
widely used for early screening [9], but this methodology
involves invasive procedures and its cost remains disput-
able. Despite its inconsistent diagnostic efficiency, this
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stems from variations in the skill and experience of the
endoscopist and pathologist. To identify the biomarkers
at the early diagnosis of human gastric cancer and im-
prove the survival rate of gastric cancer, efforts have
been focused on the identification of patients with poor
prognosis and new therapeutic modalities based on
molecular mechanisms [10].
Metabolomics, which is the end point of the “-omics”

cascade and therefore the last step before phenotype, has
been a recently developed technology for the detection,
identification and quantification of low molecular weight
metabolites that are involved in the metabolism of an or-
ganism at a specified time under specific environmental
conditions [11, 12]. Recent technological advances in nu-
clear magnetic resonance (NMR) spectroscopy and mass
spectrometry (MS) have also further improved the sensi-
tivity and spectral resolution for cancer metabolic study
[13]. Especially NMR has some advantages over MS for
metabolic application, including non-destructive analysis,
the relative ease of sample preparation, the potential to
identify a broad range of compounds and the capacity for
the supply of structural information for unknown com-
pounds [14, 15]. In recent years, metabolomics has been
used to characterize the metabolic perturbation and iden-
tify potential biomarkers in various cancers, such as lung
cancer [16], renal cancer [17], colorectal cancer [18]. To
our knowledge, only a few reports on metabolic profiling
of gastric cancer tissue have been published, and these re-
ports only involved a few patients [19], which cannot pro-
vide accurate and comprehensive information of gastric
cancer metabolites. Moreover, none of the reports system-
atically investigated the discriminating metabolites that
involved in the different pathological stages of gastric can-
cer. Therefore, performing metabolic profiling between
the different stages of cancer tissues and normal controls
will be valuable in aiding diagnosis and understanding of
the molecular mechanism involved.
In the present study, we applied 1H-NMR to profile the

human gastric cancer tissues and normal controls. The
metabolic alterations were characterized by orthogonal
partial least-squares discriminant analysis (OPLS-DA). On
the basis of results, we identified a total of 48 differential
metabolites. These modified metabolites potentially re-
vealed disturbance of energy, amino acids, ketone body
and choline metabolism in human gastric cancer. We also
intended to gain knowledge of potential metabolic bio-
markers associated with gastric cancer, which can be used
for early diagnosis, staging and therapeutic strategies.

Methods
Sample collection and chemical regents
125 gastric cancer patients were recruited during 2012
to 2013, a total of 179 surgical specimens were collected.
Among them, 108 cases belonged to the matched tumor

and normal control, which were taken at least 5–10 cm
away from the edge of a tumor from the same patient
(n = 54). The tissues dissected by a senior pathologist in
the operating room were immediately frozen in liquid
nitrogen and stored at −80 °C.
The patients enrolled in this study did not receive any

neoadjuvant chemotherapy or radiation therapy before sur-
gical treatment. The pathological diagnosis was confirmed
in routine histopathological H & E stained specimens and
categorized according to postoperative classification of
malignant tumors (TNM): stage I, 30 patients; stage II, 46
patients; stage III, 37 patients; stage IV, 12 patients.
Deuterium water (99.8 % D) was purchased from CIL

(Cambridge Isotope Laboratories, USA). Trimethylsilyl-
propionic acid-d4 sodium salt (TSP) was purchased from
Sigma Aldrich (USA). HPLC-grade methanol was pur-
chased from Fisher Scientific (USA). HPLC-grade
chloroform was purchased from Scharlau (Spain). All of
the other chemicals employed in this study were of
analytic pure and culture grade.

Sample preparation for NMR analysis
To extract the metabolites of interest (e.g., carbohy-
drates, lipids, amino acids and other small metabolites),
the 150–400 mg of frozen tissue samples were placed
into a 1.5 mL eppendorf vials and weighed. Methanol
(4 ml per gram of tissue) and double distilled water
(0.85 ml per gram of tissue) were added and the mix-
tures were vortexed for 1 min. Chloroform (2 ml per
gram of tissue) was then added. The samples were kept
on ice for 30 min to extract metabolites, followed by
centrifugation at 1000 g for 30 min at 4 °C. This proced-
ure should separated suspension into three phases: the
water phase at the top, the denatured proteins phase in
the middle, and the lipid phase at the bottom. The upper
aqueous phases of each sample were transferred into dif-
ferently new 1.5 ml eppendorf vials and evaporated to
dryness under a stream of nitrogen. The residue was
redissolved with 580 μl of D2O, containing 30 μM phos-
phate buffer solution (PBS, pH = 7.4) and 0.01 mg/ml so-
dium (3-trimethylsilyl)-2,2,3, 3-tetradeuteriopropionate
(TSP), which provided the deuterium lock signal for the
NMR spectrometer and the chemical shift reference
(δ0.0), respectively. After centrifugation at 12,000 g for
5 min at 4 °C, the 550 μl supernatant was transferred
into a 5-mm NMR tube for NMR spectroscopy [20].

