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Abstract

Background: The mixture of volatile organic compounds in the headspace gas of urine may be able to distinguish
lung cancer patients from relevant control populations.

Methods: Subjects with biopsy confirmed untreated lung cancer, and others at risk for developing lung cancer,
provided a urine sample. A colorimetric sensor array was exposed to the headspace gas of neat and pre-treated
urine samples. Random forest models were trained from the sensor output of 70 % of the study subjects and were
tested against the remaining 30 %. Models were developed to separate cancer and cancer subgroups from control,
and to characterize the cancer. An additional model was developed on the largest clinical subgroup.

Results: 90 subjects with lung cancer and 55 control subjects participated. The accuracies, reported as C-statistics,
for models of cancer or cancer subgroups vs. control ranged from 0.795 — 0.917. A model of lung cancer vs. control
built using only subjects from the largest available clinical subgroup (30 subjects) had a C-statistic of 0.970. Models
developed and tested to characterize cancer histology, and to compare early to late stage cancer, had C-statistics of
0.849 and 0.922 respectively.

Conclusions: The colorimetric sensor array signature of volatile organic compounds in the urine headspace may be
capable of distinguishing lung cancer patients from clinically relevant controls. The incorporation of clinical phenotypes

into the development of this biomarker may optimize its accuracy.
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Background
There has been a substantial amount of research in the
field of molecular biomarker development aimed at im-
proving our ability to predict who will develop lung can-
cer, detect lung cancer at an early stage, and characterize
the cancer that is found. This work has most commonly
used tissue or blood specimens to identify characteristic
alterations in the genome, proteome, transcriptome, or
metabolome of lung cancer patients.

Urine is a non-invasively collected biospecimen that
has been relatively under-represented as a source of po-
tential molecular biomarkers of lung cancer. Discovery
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level studies have identified differences in metal ele-
ments, [1] specific proteins, [2] proteomic signatures, [3]
ratios of fluorescent peaks, [4] non-volatile metabolites,
[5] exosomal proteins, [6] and tobacco metabolites, [7]
in the urine of people with lung cancer.

Volatile organic compounds (VOCs) are present in
very low concentrations in the headspace gas of urine
samples. Over 700 VOCs have been identified in the
urine of healthy volunteers. Diverse classes of VOCs are
found in the urine including alcohols, aldehydes, amides,
amines, carboxylic acids, esters, ethers, halides, hetero-
cyclic compounds, hydrocarbons, ketones, nitriles, sul-
fides, terpenoids, and thiols [8]. There is a greater
diversity of VOC classes in the urine than other biospe-
cimen sources where VOCs can be measured, such as
breath, skin, blood, and buccal mucosa [9]. These VOCs
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are felt to reflect metabolic alterations at the tissue level
that enter the bloodstream and can leave the body in
part by transfer into the urine. The composition of
VOC:s is affected by the altered metabolic properties of
cancer cells, such as the manner in which they handle
oxidative and energy stresses.

The premise that urine VOC profiles can be used to
identify disease has been supported by studies of pa-
tients with celiac disease, [10] inflammatory bowel dis-
ease, [11] diabetes, [11] urinary tract infections, [12] and
tuberculosis [13]. In addition, research aimed at develop-
ing forensics tools to identify individuals, and to locate
people during disasters, has suggested unique patterns
of VOCs are present in our urine [9, 14]. Discovery level
studies have produced promising results for the identifi-
cation of leukemia, colorectal cancer, and lymphoma
through the use of gas chromatography—mass spectrom-
etry analysis of the urine, [15] while bladder and prostate
cancer studies have assessed VOC profiles detected by
canine scent and ion mobility spectroscopy [16—18].
Two small discovery level studies using gas chromatog-
raphy—mass spectrometry to detect a lung cancer signa-
ture from urine VOCs have been published, the first in
mice injected with cancer cell lines, [19] and the second
in humans .[20]. Promising results have encouraged us
to explore this area further.

