Tessitore et al. BMC Cancer (2016) 16:3

DOI 10.1186/512885-015-2007-1 BMC Cancer

MicroRNA expression analysis in high fat @
diet-induced NAFLD-NASH-HCC
progression: study on C57BL/6J mice

Alessandra Tessitore', Germana Cicciarelli', Filippo Del Vecchio', Agata Gaggiano', Daniela Verzella',
Mariafausta Fischietti', Valentina Mastroiaco', Antonella Vetuschi', Roberta Sferra', Remo Barnabei?, Daria Capece’,
Francesca Zazzeroni' and Edoardo Alesse'

Abstract

Background: Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. Non-alcoholic
fatty liver disease (NAFLD) is a frequent chronic liver disorder in developed countries. NAFLD can progress through
the more severe non alcoholic steatohepatitis (NASH), cirrhosis and, lastly, HCC. Genetic and epigenetic alterations
of coding genes as well as deregulation of microRNAs (miRNAs) activity play a role in HCC development. In this
study, the C57BL/6J mouse model was long term high-fat (HF) or low-fat (LF) diet fed, in order to analyze molecular
mechanisms responsible for the hepatic damage progression.

Methods: Mice were HF or LF diet fed for different time points, then plasma and hepatic tissues were collected.
Histological and clinical chemistry assays were performed to assess the progression of liver disease. MicroRNAs'
differential expression was evaluated on pooled RNAs from tissues, and some miRNAs showing dysregulation were
further analyzed at the individual level.

Results: Cholesterol, low and high density lipoproteins, triglycerides and alanine aminotransferase increase was
detected in HF mice. Gross anatomical examination revealed hepatomegaly in HF livers, and histological analysis
highlighted different degrees and levels of steatosis, inflammatory infiltrate and fibrosis in HF and LF animals,
demonstrating the progression from NAFLD through NASH. Macroscopic nodules, showing typical neoplastic
features, were observed in 20 % of HF diet fed mice. Fifteen miRNAs differentially expressed in HF with respect to
LF hepatic tissues during the progression of liver damage, and in tumors with respect to HF non tumor liver
specimens were identified. Among them, miR-340-5p, miR-484, miR-574-3p, miR-720, whose expression was never
described in NAFLD, NASH and HCC tissues, and miR-125a-5p and miR-182, which showed early and significant
dysregulation in the sequential hepatic damage process.

Conclusions: In this study, fifteen microRNAs which were modulated in hepatic tissues and in tumors during the
transition NAFLD-NASH-HCC are reported. Besides some already described, new and early dysregulated miRNAs
were identified. Functional analyses are needed to validate the results here obtained, and to better define the role
of these molecules in the progression of the hepatic disease.
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Background
Hepatocellular carcinoma (HCC) is the most frequent
liver tumor and the third cause of cancer mortality world-
wide [1]. HCC etiopathogenesis is mainly related to viral
infections (HBV, HCV) [2], aflatoxin B1 and tobacco ex-
posure [3, 4], or chronic alcohol consumption [5]. Deregu-
lation at the level of several key signal transduction
pathways (such as Wnt/p-catenin, MAPK, JAK-STAT, p53)
have been extensively described in HCC pathogenesis [6].
Non alcoholic fatty liver disease (NAFLD) is the most
frequent liver disorder in western countries and occurs
in individuals who do not abuse alcohol. NAFLD can be
due to higher fat intake with diet, “de novo” lipogenesisis,
or adipose tissue lipolysis increase [7]. It is characterized by
accumulation of triglycerides within hepatocytes (steatosis),
attributable to an imbalance between storage and removal
of lipids, and it is associated with obesity and metabolic
syndrome [8]. In a number of cases, NAFLD progresses
from simple steatosis to non alcoholic steatohepatitis
(NASH), a form of hepatic damage characterized by the
recruitment of pro-inflammatory immune cells, and lastly
toward cirrhosis and hepatocellular carcinoma [7]. It has
been calculated that a percentage variable between 4 and
22 % of HCC cases can be ascribed to NAFLD [8]. How-
ever, molecular mechanisms responsible for NAFLD-
NASH-HCC progression are not fully understood.
MicroRNAs (miRs, miRNAs) are short non-coding
molecules able to regulate gene expression at the post-
transcriptional level. MicroRNAs are involved in funda-
mental cellular processes, such as growth, proliferation
and differentiation, apoptosis, metabolism, oncogenesis
and metastasis [9, 10]. Many miRNAs have been de-
scribed in the initiation and progression of liver cancer
[11, 12]. Several down-regulated (i.e. miR-1, miR-7, miR-
34a, miR-122, miR-125b, miR-200) or up-regulated (i.e.
miR-17, miR-18, miR-19, miR-155, miR-93, miR-221/
222) miRNAs have been identified as tumor suppressor
or oncomirs, respectively, by targeting and regulating genes
involved in cell proliferation, apoptosis, angiogenesis and
metastasis [13]. Several studies have furthermore shown
expression level dysregulation and modulation of micro-
RNAs in NAFLD, NASH, and then HCC. Among them,
miR-122, miR-21, miR-155, miR-23a, miR-143, whose tar-
get genes have been characterized in both NAFLD (i.e.
PPARa, PTEN C/EBPB, ORP8, G6PC) and HCC (ie.
CCNGI, IGF-IR, ADAMI17, PTEN, SOCSI1, C/EBPf,
FNDC3B) [14]. In addition, miRNAs have been described
to be modulated even in steatosis/NASH (i.e. miR-155,
miR-370, miR-34a, miR-200a/b, miR-99a/b), fibrosis (i.e.
miR-200a/b, miR-221/222, miR-34a, miR-16, miR-99b), cir-
rhosis (i.e. miR-34a, miR-21, miR-31, miR-181b), and HCC
(i.e. miR-16, miR-33, miR-21, miR-31, miR-181a/b, miR-
99a, miR-200a/b) [15]. However, miRNAs specifically in-
volved in the progression of liver disease are not fully
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characterized. Therefore, to better define and identify
microRNAs playing a pivotal role in this process, we ana-
lyzed in a time-dependent and dynamic manner the ex-
pression levels of miRNAs in livers from a long term high
fat diet fed C57BL/6] mouse model, with the purpose to
put into relation the expression levels of miRNAs with the
progression of the liver’s injury.