1H-NMR spectroscopic analysis
The 1H NMR spectra of all tissue samples were acquired
on a Bruker Avance II 600 spectrometer operating (Bruker
Biospin, Germany) at 600.13 MHz and a temperature of
300 K. A one-dimensional spectrum was acquired by using
a standard (1D) Carr-Purcell-Meiboom-Gill (CPMG) pulse
sequence to suppress broad signals from bigger molecules,

Wang et al. BMC Cancer  (2016) 16:371 Page 2 of 12



such as lipids and proteins. Sixty-four free induction decays
(FIDs) were collected into 64 K data points with a spectral
width of 12,335.5Hz spectral, an acquisition time of 2.66 s,
and a total pulse recycle delay of 7.66 s. The FIDs were
weighted by a Gaussian function with line broadening fac-
tor of 0.3 Hz, Gaussian maximum position 0.1, prior to
Fourier transformation [21].

1H-NMR spectral data processing
To reduce the complexity of the NMR data and facilitate
the pattern recognition, the raw NMR data (FIDs) were
manually Fourier transformed using MestReNova-6.1.1-
6384 software before data processing. The 1H NMR
spectra of all tissue samples were phase adjusted and
baseline corrected after referencing to TSP resonance at
δ0.0. The spectra ranging from 9.5 to 0.5 ppm was
subsequently divided into 4500 integral segments corre-
sponding to 0.002 ppm. The regions 7.84-7.62 ppm
(chloroform),4.94–4.66 ppm (water) and 3.37–3.34 ppm
(methanol) were removed. Moreover, the integrated data
were normalized before pattern recognition analysis to
eliminate the dilution or bulk mass differences among
samples due to the different weight of tissue, and to give
the same total integration value for each spectra.

Multivariate statistical analysis
OPLS-DA was performed using standard procedures for
multivariate statistical analysis in statistical software
SIMCA-P + 11 (Umetrics, AB). To separate the tumor
samples from the normal controls, the goodness-of fit
parameter (R2) and the goodness of prediction param-
eter (Q2) values were used to assess the quality of the
models, respectively. The PLS-DA (partial least-squares
discriminant analysis) models were cross-validated by a
permutation analysis (200 times) [22], and the resulting
R2 and Q2 values were calculated. The default 7-round
cross-validation was applied with 1/seventh of the sam-
ples being excluded from the mathematical model in
each round, in order to guard against overfitting. The y
variables as specific model coefficients locate the NMR
variables. The model coefficients were then back-
calculated from the coefficients incorporating the weight
of the variables in order to enhance interpretability of
the model: in the coefficient plot, the intensity corre-
sponds to the mean-centered model (variance) and the
color-scale derives from the unit variance-scaled model
(correlation). The coefficient plots were generated with
Matlab scripts with some in-house modifications and
were color-coded with the absolute value of coefficients
(r) [23]. The differentiation performance (specificity and
sensitivity) was assessed by the area under the curve
(AUC) of the receiver operating characteristic (ROC)
curves. The ROC analysis was also performed to validate
the robustness of the OPLS-DA models using the

predicted Y values of samples of internal (seven-fold) and
external validation sets.
To identify the interesting spectrum peaks between

tumor tissues and normal controls, the variable import-
ance in the projection (VIP) values of all peaks from
OPLS-DA models were analyzed and taken as a coeffi-
cient, and variable with VIP > 1 was considered relevant
for group discrimination. Moreover, unpaired Student’s
t-test (p < 0.05) to the chemical shifts was also used to
assess the significance of each metabolite. Besides, false-
discovery rate (FDR) and adjust p-value for multiple
testing were also supplied. Only both meeting VIP > 1
and p < 0.05, the metabolite was identified as distinguish-
ing one. The corresponding chemical shift and multiplicity
of the metabolites were identified by comparisons with
the previous literatures and the Human Metabolome
Database (http://www.hmdb.ca/).