A colorimetric sensor array (CSA) is a cross-
responsive chemical sensor whose output is a change in
the color of its chemoresponsive elements upon expos-
ure to VOCs [21]. The CSA signal is refined enough to
separate VOCs by class and individually within a class
when exposed to one VOC at a time, or to separate
complex mixtures of VOCs from one another, such as
those in the headspace gas of bacterial cultures [22]. In
the current discovery level study we report on the accur-
acy of CSA derived signatures of the headspace gas of
urine to detect and characterize lung cancer.

Methods

This study was approved by the IRB of the Cleveland
Clinic (CC) (IRB 1021). All study subjects signed in-
formed consent.

Study subjects were included as cases if they had bi-
opsy confirmed, untreated lung cancer or an imaging ab-
normality highly suspicious for lung cancer being
scheduled for biopsy. Only those who later were biopsy
confirmed remained cases in the study. Study subjects
were included as controls if they were at risk for devel-
oping lung cancer based on age >40 years and tobacco
use of at least 10 pack-years, and/or a family history of
lung cancer, and/or the presence of chronic obstructive
pulmonary disease (COPD); or if they presented with an
indeterminate lung nodule 8—30 mm in diameter that
was ultimately confirmed to be benign based on biopsy
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or serial imaging. The duration of imaging was based on
the size of the nodules as recommended in current
guidelines [23]. Study subjects were excluded from par-
ticipation if they had a prior history of lung cancer, a
history of another cancer within 5 years, were receiving
immunosuppression, or were using continuous supple-
mental oxygen. Consecutive subjects presenting to the
outpatient Pulmonary department of the Cleveland Clinic,
who met the above criteria, were approached. Approxi-
mately 50 % of those approached agreed to participate.
Samples from all who agreed to participate were included
in the analysis. Data collection included demographic vari-
ables and comorbidities for all subjects, nodule size for
control subjects with lung nodules, and cancer histology
and stage for the cancer subjects.

The CSA was designed to have 73 chemoresponsive el-
ements (Fig. 1). It was housed in a glass container above
a sample of blotting paper to which the urine specimens
were added. Study subjects provided a clean-catch urine
sample at the end of a clinic visit in which they were at
least 1 h from their last meal or drink. The sample was
aliquoted and frozen at —80 °C within 2 h of being col-
lected. At the time of testing the frozen urine was slowly
thawed in a water bath then separated into four test
conditions in order to maximize the sensor information:
1. Unaltered urine was analyzed with the CSA and sep-
arately used to measure the urine osmolality and per-
form a urine dipstick measurement, 2. A non-volatile
acid (1 M tosic acid in a 1:1 volume ratio) was added in
order to protonate organic acids to facilitate their evap-
oration, 3. A non-volatile base (1 M sodium hydroxide
in a 1:1 volume ratio) was added to deprotonate amines,
allowing them to evaporate more easily, 4. Urine was
added to a pre-oxidation tube (sulfochromic acid on sil-
ica) to derivatize VOCs into more reactive species.
Once prepared, 200 uL of each sample was added to a
urine sensor cartridge which had been pre-warmed to
37 °C in an incubator for 20 min. An Epson V600 scan-
ner imaged the sensor at 3 min intervals for 4 h with
the cartridge held at 37 °C. Color difference maps were

73 spot array
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Fig. 1 Sensor elements. The chemoresponsive elements include
metalloporphyrins, base indicators, acid indicators, redox dyes,
solvatochromic dyes, and nucleophilic indicators
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constructed by extracting the red, green, and blue
values of the 73 indicators in the sensor array under
each of the 4 conditions. The color vector of the initial
image was subtracted from the color vectors of all sub-
sequent images in order to construct a time series of
color difference vectors. The person performing the
urine tests (SL) was blinded to the study subject cat-
egory (cancer or control).