Methods

Mouse strain and housing

C57BL/6] mice were purchased from Charles Rivers La-
boratories (France) and maintained at 21 °C on a 12 h
light—dark cycle. Twenty days old male mice obtained
from the established colony were randomly split in 3
groups (10 animals each), and fed with a high fat diet
(5.56 Kcal/g, fat 58 Kcal%, whose coconut oil hydroge-
nated 54 %; carbohydrate 25.5 Kcal%) (D12331, Open-
Source, Research Diets) for 3, 6, and 12 months.
Analogously, 3 groups of control animals (10 animals
each) were fed with the control low fat diet (4.07 Kcal/g,
fat 10.5 Kcal%; carbohydrate 73.1 Kcal%, whose sucrose
60 %) (D12329, Open Source, Research Diets). Mice
were weighed at approximately one-month intervals and
periodically analyzed for signs of disease or morbidity.
Mice were sacrificed by CO, asphyxiation, weighed, and
head-to-tail measured. Laparotomy was then performed,
and the liver was visualized and rapidly excised, weighed
and photographed. The following parameters were con-
sidered: liver appearance, color and weight. Liver tumors
were counted and measured. All experimental proce-
dures involving animals and their care were performed
in conformity with national and international laws and
policies (European Economic Community Council Dir-
ective 86/609, O] 358, 1 Dec 12, 1987; Italian Legislative
Decree 116/92, Gazzetta Ufficiale della Repubblica
Italiana n. 40, Feb 18, 1992; National Institutes of Health
Guide for the Care and Use of Laboratory Animals, NIH
publication no. 85-23, 1985). The project was approved
by the Italian Ministry of Health and the internal
Committee of the University of L'Aquila. All efforts were
made to minimize suffering.

Assessment of microscopic hepatic lesions

Specimens obtained from livers were washed in PBS and
immediately immersed in 10 % formalin in phosphate
buffered saline (PBS) (pH 7.4), then standard procedures
for paraffin embedding were performed. Serial 3 pm sec-
tions were stained with Hematoxylin and Eosin (H&E)
to assess the liver general architecture and inflammation.
Masson’s trichrome stain was also performed in order to
detect connective tissue and fibrosis. The stained sec-
tions were then observed by using Olympus BX51 Light
Microscope (Olympus, Optical Co., Ltd, Tokyo, Japan).
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Biochemical assays

After sacrifice, blood was collected in heparin by cardiac
puncture, and plasma was immediately recovered and
stored at —80 °C for subsequent analyses. A panel of bio-
markers for characterizing the metabolic features of liver
disease was analyzed by using Architect system and kits
(Abbott Diagnostics), according to the manufacturer’s
instructions.

RNA extraction

Liver tissues and excised tumors were sectioned and stored
in RNAlater® stabilization solution (Ambion) at -80 °C.
RNA was extracted from whole hepatic specimens
and tumors by using miRVana™ microRNA isolation
kit (Life Technologies), according to the manufac-
turer’s instructions.

Real-time quantitative PCR

Identical amounts of total RNAs extracted from animals
belonging to the same experimental group were pooled to-
gether and subjected (700 ng per RNASs’ pool) to RT-PCR
by using the TagMan MicroRNA reverse transcription kit
and the Megaplex RT primer pool (Life Technologies).
Subsequently, microfluidic Rodent MicroRNA arrays v3.0
(Life Technologies) were used, according to the manufac-
turer’s instructions. Three replicates for each pooled sam-
ple were analyzed. MicroRNAs’ expression levels were
evaluated by comparative assay. Samples were analyzed on
a ViiA7 instrument (Life Technologies) and data were
processed by ViiA7 software (Life Technologies). AACt
method was used to determine the relative miRNAs" ex-
pression levels. Mamm U6 was used as endogenous con-
trol. Global normalization analysis was also performed
(Expression Suite, Life Technologies). Some specific
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MicroRNA Assays (Life Technologies) were performed on
each single sample (3 replicates) in order to assess the miR-
NAs’ expression at the individual level. Further data ana-
lysis was carried out by using Expression Suite (Life
Technologies) or GraphPad Prism (GraphPad software).