Results
Study population
We investigated a total of 179 tissue samples, 125 of
which were gastric cancer tissue (91 males and 34 fe-
males; age range, 28–86 years; median age, 60 years),
and 54 of which were normal controls (39 males and 15
females; age range, 28–80 years; median age, 61 years).
Among them, 108 cases belonged to the matched tumor
and normal control from the same patient (n = 54). The
clinicopathological characteristics of gastric cancer pa-
tients were summarized in Table 1. As shown in Table 1,
the stage of all tissue specimens was determined accord-
ing with the American Joint Committee on Cancer
(AJCC) for gastric cancer: stage I, 30 patients; stage II,
46 patients; stage III, 37 patients; stage IV, 12 patients.
All patients were subjected to surgical resection of the
primary tumor and dissection of lymph nodes.

1H NMR metabolic profiling of sample
We obtained NMR spectrum of the tissue samples from
gastric cancer and normal control. The representative
1H NMR spectrum of aqueous phase extracts of gastric
cancer and normal control were showed (Fig. 1). The
standard one-dimension spectrum gave an overview of
all metabolites. The major spectrum can be assigned to
specific metabolites by comparing their chemical shifts
and spectral peak multiplicities with literature data and
spectra of standards acquired in Human Metabolome
Database (http://www.hmdb.ca/). Inspection of Fig. 1
showed clear visible differences between gastric cancer
(Fig. 1b) and normal control (Fig. 1a). As a result, a
series of changes of endogenous metabolite levels were
observed. The spectral region from 0.5 to 3.0 ppm in-
cluded some signals, such as leucine, valine, lactate, cit-
rulline, acetate, glutamine, glutathione, aspartate, acetic
acid. The region from 3.0 to 5.0 ppm contained many
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signals, including myo-inositol, choine, PC, lysine, glu-
cose, β-hydroxybutyrate, and so on. The certain signals
from 5.0 to 9.5 ppm were few, including glucose, uracil,
adenine and formate. These metabolites were known to
be involved in multiple biochemical processes, especially
in energy and amino acid metabolism [24, 25].

Multivariate statistical analysis of gastric cancer tissues
and normal controls
First, PCA (principal component analysis) was applied to
examine intrinsic variation between gastric cancer tissues
and normal controls after 1H NMR data normalization.

The PCA scores plot showed that cancer group and nor-
mal group samples were scattered into different regions
(Additional file 1). The majority samples were located in
95 % confidence interval. Therefore, all of samples were
used in the following analysis to ensure the maximum
information. Next, to enhance the separation of the two
groups, OPLS-DA was performed to minimize the pos-
sible contribution of intergroup variability. As shown in
Fig. 2a, OPLS-DA showed a good separation pattern be-
tween gastric cancer tissues (color blocks) and normal
controls (black triangles). Moreover, model parameters in
the permutation plot for the explained variation (R2 =
0.73) and the predictive capability (Q2 = 0.62) were signifi-
cantly high, demonstrating it was an excellent model and
showing high predictability values (Fig. 2b).
To validate the robustness of the OPLS-DA model in

discriminating cancer tissues from controls, ROC ana-
lysis was performed using the predicted Y values of
samples of internal (seven-fold) and external validation
sets based on OPLA-DA model. Area under the curve
(AUC) value of this model was 0.945 (Fig. 2c), which
showed that the OPLS-DA model gave a good diagnostic
value for gastric cancer. Of note, this diagnostic model
was just to identify the tissue metabolic biomarkers
rather than to replace the established histopathologic
diagnostic standard for gastric cancer.
Based on the NMR profiling, we totally identified 56

metabolites between gastric cancer tissues and normal
controls. To find out the main metabolites discriminat-
ing gastric cancer tissues from normal controls, the me-
tabolites (VIP < 1 or p > 0.05) were removed and the
significantly distinguishing metabolites according to
VIP > 1 and p < 0.05 were listed in Table 2. The OPLS-DA
loadings were colored according to the absolute value of
coefficients (Fig. 2d) and showed the significant class-
discriminating metabolites responsible for the clustering
patterns. Positive signals, corresponding to the up-
regulated metabolites in gastric cancer tissues in compari-
son to normal controls, were found for isoleucine, leucine,
valine, lactate, N-acetyl glycoprotein, O-acetyl glycoprotein,
succinate, glutamine, glutathione, TMAO, lysine and
serine. On the other hand, the negative signals indicated
the down-regulated metabolites in gastric cancer tissue, in-
cluding β-hydroxybutyrate, citrulline, acetate, methylamine,
phosphocreatine, creatine, ceatinine, acetic acid, choline,
phosphochline, myo-Inositol, glucose, dimethylglycine.