Our statistical prediction model building procedure in-
cluded four steps. The first step was feature extraction.
To derive features that describe characteristics of the ob-
served time series, a nonparametric local polynomial re-
gression as well as a simple linear regression was
produced from the data for each color time series. Four
model-based features were derived for each time series:
the area under the curve of the nonparametric regres-
sion; residual standard error of the fitted curve; total
variation of the fitted curve (a statistical measure of vari-
ation of a nonlinear function); and the linear growth
trend of the data (ie. the slope of the linear regression
line). The second step was feature filtering. The purpose
of this step was to reduce variable dimension and select
a set of relevant features for use in constructing an effi-
cient prediction model. A univariate logistic regression
was fit for each feature, and those whose C-statistic was
greater than 0.6 were identified as potential predictor
variables. The third step was model training. Our data
set was randomly split into a training set and a testing
set with 7:3 ratio. A variable selection procedure and
correlation analysis were conducted to avoid multi-
colinearity and overfit in the model. Clinical features
known to be associated with lung cancer risk, including
age, smoking history, and COPD, were included as vari-
ables. Random forest models were built using the subset
of variables selected from the training set, with and
without the inclusion of the clinical variables. The fourth
step was model validation. The fitted random forests

Table 1 Study Population
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models were evaluated on the testing set. To avoid ran-
domness in data split, we repeated the third and fourth
steps 100 times and have summarized the prediction ac-
curacy results. The prediction models (built from the
training datasets) were applied to the subjects in the
testing datasets. The observation in the testing data was
classified as positive if the predictive probability of the
outcome was greater than 0.5. The observation in the
testing data was classified as negative if the predictive
probability of the outcome was less than or equal to 0.5.
For comparison, models were built in a similar fashion
using only the clinical features and separately using all
study subjects (rather than the 7:3 training:testing split).

Demographic variables were described using sample
mean with standard deviation or proportion as appropri-
ate. Categorical variables were compared using the Pear-
son’s chi-square test, and continuous variables were
compared using the two sample independent ¢-test. All
analyses were performed by using the R statistical pack-
age (www.r-project.org).

Results

145 subjects were enrolled between 7/2012 and 3/2014,
90 with lung cancer and 55 controls. Control subjects
were reported to have COPD more often than cancer
subject (41.8 % vs. 23.3 %, p =0.0188). There were no
differences in other demographic variables or relevant
comorbidities (Table 1). The control group included 31
at risk subjects and 24 who presented with indetermin-
ate lung nodules. All demographic variables and relevant
comorbidities were similar between these groups. The
mean nodule diameter was 12.4 mm (range of 3-32). Of
the 90 lung cancers, 6 were small cell, 53 adenocarcin-
oma, and 28 squamous cell carcinoma. There was a
nearly equal distribution of localized and advanced
stages of lung cancer (Table 2).

Cancer (N=90) Control (N=55) Total (N=145) p-value

Age — Mean (SD) 67.3 (10.3) 64.6 (9.2) 66.3 (10.0) 0.1198
PackYears — Mean (SD) 423 (280) 38.1 (28.1) 40.7 (28.0) 0.2868
Sex 0.3838

Female 41 (45.6 %) 21(38.2 %) 62 (44.1 %)

Male 49 (54.4 %) 34(61.8 %) 83 (55.9 %)
Smoking History 0.6401

Current 19(21.1 %) 15(27.3 %) 34 (234 %)

Former 64 (71.1 %) 37 (67.3 %) 101 (69.7 %)

Never 7 (7.8 %) 3(5.5 %) 10 (6.9 %)
COPD 21 (233 %) 23 (41.8 %) 44 (30.3 %) 0.0188
DM 10 (11.1 %) 7 (12.7 %) 17 (11.7 %) 0.7691
Elevated Cholesterol 22 (244 %) 14 (25.5 %) 36 (24.8 %) 0.8913
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Table 2 Lung cancers