Results

Diet-induced obesity

C57BL/6] male mice and, with lower evidence females,
have been already described to be predisposed and sus-
ceptible to NAFLD and diet-induced obesity with re-
spect to other strains (A/]), in both short and long-term
fatty diet fed models [16, 17]. In our model, we analyzed
the effects of a HF diet on liver disease induction. For this
purpose, C57BL/6] mice groups were treated for different
times with HF (majority of calorie count due to hydroge-
nated coconut oil) or LF (majority of calorie count due to
sucrose) high-calorie diets. Body weights’ patterns of HF
and LF diet-treated animals are reported in Fig. la. HF
mice developed significant weight increase, as detected
after 3, 6 and 12 months (P3, ¢, 100 < 0.001), and associated
obesity (Fig. 1b), further confirmed by BMI values (Fig. 1c¢).
In particular, an overt accumulation of subcutaneous, vis-
ceral and thoracic fat was detected in HF mice (data not
shown).

Histological liver features

Gross anatomical examination revealed, in livers from
HF animals, hepatomegaly as well as paler color (Fig. 2a).
Significant weight increase of HF livers was also detected
(Fig. 2b). Two voluminous macroscopic nodules
(1.5x1.3x1 and 0.7x0.6x0.5 cm in dimensions) (Fig. 2c)
were observed in 2 HF mice (20 %) after 12 months of
fatty diet regimen. No nodular formations were detected
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Fig. 1 Body weight patterns. a Mice were high fat (HF) or low fat (LF) diet fed, and weighed at the indicated time points. Values are means of 10
mice + SEM. b Representative picture of a 6 months LF (feft) and HF (right) diet fed mouse. ¢ Mean of body mass index values + SEM
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Fig. 2 Livers from HF and LF diet fed mice. a Livers from 3, 6, 12 months LF (left) and HF (right) diet fed mice. b Liver weights, expressed as
mean + SEM. Statistical significance is indicated as follows: **, P < 0.08; *, P=0.05. ¢ Macroscopic nodules in 12 months HF diet fed mice
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in the LF groups. Histomorphological analysis showed a
wide spectrum of liver damage ranging from simple stea-
tosis, consisting of isolated fat deposition in hepatocytes
from 3 months HF mice (Fig. 3a, al), more pronounced
steatosis in 6 months animals (Fig. 3a, bl), and steatohe-
patitis in 12 months HF mice (Fig. 3a, c1, ¢2). Inflamma-
tory infiltrate was characterized by lymphocytes, plasma
cells, macrophages and polymorphonuclear leucocytes
(PMN) (Additional file 1: Figure S1). Twelve months HF
livers were also characterized by fibrosis (Fig. 3b, bl),
and disarrangement of normal hepatic architecture with
increase of cell density and frequent steatosis (b2).
Moreover, a certain degree of cellular atypia, rare pseu-
doglandular structures and steatosis can be detected (b3,
H&E original magnification 40X, arrows and red box, re-
spectively). The latter aspects are common features of
dysplastic nodules or early HCC. The described traits
demonstrate the progression of liver damage through
NAFLD, NASH, fibrosis and HCC. On the other hand,
LF diet fed mice showed normal liver architecture after
3 months (Fig. 3a, a), scattered hepatic inflammatory
cells in a small percentage of animals after 6 months
(Fig. 3a, b, arrow) and accumulation of triglycerides in
combination with hepatic inflammation after 12 months
of LF diet treatment (Fig. 3a, c, arrows). Less severe fi-
brosis was detected in LF mice after 12 months (Fig. 3b,
b). No fibrosis was detected in HF and LF mice after 3
and 6 months (Fig. 3b, a, al) of treatment. In summary,
concerning the progression of liver disease, steatosis,

with ascending degree of severity, was found in 40 %,
90 % and 100 % of 3, 6 and 12 months HF diet fed mice
(Fig. 4a, b). Inflammation was evident in 60 % of
6 months and 100 % of 12 months HF mice, whereas fi-
brosis was detected in 70 % of animals just after
12 months (Fig. 4a). Contextually, in LF mice, steatosis
was not evidenced after 3 months, but was detected in
40 % and 100 % of animals after 6 and 12 months
(Fig. 4a), albeit with lower degree of severity with respect
to the corresponding HF groups (Fig. 4b). Inflammation,
at the same way, was undetectable after 3 months and
revealed in 10 % and 90 % of mice after 6 and 12 months
of LF diet administration (Fig. 4a). Fibrosis was detected
in 30 % of LF animals after 12 months (Fig. 4a). Signifi-
cant cirrhosis was not evidenced by any mouse belong-
ing to both HF and LF groups.