Multivariate statistical analysis between stage-related
gastric cancer tissues and normal controls
Performing metabolic profiling between various stages of
gastric cancer and normal controls will be valuable in
aiding accurate diagnosis and therapy and understanding
of the molecular mechanism involved. To our know-
ledge, this study was the first to show the differences of

Table 1 Clinical information for gastric cancer patients and
normal controls analyzed by 1H NMR

Gastricl cancer patients Normal controls

Number 125 54

Age (median, range) 60 28–86 61 28–80

Male/female ration 91/34 39/15

Histology Adenocarcinoma (120) ∕

NA (5)

Pathologic grade ∕

PD 74

MD 46

WD 0

NA 5

Cancer stage/Duke ∕

I/A (30) T1N0M0 (7)

T1N1M0 (4)

T2N0M0 (19)

II/B (46) T2N1M0 (5)

T3N0M0 (15)

T2N2M0 (1)

T3N1M0 (12)

T4aN0M0 (13)

III/C (37) T2N3M0 (3)

T3N2M0 (10)

T4aN1M0 (8)

T4aN2M0 (9)

T4aN3aM0 (1)

T4bN1M0 (4)

T4bN2M0 (2)

IV/D (12) T2N1M1 (1)

T3N1M1 (1)

T3N2M1 (4)

T3N3aM1 (2)

T4aN3aM1 (4)

PD poorly differentiated, MD moderately differentiated, WD well-differentiated,
NA not applicable
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Fig. 1 600 MHz representative 1H NMR spectra (δ9.5–δ0.5) of tissue samples. a means normal control, (b) means gastric cancer tissue

Fig. 2 Metabolic profiling between gastric cancer tissues and normal controls. a OPLS-DA scores plot between the gastric cancer tissues and normal
controls using 1H NMR. Black triangles represent normal controls, red blocks represent stage I of gastric cancer tissues, blue blocks represent stage II,
green blocks represent stage III, yellow blocks represent stage IV. b Statistical validation of the corresponding PLS-DA model using permutation analysis
(200 times). R2 is the explained variance, and Q2 is the predictive ability of the model. c ROC analysis was performed using the Y-predicted
value determined by the OPLS-DA model. AUC value of this OPLS-DA model was 0.945. d The color map showed the significance of metabolite
variations between the two classes. The color close to blue means the trend of metabolite change was smaller, The color close to red means the trend
of metabolite change is bigger. The color value represents the relative degree of metabolite changes. Peaks in the positive direction indicate
the increased metabolites in gastric cancer tissues in comparison to normal controls. Peaks in the negative direction indicate the decreased metabolites
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Table 2 Differential Metabolites derived from OPLS-DA model of 1H NMR analysis between gastric cancer patients and normal controls