Stage | Stage Il Stage lll Stage IV Unclear Total
Adenocarcinoma 14 6 18 12 3 53
Squamous 11 5 8 3 1 28
Other NSCLC 1 1 0 1 0 3
Small cell 0 1 3 2 0 6
Total 26 13 29 18 4 90

Models were developed and tested comparing cancer
and histology subgroups to controls. The accuracies, re-
ported as C-statistics, ranged from 0.795 — 0.917.
Models built from the entire dataset had similar accur-
acies (C-statistic 0.792 - 0.923). The accuracies were
higher when the histology subgroups were compared to
controls. There was little difference in the model accur-
acies when urine features alone were used to develop
the models compared to models that included clinical
variables. The model accuracies of stage I cancers vs.
controls were equally, or more, accurate though the
numbers of subjects with stage I were relatively small.
Models developed and tested to characterize cancer
histology, and to compare early to late stage cancer,
were very accurate (Table 3). Normalization of the data
for urine osmolarity and specific gravity did not sub-
stantially influence model accuracies. Models devel-
oped using clinical variables only were less accurate
(C-statistics 0.543 — 0.687).

To assess the influence of the subjects’ phenotypes
on model accuracy we performed additional analyses.
The study population was divided by sex, age (<55, 55—
70, >70), and COPD into 12 subgroups. The largest
subgroup (male, age 55-70, without COPD) contained
30 subjects (18 cancer, 12 control). Models developed
and tested within this phenotype were very accurate, with
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a C-statistic of 0.970 for all cancer vs. control, and 0.987
for non-small cell carcinoma vs. control (Table 3).

Discussion
We report the results of the development of a CSA
based profile of urine headspace gas VOCs as a bio-
marker that could assist with the diagnosis and
characterization of lung cancer. To our knowledge, this
is the first study using a cross-responsive chemical sen-
sor for this purpose. We found the CSA profile had good
accuracy at separating subjects with lung cancer from
clinically appropriate controls; that the accuracy im-
proved when subtypes of lung cancer were compared to
controls; and that the accuracy was very high when the
signatures were developed within a specific subset of
subjects defined by their clinical phenotype. Finally, the
results showed promise at being able to characterize the
lung cancer’s histology and stage.

The current report describes a discovery level study of
a novel urine based lung cancer biomarker. To advance
this work, technical validation of the test and clinical
validation of the results will be required. Technical valid-
ation will include the development of standard operating
procedures for urine collection and processing, and con-
firmation of uniform performance of the CSA from one
batch of sensors to the next. Relatively little is known
about the proper conditions in which urine should be
collected and processed for VOC evaluation. Studies
have suggested each individual’s urine VOC signature is
unique, with a small amount of variability based on diet
which is exceeded by the variability between individ-
uals [24, 25]. Storage of urine samples for up to
1 month at -80 °C seems to have little influence on
the urine VOC profile, [13] whereas storage at room
temperature for 3 days may influence the concentra-
tion of VOCs identified [26]. The number and classes

Table 3 Accuracy of models: Validated C-statistics with confidence intervals through model training on 70 % of subjects and testing

on 30 %

Urine Only

Urine + Clinical Sensitivity (%) Specificity (%)

0.795 (0.768-0.823

All cancer vs. control )
0.804 (0.783-0.825)
)
)

NSCLC vs. control
Adenocarcinoma vs. control 0.900 (0.879-0.920
0.821
0.873 (0.848-0.90)
0.875 (0.843-0.906)

(
(
(0.797-0.847
(
(
0.940 (0.925-0.955)
(
(
(
(

Squamous vs. control

Stage | vs. control

Stage | Adenocarcinoma vs. control
Stage | Squamous vs. control

0.849 (0.828-0.87)
0.922 (0.892-0.952)
0.968 (0.954-0.982)

0.977 (0.957-0.997)

Adenocarcinoma vs. Squamous
Stage | vs. IV
All cancer vs. control (matched)

NSCLC vs. control (matched)