Clinical chemistry assays

In order to assess the evolution of the hepatic damage
and the relative metabolic features, a panel of plasma
biomarkers was examined in non-fasting mice through
the experimental time points (Table 1). Significant in-
crease of cholesterol (CHOL), as well as high density li-
poproteins (UHDL), low density lipoproteins (DLDL),
and triglycerides (TRIG) was detected in HF mice after
3, 6, 12 months (UHDL) or 3, 6 months of treatment
(CHOL, DLDL, TRIG). Alanine aminotranferase (ALT)
was significantly increased after 3 and 12 months of HF
diet administration. ALT increase was also revealed in
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are common features of dysplastic nodules or early HCC

Fig. 3 Histopathological features of hepatic tissues. A Histopathological features of hepatic tissues from 3 (g, al), 6
(left) and HF (right) mice (H&E staining; original magnification 10X). The microphotographs, from LF mice, show a normal liver architecture (a),
scattered inflammation (b, arrow) and simple steatosis with mild inflammation (¢, arrows). A wide spectrum of liver damage ranging from simple
steatosis (al) to mild steatosis (b7) and a severe steatosis with massive inflammation (c7
B Fibrosis is not evident in 6 months LF (a) and HF (a7) mice (Masson's trichrome staining, original magnification, 10X). Mild fibrosis appears after
12 months in LF mice (b, arrow, original magnification, 10X), whereas 12 months HF mice show more severe fibrosis (b1, original magnification
10X), often organized in irregular thin trabeculae that border nodules with a variable number of small microscopic arteries (arrows), and a
disarrangement of normal hepatic architecture with an increase of cell density and frequent steatosis (b2). Moreover, there is a certain degree of
cellular atypia, rare pseudoglandular structures and steatosis (b3, H&E original magnification 40X, red box and arrows respectively). These aspects

(b, b1), 12 (¢, c1, c2) months LF

, ¢2) are shown in microphotographs from HF mice.

HF mice after 6 months, but no statistically significant
difference was evidenced. Data obtained indicate meta-
bolic dysfunctions, development and progression of liver
injury, confirming the role of HF metabolic regimen. Simi-
lar results were obtained in studies on short term lard-
containing HF diets fed mice, where LDL, HDL, AST,
ALT, TRIG significant increase was detected [18—20]. Sig-
nificant ALT increase was also described by Hill-Baskin et
al. [17]. Levels of ALT, AST, and AST/ALT ratio have been
taken into consideration as possible markers for NAFLD
and its progression, although liver biopsy remains the gold
standard for diagnosis [21, 22].

MicroRNA analysis

A panel of miRNAs was subjected to analysis during the
progression of the liver disease. Among them, some
miRNAs revealed a modulation during the transition of
the hepatic damage. Results are shown in Fig. 5. MiRs’
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Fig. 4 Progression of liver disease. a Percentage of HF/LF mice
showing steatosis, hepatic inflammation and fibrosis. b Degree of
steatosis in HF and LF diet fed animals

differential expression was evaluated by comparing
pooled mRNAs from 3, 6, 12 months HF vs LF liver tis-
sues (Fig. 5a) and pooled mRNAs from tumors vs pooled
mRNAs from 12 months HF non-tumor tissues (Fig. 5b).
MammU®6 was used as endogenous control. Some miR-
NAs were overexpressed in tumors (miR-155, miR-193b,
miR-27a, miR-31, miR-99b, miR-484, miR-574-3p, miR-
125a-5p, miR-182), whereas others displayed down-
regulation (miR-20a, miR-200c, miR-93, miR-340-5p,
miR-720) or a comparable level of expression (miR-
200a) with respect to non tumor tissues. Depending on
the treatment’s duration, different modulation of miRs’
expression was detected in HF tissues during the pro-
gression of the hepatic damage (Fig. 5a). Mir-155 level
increased after 12 months of HF treatment; miR-193b,
which was down-regulated after 3 months of treatment,
showed weak ascending expression, whereas miR-31 and
miR-93 revealed fluctuant levels during the treatment,
with slight down-regulation after 12 months. MiR-20a,
miR-200c¢, miR-27a, miR-99b displayed a global, more or
less marked, down-regulation during the treatment.
MiR-200a revealed a modulation, being down-regulated
after 6 months and over-expressed after 12 months of HF
diet. MiR-340-5p, miR-484, miR-574-3p, and miR-720
showed fluctuant levels of slight down-regulation or over-
expression during the treatment. MiR-182 showed marked
over-expression, as detected already after 3 months of
treatment, whereas miR-125a-5p was always down-
regulated in HF compared to LF tissues. Similar results
were also obtained by analyzing data using global
normalization (Additional file 2: Figure S2). To assess the
strength of data shown in Fig. 5, the expression levels of
miR-125a-5p and miR-182 were analyzed in individual
livers from HF and LF diet fed mice through experimental
time points and in tumors. MiR-125a-5p and miR-182 ex-
pression was evaluated by taking into consideration a LF
reference sample belonging to the same group (Fig. 6).
Significant down-regulation of miR-125a-5p was detected
in HF mice after 3 months of HF diet regimen and
confirmed after 6 months (Fig. 6a). Twelve months HF
diet-treated mice showed, at the same way, significant
down-regulation of miR-125a-5p (Fig. 6a). Conversely,
miR-125a-5p over-expression was detected in tumors with
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Table 1 Plasma biomarkers in HF and LF diet fed animals. Values are mean + SEM. P < 0.05 was considered for statistically significant
differences (marked with an asterisk)