Metabolites Chemical shift Mutiplicitya Gastric cancer vs Normal control

(ppm) VIPb FCc P Valued Adjust p value FDR

1 VLDL: CH3-(CH2) n- 0.892 br 1.15 −1.31 0.015 0.003 0.020

2 Isoleucine 0.942 t 2.35 1.12 0.000 0.000 0.000

1.014 d 3.05 1.37 0.000 0.000 0.000

3 Leucine 0.96 t 2.28 1.02 0.000 0.000 0.000

4 Valine 0.99 d 2.81 1.12 0.000 0.000 0.000

1.01 d 2.81 1.10 0.000 0.000 0.000

5 β-hydroxybutyrate 1.2 d 1.03 −1.31 0.002 0.007 0.003

4.16 d 2.27 −1.02 0.000 0.000 0.000

6 Lactate 1.33 d 3.62 1.22 0.000 0.000 0.000

4.11 q 2.14 1.16 0.000 0.000 0.000

7 2-Hydroxyisobutyric acid 1.44 s 1.26 −1.02 0.000 0.000 0.000

8 Citrulline 1.57 m 2.51 −2.25 0.000 0.000 0.000

9 VLDL: −CH2-CH2-CH2O 1.58 br 2.64 −1.76 0.000 0.000 0.000

10 Acetate 1.93 s 2.24 −1.19 0.000 0.000 0.000

11 N-Acetyl glycoprotein 2.05 s 1.81 1.14 0.000 0.000 0.000

12 O-Acetyl glycoprotein 2.07 s 3.32 2.10 0.000 0.000 0.000

13 D-ribose 2.23 s 1.84 −1.56 0.000 0.000 0.000

14 Acetone 2.23 s 1.84 −1.56 0.000 0.000 0.000

15 Lipid,-CH2-C = O 2.26 br 1.87 −1.18 0.000 0.000 0.000

16 Acetoacetate 2.28 s 1.34 −1.16 0.019 0.013 0.027

17 Acetoacetic acid 2.31 s 1.50 −1.30 0.000 0.000 0.000

18 Glutamate 2.356 m 2.65 1.29 0.000 0.000 0.000

3.768 m 2.52 1.18 0.000 0.000 0.000

19 Succinate 2.41 s 2.66 1.01 0.000 0.000 0.000

20 Glutamine 2.45 m 2.24 1.02 0.000 0.000 0.000

21 Glutathione 2.56 m 2.41 1.51 0.000 0.000 0.000

2.96 m 2.28 1.45 0.000 0.000 0.000

22 Methylamine 2.59 s 2.03 2.26 0.000 0.000 0.000

23 Aspartate 2.68 dd 1.38 1.54 0.000 0.000 0.000

2.82 dd 1.62 1.56 0.000 0.000 0.000

24 Dimethylamine 2.732 s 1.43 1.02 0.040 0.045 0.045

25 Acetic acid 3.00 s 1.99 −1.09 0.000 0.000 0.119

26 Phosphocreatine 3.04 s 1.95 −1.08 0.000 0.000 0.000

3.93 s 1.12 −1.08 0.000 0.000 0.000

27 Creatine 3.04 s 1.95 −1.08 0.000 0.000 0.000

3.94 s 1.12 −1.08 0.000 0.000 0.000

28 Ceatinine 3.04 s 1.95 −1.08 0.000 0.000 0.000

3.448 s 1.03 −1.00 0.004 0.017 0.007

29 Choline 3.2 s 1.33 −1.34 0.000 0.011 0.000

30 PC (phosphochline) 3.21 s 1.78 −1.38 0.000 0.000 0.000

31 Trimethylamine-N-oxide (TMAO) 3.27 s 1.67 1.71 0.000 0.000 0.000

32 myo-Inositol 3.54 dd 2.69 −1.68 0.000 0.000 0.000

3.63 t 2.73 −1.42 0.000 0.000 0.000
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metabolic profiling among various stages of gastric cancer.
According to the multivariate statistical analysis of gastric
cancer tissues and normal controls, many distinguishing
metabolites have been found. Similarly, OPLS-DA model
was applied to analyze the metabolic difference between
each stages of gastric cancer and normal controls. As
shown in Fig. 3a, the score plots showed that all stages
(I, II, III, IV) of gastric cancer tissues could be clearly
separated from normal controls. And there was also a
trend of separation among different stages (Additional
files 2 and 3). A total of 48 distinguishing metabolites
with VIP > 1 from the training set and p < 0.05 from
Student’s t-test were identified and summarized in
Additional file 4. The majority were similar to those of
metabolites between gastric cancer and normal con-
trols. As shown in Additional file 4, the VIP values of
isoleucine, lactate, glutamate, glutathione, TMAO, 4-
hydroxyphenylactate, tyrosine, phenyacetylglutamine
and hypoxanthine were increased along with the pro-
gression of the gastric cancer, which indicated these
metabolites played increasingly important role in separ-
ation stage-related gastric cancer tissue. The FC (fold

change) of citrulline, valine, and acetoacetate were in-
creasingly changed from stage I to stage IV, suggesting
the expression of these metabolites were growing along
with the progression of gastric cancer. However, the FC
of methylamine was decreased, especially in stage IV.
Totally, the change of these metabolites indicated that
they would play an important role in the progression of
disease, the underlying mechanism may need more
future work.
The permutation analysis of the corresponding OPLS-

DA, were shown in Fig. 3b. The parameters for different
stages were as follows: stage I: R2 = 0.80, Q2 = 0.54; stage
II: R2 = 0.82, Q2 = 0.70; stage III: R2 = 0.82, Q2 = 0.69 and
stage IV: R2 = 0.86, Q2 = 0.69, which indicated the excel-
lence of the model. To get an insight into the types of
metabolites responsible for the separation between differ-
ent subjects, the corresponding loading plots based on
OPLS-DA models were presented in Fig. 3c. The relative
changes in metabolites with significant correlation coeffi-
cients were a major discriminating factor among different
subjects, implying the biochemical alterations in different
morbidity. ROC analysis was performed to detect the