0.810 (0.782-0.838
0.809 (0.782-0.836
0.899-0.936,
0.790-0.853

814 (77.9-84.9)
80.0 (76.8-83.2)
733 (69.1-77.6)
60.0 (55.3-64.7)
49.3 (44.9-53.7)
36.0 (27.7-44.3)
46.7 (394-53.9)
( )
( )
( )
( )

60.0 (56.9-63.1
64.7 (60.8-68.6
89.7 (876918
879 (844914
92.8 (89.5-96.1
(
(
(

)

)

)

0.821 )
)

96.9 (95.2-98.6)
)

)

)

)

)

)
( )
7 ( )
( )
0.875 (0.856-0.894)
0.876 (0.846-0.906)
0.938 (0.923-0953) 97.6 (96.5-98.7
( ) 72.7 (67.2-78.2
( ) 68.0 (60.3-75.7
( ) 880 (81.2-94.8
( )

96.0 (92.8-99.2

0.859 (0.831-0.887
0.922 (0.892-0.952
0.970 (0.954-0.986
0.987 (0.977-0.997

84.0 (80.8-87.3
92.7 (90.2-95.2
955 (924-986
86.7 (83.6-89.8
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of VOCs detected is highest in acidified and basified
urine, [13, 26] with only a small number of VOCs being
ubiquitous independent of pH [8]. Other components of
urine dipstick measurements did not affect classification
accuracy in a canine bladder cancer study [16].

Additives were used to maximize the liberation of
VOCs based on pH and oxidation. Urine samples were
processed and frozen within 2 h but were tested at a
variable distance from the time of processing (some over
1 year later). There did not appear to be any impact
from normalization of results for urine concentration
measures. As a next step, we will learn more about the
influence of diet, the type of collection and storage con-
tainers, the time to processing and testing, the ideal ad-
ditives, the optimal urine volume, temperature during
testing, and the need for normalization to other urine
values.

Lung cancer is heterogeneous in its clinical presenta-
tion and molecular makeup, as is the group of people in
whom it develops. It is likely that one metabolic bio-
marker cannot accurately identify all patients with lung
cancer. A patients clinical phenotype could influence
the metabolic baseline. Alterations from this baseline
may be useful in distinguishing a non-cancer from a
cancer biosignature. Our exploratory results support
very high accuracy of the metabolic biosignature when
developed within a relatively uniform clinical phenotype.
Clinical validation of a technically validated sensor plat-
form will require a larger number of subjects in each
clinical phenotype to be confident in the accuracies
reported.

The output of the CSA, a cross-responsive sensor, is
influenced by the mixture of VOCs to which it is ex-
posed. The output is not able to identify the components
of this mixture. Gas chromatography—mass spectrometry
has been used in a small study to try to define the indi-
vidual VOCs that make up the mixture. Further work in
this area will help us understand the nature of the VOC
signatures. Sensor technologies are more apt to be useful
in the clinical setting because they are inexpensive and
less technically demanding to apply and interpret.

Other limitations of our study include the small sam-
ple size for some of the comparisons where the accuracy
was highest. These comparisons should be viewed as ex-
ploratory, helping to guide the next phase of urine bio-
marker development. It is not clear that the urine
processing methodologies used in this study are optimal,
and minor inconsistencies in the sensor manufacturing
could impart unseen biases in the results. These issues
will need to be addressed as part of the validation of this
biomarker for clinical use. The distinguishing signatures
from a technically validated instrument will then require
validation on an independent cohort of a relevant popu-
lation. The target for this test could be an upfront
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screening test or an adjunct to nodule evaluation. The
validation cohort will need to reflect these targets. The
results presented compare favorably with other bio-
markers of early detection and/or nodule management.

Conclusions

In conclusion, the CSA signature of urine headspace gas
VOCs is capable of distinguishing cancer patients from
clinically relevant controls. The incorporation of clinical
phenotypes into the development of this biomarker may
optimize its accuracy.
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