Marker 3M HF 3MLF P 6M HF 6M LF Pow 12M HF 12M LF Prom
ALT (U/) 432+35 23343 0001* 7054117 5024189 016 89+23 456467 003*
AST (U/) 2048+593 1553462 027 135334204 20078+507 033 15684242 20294321 0.2
GLUC (mg/dl) 4916 +563 4254302 019 45233+138  35056+254 007 38854329  3982+303 039
TRIG (mg/dl) 1396487 872468  <0001* 12264104 724452 0.002* 1007476 822462 006
CHOL (mg/dl)  214.1£106 134£79  <0001*  23378+101  11933£88  <0001* 2083186  1732+101 006
DLDL (mg/dl) 101 £087 72406 0008 143+16 8+ 1.1 0.005* 15117 126+ 1 007
UHDL (mg/dl)  1126+4 732438  0002* 107.33+33 61438 <0001*  100.1+65 80424  001*

ALT alanine aminotransferase, AST aspartate aminotransferase, GLUC glucose, TRIG triglycerides, CHOL cholesterol, DLDL direct low density lipoprotein, UHDL ultra

high density lipoprotein assay

respect to paired HF non tumor tissues (Fig. 6b). Signifi-
cant miR-182 over-expression was detected in 3 months
and, although less pronounced and not statistically signifi-
cant, in 6 months HF diet fed mice (Fig. 6¢). Significant
miR-182 over-expression was observed in 12 months HF
mice (Fig. 6¢). Over-expression was further confirmed in
tumors from 12 months treated animals (Fig. 6d).

Discussion

Nonalcoholic fatty liver disease is the most frequent
chronic liver disease in western countries. It exhibits
intra-hepatic fat accumulation and can progress through
the more severe nonalcoholic steatohepatitis, leading, in
a percentage of cases, to end-stage cirrhosis and HCC.
Currently, some serum biomarkers are taken into

consideration to diagnose and predict the progression of
the disease, despite their limited prognostic usefulness,
sensitivity, and tissue specificity. Several biomarkers,
such as alpha-fetoprotein, alone or also in combination
with osteopontin, glypican-3, laminin, VEGF (vascular
endothelial growth factor), or hyaluronic acid, have been
used to assess, without particularly significant results,
HCC occurrence in NAFLD patients [23-27]. Liver bi-
opsy is still the most accurate procedure to diagnose and
provide information about staging of liver disease, al-
though studies have demonstrated that patients with ini-
tial NAFLD clinical manifestation and diagnosis do not
develop HCC and that a regression may be also possible
in pre-cirrhotic stages of the disease [28]. Therefore,
there is an urgent need to identify new diagnostic and
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prognostic markers able to follow the progression
through NAFLD-NASH and HCC initiation and
development.

MicroRNAs are short endogenous molecules which
act in post-transcriptional gene regulation. Due to their
role and structure, scientific evidences highlight the
promising value of microRNAs as biomarkers at the
diagnostic and prognostic level. In this study, we used a
mouse model predisposed to NAFLD and obesity to
analyze the progression of high-fat diet induced liver dis-
ease through NAFLD-NASH up to HCC initiation and
development. Depending on the treatment’s duration,
HF-fed animals showed an increase of body and liver
weights, degree of steatosis, presence of inflammatory
infiltrate and fibrosis, demonstrating the progression of
liver disease. As described, the LF group showed patho-
logical features similar to the HF, which, however, ap-
peared later and with lower severity. This could be
explained by the fact that the control LF diet here used,
with higher caloric content than a standard diet, is for-
mulated low in fat, but high in sucrose. Previous studies
have discussed the role of high-carbohydrate diets on
lipid accumulation and the effects of chronic fructose
consumption on different tissues: in liver, inflammation,
dyslipidemia, and steatosis have been described [29-31].
This could trigger the de novo lipogenesis process, with

delayed lipid accumulation and cellular damage in livers
in comparison to that observed in HF mice. A recent
work, performed on 15 weeks-old high fructose or sucrose
diet fed C57BL/6 mice, showed fatty infiltration of
necroinflammatory areas, which are characteristic features
of the transition to NASH, enhanced lipogenesis, gluco-
neogenesis and anti-oxidant imbalance, demonstrating an
adverse effect of fructose or sucrose-rich diets on liver
[32]. Biochemical assays highlighted increasing values of
plasma biomarkers in HF animals, characterizing the pres-
ence of metabolic dysfunctions and liver damage. No
particular evidence of cirrhosis was detected, and a per-
centage of HF fed mice (2/10) developed tumors after
12 months. Fifteen miRs resulted differentially expressed
in livers, by comparing HF- and LF-diet treated animals,
and in tumors with respect to non tumor HF liver tissues,
providing evidence of their modulation during the pro-
gression of diet-induced liver damage. As summarized in
Table 2, some among them were already described in
NAFLD, NASH, fibrosis or HCC, whereas others are for
the first time here identified. MiR-155, whose expression
increased after 12 months HF diet treatment, resulted
over-expressed in tumors and in HF tissues with respect
to LF. Previous studies have demonstrated that miR-155
plays an important role in hepatic lipid metabolism, has a
protective role against HF diet-induced non alcoholic liver
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Table 2 Dysregulated miRNAs and their involvement in liver disease. ICC intrahepatic cholangiocarcinoma, HNSCC head and neck