Table 2 Differential Metabolites derived from OPLS-DA model of 1H NMR analysis between gastric cancer patients and normal controls
(Continued)

4.06 m 2.71 −1.49 0.000 0.000 0.000

33 α-Glucose 3.54 dd 2.69 −1.68 0.000 0.000 0.000

5.23 d 2.98 −2.83 0.000 0.000 0.000

34 Glycine 3.57 s 1.89 −1.33 0.056 0.040 0.046

35 Glycerol 3.65 dd 2.27 −1.51 0.000 0.000 0.000

36 Dimethylglycine 3.71 s 2.90 −2.18 0.000 0.000 0.000

37 Lysine 3.77 m 2.52 1.18 0.000 0.000 0.000

38 Glycolate 3.93 s 1.12 −1.08 0.000 0.000 0.000

39 Serine 3.98 m 2.14 1.10 0.000 0.000 0.000

40 Uracil 5.8 d 2.16 4.89 0.000 0.000 0.000

7.54 d 2.11 2.33 0.000 0.000 0.000

41 Fumarate 6.53 s 1.23 1.20 0.001 0.007 0.002

42 4-hydroxyphenylactate 6.88 d 2.40 1.51 0.000 0.000 0.000

7.18 d 2.59 1.22 0.000 0.000 0.000

43 Tyrosine 6.9 d 2.40 1.53 0.000 0.000 0.000

7.2 d 2.59 1.22 0.000 0.000 0.031

44 Trytophan 7.29 m 1.36 −1.39 0.000 0.000 0.000

45 Phenyacetylglutamine 7.42 m 2.55 1.11 0.000 0.000 0.000

46 Adenine 8.12 m 1.26 1.21 0.002 0.000 0.004

47 Hypoxanthine 8.18 s 1.48 −1.08 0.001 0.001 0.003

8.21 s 1.48 −1.42 0.000 0.001 0.000

48 Formate 8.44 s 1.39 −1.04 0.009 0.009 0.015
aMultiplicity: s singlet, d doublet, t triplet, q quartet, dd doublet of doublets, m multiplet, br broad; bVariable importance in the projection was obtained from OPLS-DA
model with a threshold of 1.0. cFold change (FC) between gastric cancer patients and normal controls. Fold change with a positive value indicates a relatively higher
concentration present in gastric cancer patients while a negative value means a relatively lower concentration as compared to the normal controls. dP-value obtained
from Student’s t-test
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predictive power of OPLS-DA model. As shown in Fig. 3d,
the corresponding AUC values were 0.952, 0.994, 0.998
and 0.999, indicating the OPLS-DA model exhibited a
good diagnostic value for gastric cancer.

Discussion
In the present study, we discriminated the metabolic
profiling of 125 gastric cancer tissues from 54 normal
controls based on 1H NMR, and analyzed the metabolic
difference between the each stage of gastric cancer and
normal controls to identify the potential biomarkers in-
volved in the progression of gastric cancer. A total of 48
distinguishing metabolites were identified and 13 of
them were changed along with the development of
gastric cancer, including isoleucine, lactate, glutamate,
glutathione, TMAO, 4-hydroxyphenylactate, tyrosine,
phenyacetylglutamine, hypoxanthine, citrulline, valine,
acetoacetate and methylamine. Compared with the
published reports of the metabolic profiling of gastric
cancer tissues [19], the present study identified more

distinguishing metabolites, which 48 metabolites were
contrast with 12 and 18 metabolites. The large cohort of
tissue samples (179 subjects) may be an important reason
for the more identified metabolites. More importantly, to
the best of our knowledge, the present study was the first
to demonstrate the metabolic difference between the vari-
ous stages of gastric cancer and normal controls, which
will be valuable in aiding accurate diagnosis and under-
standing of the potential molecular mechanism.
To understanding the possible connections among these

tissue metabolites, we constructed the related metabolic
pathway maps based on the modified metabolites and in-
formation obtained from the Kyoto Encyclopedia of Genes
and Genomes Web site (www.genome.jp/kegg/), which
was shown in Fig. 4, and the relative changes between
gastric cancer tissues and normal controls was shown in
Additional file 5. The disturbed metabolic pathway in-
cluded glycolysis (glucose and lactate), tricarboxylic acid
cycle (TCA) (succinate and fumarate), glutaminolysis (glu-
tamine and glutamate), serine synthesis (serine and

Fig. 3 Metabolic profiling between different stages of gastric cancer tissues and normal controls. a OPLS-DA scores plots based on each stages of
gastric cancer tissues and normal controls. b Statistical validation of the corresponding PLS-DA models using permutation analysis (200 times). R2 is the
explained variance, and Q2 is the predictive ability of the model. c Color map showed the significance of metabolite variations between the classes. Peaks
in the positive direction indicated the increased metabolites in gastric cancer tissues. Decreased metabolites in gastric cancer tissues were presented as
peaks in the negative direction. d ROC analysis was performed using the Y-predicted value determined by the OPLS-DA model between the classes
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glycine), ketoplasia (acetoacetate, β-hydroxybutyrate and
acetone), choline metabolism (TMAO, dimethylamine,
methylamine, choline and dimethylglycine) and amine acid
metabolism (leucine, lysine, tyrosine, serine and glycine).
As shown in Fig. 4 and Additional file 5, mean glucose

levels from gastric cancer tissues were significantly lower
than in normal controls. Meanwhile, mean lactate levels
were increased in gastric cancer tissues, which matched
previous reports [26, 27]. The results were not surprised
because of the well-known Warburg effect [28, 29].
Increased glycolysis is proposed to be associated with
many tumors and with cancer cell growth, cancer cells
prefer to utilize 1 molecule glucose through glycolysis to
generate 2 molecules ATP instead of 36 molecules ATP
through oxidative phosphorylation even in presence of
ample oxygen. This process is less efficient, so cancer
cells must enhance glucose uptake to meet the energy
requirement maintaining their quickly growth and pro-
liferation. In gastric cancer cells, the expressions of glu-
cose transporters (Glut-1 and Glut-3) were up-regulated
to transport more glucose into cells to satisfy the great
amount of energy requirements [30, 31]. Lactate, as the
end product of glycolysis, was found to accumulate in
gastric cancer tissues along with the decrease of glucose.
Lactate is able to make tumor microenvironment consist-
ently acidic, which would stimulate tumor cell metastasis
in vivo and invasion in vitro [25, 32]. Pyruvate kinase M2
isoform (PKM2), a key regulator of glycolysis, controls
glucose afflux to lactate, which is high expression of many
cancers [33]. So knockdown of PKM2 expression will
inhibit glycolysis, which may aid in the design of new
therapy for the treatment of cancer [34, 35].

The preferential conversion of glucose to lactate in
cancer cells is believed one of the metabolic differences
between cancer and normal controls. However, the ex-
tent to which glucose-derived metabolic fluxes are used
for alternative processes is poorly understood. In the
present study, a higher level of serine in gastric cancer tis-
sues was observed, so the serine synthesis pathway (SSP)
was activated, which regulated the intracellular synthesis
of serine and glycine. Under the metabolic stress, cancer
cells rapidly used exogenous serine and serine deprivation
triggered activation of SSP, which will suppress glycolysis
and increase flux to tricarboxylic acid cycle [36]. So the
utility of serine depletion will open a new therapeutic win-
dow in cancer cells that show some sensitivity to serine
depletion. Moreover, 3-phosphoglycerate dehydrogenase
(PHGDH), a key metabolic enzyme of SSP, was reported
to amplify in melanoma [37] and triple-negative breast
cancer [38]. Reducing PHGDH expression impaired the
cancer cell proliferation, whereas overexpression of
PHGDH in human breast cancer contributed to carcino-
genesis by facilitating glycolysis to SSP [39]. These obser-
vations together with our findings strongly supported a
hypothesis that altered serine metabolism occur in human
gastric cancer.
In mammalian cell, glucose and glutamine are two of

the most abundant nutrients to support energy, precur-
sors for macromolecular synthesis, and substrates for
other essential functions [40]. However, the oxidative
phosphorylation of glucose in the mitochondria is im-
paired in cancer cells, which is termed Warburg effect.
The amount of glucose-derived acetyl-CoA entering into
TCA cycle decreases significantly. As a result, cancer