squamous cell carcinoma

MicroRNA Liver disease Target gene(s)
miR-155 Protective role against non alcoholic steatosis [33] LXR-a[33] C/EBPB, FOXP3 [35-37]
Up-regulated in NASH [34]
Up-regulated in HCC [35]
MiR-155 deficiency attenuates steatosis and fibrosis [36]
miR-193b Down-regulated in HBV+ HCC [43] CCNDT, ETST [43]
NF1 (HNSCC) [46]
Smad3 (glioma) [47]
miR-20a Down-regulated in HCC [49] Mcl-1 [49]
miR-200a Up-regulated in NAFLD [51] ZEB1, ZEB2 [54]
Down-regulated in HCC [52]
miR-200c Up-regulated in NAFLD [51] ZEB1, ZEB2, NCAM1 [54]
Down-regulated in HCC and ICC [54]
miR-27a Up-regulated in HBV+ HCC [55] RXRa, PPARa/y, FASN, SREBP1, SREBP2 [58, 59]
miR-31 Up-regulated in fibrosis [60] FIH1 [60]
Up-regulated in HCC [17, 53]
miR-93 Up-regulated in HCC [61, 62] PTEN, CDKN1A [62]
miR-99b Up-regulated in HCC [69] mTOR (pancreatic cancer) [66]
CLDNT11 [69]
miR-125a-5p Down-regulated in HCC [89] SIRT7 [89]
Biomarker in liver disease [93]
miR-182 Up-regulated in NAFLD-fibrosis [98] FOXO3 [98]

Up-regulated in HCC [94-97]

MTSST [94], Cebpa [95],
EphrinA5 [96], FOXO1 [97]

steatosis [33], and was found to be up-regulated in NASH
models of methyl-deficient diet, in HCC induced by
choline-deficient and amino acid-defined diet, and in
primary human HCC [34, 35]. Moreover, it has been dem-
onstrated that miR-155 deficiency can attenuate steatosis
and fibrosis [36]. In addition, anti-miR-155 has shown in
vitro and in vivo potential therapeutic efficacy, by
restoring the expression of C/EBPfS and FOXP3 [37].
MiR-193b was down-regulated after 3 and 6 months
of HF regimen and revealed over-expression in tumor
samples. The role of this miR in carcinogenesis is quite
controversial: miR-193b was described as a tumor sup-
pressor and appeared down-regulated in several cancers,
such as melanoma, breast, prostate carcinoma, and hu-
man HCC tissues, mainly HBV-positive [38—43]. In vitro
and in vivo experimental data demonstrated that miR-
193b directly targeted CCND1 (cyclin DI) and the tran-
scription factor ETS1 [43]. In a study on two HF diet fed
mouse models, showing marked susceptibility (C57BL/
6]) or resistance (Balb/c) to NAFLD and insulin resist-
ance phenotype, significant up- or down-regulation of
key genes which may be involved in homeostatic

adaptation to HF regimen has been detected. Among
them, are CCNDI and ETSI, whose up-regulation was
detected in both strains or in C57BL/6] alone, respect-
ively [44]. This evidence could be in agreement with
miR-193b down-regulation detected in our model during
the first 6 months of HF diet treatment. With this re-
gard, ETSI/miR-193b 3'UTR alignment can be identi-
fied in Mus musculus (microrna.org: SVR score —0.121,
PhastCons 0.66). On the other hand, miR-193b over-
expression was described by Braconi et al. [45] in HCV-
positive HCC tissues and cells. MiR-193b over-
expression was also detected in head and neck squa-
mous cell carcinoma [46], where neurofibrominl (NFI)
was described as a target, and in glioma [47], where this
miR acted as an oncomiR by targeting Smad3, one of
the major TGF-§ signaling transducers. Beside, a study
on a mouse model demonstrated that forced expression
of Smad3 may reduce liver susceptibility to chemically-
induced carcinogenesis by promoting apoptosis through
Bcl-2 transcriptional repression [48]. With this regard, two
miR-193b target sites are predicted on mouse Smad3 3'-
UTR (microRNA.org: miR-SVR score -0.1684 and
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-0.0002; PhastCons 0.5285 and 0.5702, respectively), leav-
ing hypothesize that miR-193b over-expression could be
involved in hepatocarcinogenesis through Smad3 down-
regulation.

MiR-20a was down-regulated in liver tissues and in tu-
mors from HF mice. MiR-20a down-regulation was
described in human HCC, where Mcl-1 (myeloid cell
leukemia sequence 1), an anti-apoptotic member of Bcl-2
family, was identified as miR-20a target [49]. In accordance,
a miR-20a predicted target site is located on Mus musculus
Mcl-1 3'UTR (microRNA.org: mirSVR score -0.9773,
PhastCons 0.710).