Fig. 4 Metabolic pathway of significantly changed metabolites between gastric cancers and normal controls. The up arrows represent the metabolites
increased in the gastric cancer tissues in comparison to normal controls. The down arrows represent the metabolites decreased in the gastric cancer
tissues. Dashed lines surrounding compounds mean not measured or not significant between two groups
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cells rely on alternate metabolites to replenish TCA cycle
intermediates. So glutaminolysis playes an important
role in generating ATP and maintaining the mitochondrial
function. Glutamine serves as a major source for energy
and nitrogen for biosynthesis, and a carbon substrate for
anabolic processes in cancer [41]. As shown in Fig. 4, glu-
tamine is converted to glutamate by glutaminase (GLS),
which release the amide nitrogen of glutamine as ammo-
nia. Glutamate is converted to α-ketoglutarate (AKG) by
two types of reactions, which enter into TCA to support
energy and biosynthesis in mitochondrion. So the alterna-
tive modes of metabolism of glucose and glutamine enable
cancer cells to resist metabolic stress and contribute to
cancer cells survive and growth.
Amino acids play a pivotal role in several metabolic

pathways and are highly essential in performing special-
ized functions inside the cell. In this study, Amino acids
that were found to be significantly different between
cancer tissues and controls were listed in Table 2 and
Additional file 4. In addition to higher levels of glutam-
ine and glutamate, isoleucine, leucine, valine, lysine,
serine and tyrosine were increased in gastric cancer tis-
sues. The source of these amino acids has not been de-
termined. Some reports considered that it is likely to be
a combination of systemic protein catabolism and the
degradation of extracellular matrix [42]. And the others
thought it could be attributed to the uptake by cancer
cells from normal organ and blood through the up-
regulation of amino acid transporters [43, 44]. In a word,
amino acids are as the basic unit in protein structure
and the precursor for purine and pyrimidine biosyn-
thesis, their disturbances reflect the needs for the rapid
proliferation of cancer cells. The level of uracil, as a pre-
cursor in ribonucleic acid, was apparently higher in gas-
tric cancer tissues (about 5 fold), which similarly
suggested cancer cells were in the state of rapid growth
and proliferation.
Citrulline, a naturally non-essential amino acid, was

firstly found in watermelon, Apart from its role in protein
homeostasis and as an intermediate in urea cycle, citrul-
line is also found to be a potent hydroxyl radical scavenger
and much more effective precursor of arginine and NO
than arginine itself [45, 46]. The level of citrulline de-
creased along with the processes of gastric cancer, which
may suggest the deterioration of the redox state of tumor.
The potential mechanism needs further exploration.
Choline is an essential nutrient, which plays a critical role

in the structure and function of biological membranes in
all cells as an essential precursor of cell membrane phos-
pholipids [47]. Choine and betain may act as methyl group
sources in folate-mediated one-carbon metabolism, which
may affect carcinogenesis by influencing methylation and
synthesis of DNA [48]. In the present study, the choline
metabolic pathway was disorder. Phosphocreatine, creatine,

creatinine, dimethylgcine and choline were decreased in
gastric cancer tissues, and the levels of methylamines (me-
thylamine, DMA, TMAO) were obviously increased. Large
levels of choline uptake and de novo synthesis are neces-
sary for new membrane synthesis and one-carbon balance.
Aberrations in choline metabolism have been demon-
strated in a variety of cancers, including breast cancer [49]
and colorectal cancer [18]. As shown in Table 2, the level
of choline was down-regulated in gastric cancer tissues.
The possible causes were as follows: first, dietary deficiency
may affect the intake of choline because of the damage of
the stomach. Second, the choline metabolism may be acti-
vated. Methylamines (methylamine, DMA, TMAO), prod-
ucts of choline metabolism, were elevated in gastric cancer
tissues. Methylamines are usually regarded as nontoxic
substances, which could induce hepatocarcinogenesis in
rats [50]. So the similar mechanism may exist in human.
Therefore, methylamines may indicate the disturbance of
liver homeostasis in development of gastric cancer.

Conclusions
In summary, utilizing the 1H NMR spectroscopy com-
bined with multivariate statistical analysis, we identified
significant metabolic shifts between gastric cancer tis-
sues and normal controls. 48 distinguishing metabolites
were identified, which constructed a diagnostic model
for gastric cancer with a high area under the curve value.
Moreover, we firstly identified the metabolic profile be-
tween the various stages cancer subjects and normal
controls. A panel of 13 metabolites was changed along
with the procession of gastric cancer, which may be re-
lated to the occurrence and even development of cancer.
On the basis of this research, we believed that the meta-
bolic information obtained by 1H NMR might play a sig-
nificant role in screening biomarkers and the early
diagnosis of gastric cancer. Further functional and clin-
ical sample analysis of these distinguishing metabolites is
needed to demonstrate the potential utility and the re-
lated mechanism underlying the gastric cancer.
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