MiR-200a and ¢, members of the miR-200 family,
showed different behavior: after expression level’s decrease
(6 months), miR-200a increased during the progression of
hepatic damage (12 months), whereas miR-200c revealed
a trend of down-regulation during HF diet treatment and
in tumors. It is known that miR-200 family plays a role as
tumor suppressor by inhibiting epithelial-to-mesenchymal
transition (EMT) and repressing cancer stem cells; in
addition, its deregulation has been described in several
tumor types, including hepatocarcinoma [50]. MiR-200a
was found to be up-regulated in NAFLD [51], significantly
down-regulated in human HCC samples and, along with
miR-200 family members, has been described as a marker
able to distinguish between cirrhotic and cancer tissues
[52, 53]. MiR-200c was also found to be up-regulated in
NAFLD and down-regulated in human HCC as well as in
intrahepatic cholangiocarcinoma (ICC) samples [51, 54].
With regard to ICC, Oishi et al. [54] found that miR-200c
and miR-141, were negatively correlated with genes in-
volved in the TGF-f5, NF-xB and Smad signaling pathway.
In addition, these two miRs were able to induce epithelial
differentiation and to suppress EMT by inhibition of
ZEB1 and ZEB2. The same authors also described
NCAM]1, a known hepatic stem cells marker strictly con-
nected to EMT process, as a miR-200c direct target.
Analogously, several miR-200c binding sites are predicted
on Mus musculus ZEBI, ZEB2 and NCAM1 3'UTR, indi-
cating its putative role in the mouse model here
presented.

MiR-27a showed expression decrease, starting faintly
after 3 months up to 12 months of HF diet administra-
tion. Conversely, it was over-expressed in tumors. Litera-
ture data reveal that miR-27a may have an oncogenic
role, being up-regulated in HBV-related HCC tissues
and HCC cell lines [55], and promoting proliferation in
liver cancer cells by diminishing TGF- tumor suppres-
sive activity [56]. MiR-27a was also found in a hypo-
methylated status which led to its over-expression in
HCC cells [57]. MIR-27a was described to be involved in
lipid metabolism, by regulating RXRa, PPARa/y, FASN,
SREBPI, SREBP2, and was able to inhibit HCV replica-
tion in human hepatoma cells [58]. Ji et al. [59]
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demonstrated that miR-27a/b were over-expressed in
primary culture activated rat hepatic stellate cells
(HSCs). Normal HSCs are in the space of Disse, storing
bunches of vitamin A-riching lipid droplets. On the con-
trary, activated HSCs lose cytoplasmic lipid droplets and
trans-differentiate to proliferative, fibrogenic myofibro-
blasts which play an essential role in liver fibrosis initi-
ation. In the above-mentioned study, miR-27a/b
downregulation was demonstrated to be able to activate
HSCs to switch to a more quiescent phenotype, with de-
creased cell proliferation and restored cytoplasmic lipid
droplets. Seen in this context, it could be supposed that
miR-27a hypoexpression (6M, weak, and 12M) in HF diet
model might act as a protective mechanism in limiting the
progression of liver damage during the phases of the dis-
ease, and, on the other hand, its over-expression in tumors
could be associated to promotion of heavier liver injury
with consequent HCC initiation.

MiR-31 was detected up-regulated in tumors with re-
spect to livers from 12 months HF mice. MiR-31 up-
regulation was also described in human HCC samples and
in a similar C57BL/6] high-fat diet fed model [17, 51].
MiR-31 up-regulation was also described in fibrosis [60].

MiR-93 showed slight hypo-expression after 12 months
HF diet and resulted down-regulated in HCC. Although,
previous reports described an increase of miR-93 level
during hepatic tumorigenesis [61], and over-expression in
human HCC cell lines and tissues [62], miR-93 down-
regulation significantly correlated with worse prognosis in
colorectal cancer, where it was described to suppress onco-
genesis by regulating Want/S-catenin pathway [63, 64].

MiR-99b was weakly down-regulated during HF diet
administration and, conversely, up-regulated in tumors.
MiR-99b was described to contribute to irradiation re-
sistance in human pancreatic cancer by targeting mTOR
[65], whose activity is also known to play a role in
NAFLD-NASH [66-68]. In this context, miR-99b
hypoexpression in our model might contribute to induce
mTOR expression and function in the progression
through NAFLD and NASH. A mir-99b/mTOR site
alignment is also predicted on mouse (mirSVR score,
-1.2245; PhastCons score, 0.7484). In a very recent work
[69] miR-99b was up-regulated in HCC, where it pro-
moted metastasis by inhibiting claudin 1 (CLDNI). In
silico analysis displays two predicted miR-99b sites also
on mouse CLDNI (PhastCons 0.55 and 0.60).

No data are reported about the expression and role of
miR-340-5p, miR-484, miR-574-3p, and miR-720 in
NAFLD, NASH and HCC tissues. The above-mentioned
miRs appear to be up- (miR-484 and miR-574-3p) or
down-regulated (miR-340-5p, miR-720) in tumor tissues.
Just one study showed miR-574-3p increase in sera from
HCC and liver cirrhosis patients [70]. Controversial evi-
dences about the role of those miRNAs in oncogenesis
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are reported in several studies. MiR-340 has been de-
scribed as a tumor suppressor in breast [71], NSCLC
[72], and melanoma [73]. Significant miR-484 level in-
crease was described in sera from early breast cancer
[74] and in melanoma [75], whereas miR-484 down-
regulation was displayed in urine from prostate cancer
patients [76]. MiR-574-3p was identified over-expressed
in plasma from head and neck [77] and in prostate can-
cer patients [78]. On the contrary, it was found down-
regulated in colorectal [79] and esophageal cancer [80].
MiR-720 was described to inhibit breast tumor invasion
and migration by targeting the metastasis promoter
TWIST1 [81]. Conversely, it resulted hyper-expressed in
colorectal cancer [82].

MiR-125a-5p is transcribed as a cluster with let-7 and
miR-199b. Similarly to miR-99b, miR-125a-5p revealed
hypo-expression during the treatment. On the other
hand, it increased and showed over-expression in tu-
mors. Interestingly, miR-125a-5p differential expression,
detected on pooled RNAs, is maintained with statistical
significance in mice HF fed for 3, 6, and 12 months indi-
vidually analyzed, and in tumors, suggesting miR-125a-
5p potential high impact at the functional level starting
from the early stage of the liver disease. MiR-125a-5p
seems to possess oncogenic or tumor suppressor activ-
ities. It was described as an epidermal growth factor
signaling-regulated miRNA which can negatively regu-
late human lung cancer cell migration and invasion in
vitro, is frequently down-regulated in lung cancer [83],
and seems to play a role in enhancing in vitro cell migra-
tion and invasion in NSCLC [84]. Yang et al. [85] de-
scribed miR-125a-5p up-regulated in lung squamous cell
carcinoma (SCC), whereas miR-125a-5p low expression
levels in tissues or serum have been associated with en-
hanced malignant potential in gastric and breast cancer
[86, 87]. MiR-125a-5p was described over-expressed in
thyroid carcinomas [88] and hypo-expressed in human
HCC [89], where it was shown to target the 3'UTR of
SIRT7, a member of the Sirtuin family, whose activity in
cancer, ER and genomic stress response, hepatosteatosis
has already been investigated and is still controversial
[90]. Two predicted miR-125a-5p interaction sites are
also detected on mouse SIRT7 (microRNA.org: mirSVR
score —0.0006, —0.3021; PhastCons 0.5087, 0.5259, re-
spectively). MiR-125a-5p is also involved in lipid metab-
olism [91] and its level has been found increased in
hyperlipidemic and/or hyperglycemic patients’ sera [92].
MiR-125a-5p serum levels have been also described as
biomarkers in liver diseases [93].

MiR-182 showed over-expression already after 3 months
of HF diet, and this trend was markedly maintained in
mice, also at the individual level, during the treatment and
in tumors. Several studies demonstrated miR-182 involve-
ment in HCC and metastasis, by controlling the
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expression of genes with tumor suppressor activity, such
as the metastasis suppressor MTSS1 [94], Cebpa [95],
ephrinAS [96], and FOXO1 [97]. MiR-182 was also down-
regulated in fibrosis related to NAFLD, where FOXO3 was
described as a target [98]. MiR-182/Cebpa/ephrinA5/
FOXO1/FOXO03 alignments can be also predicted on Mus
musculus, putatively indicating a role of miR-182 in the
regulation of those genes. Our data demonstrate early in-
volvement of miR-182 in the transition of liver injury,
which is maintained up to HCC initiation and devel-
opment, indicating that early deregulation of this
microRNA could be one among the factors putatively
responsible for the hepatic disease here represented,
and for its progression.

Conclusions

In this study, based on the sequential analysis of the pro-
gression of HF diet-induced hepatic damage through
NAFLD-NASH-HCC in a long term-fed mouse model,
fifteen microRNAs were described to be modulated and
differentially expressed in hepatic tissues and in tumors,
providing a “signature” in the transition of liver injury
until HCC development. A number of dysregulated
microRNAs in this model were already described in the
pathogenesis of liver disease and showed concordant
level of expression with respect to that already described
in literature (miR-155, miR-20a, miR-182, miR-200a,
miR-200c, miR-27a, miR-31, miR-99b) or discordant ex-
pression level (miR-193b, miR-93, miR-125a-5p). Four
dysregulated microRNAs (miR-340-5p, miR-484, miR-
574-3p, miR-720), never described in liver damage and
tumorigenesis, were here detected. Interestingly, two
miRNAs (miR-125a-5p and miR-182) showed significant
early dysregulation, indicating a putative role and in-
volvement starting from the first stages of the liver
disease. In conclusion, the study provides new informa-
tion about dysregulated microRNAs in diet-induced liver
damage and hepatocarcinogenesis. Additional functional
analyses are needed to validate the results here obtained,
and to better define the role of these molecules in the
progression of the hepatic disease.
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tissues with respect to pooled RNAs from HF hepatic non-tumor tissues.
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