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Silvestrol induces early autophagy and
apoptosis in human melanoma cells
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Abstract

Background: Silvestrol is a cyclopentalb]benzofuran that was isolated from the fruits and twigs of Aglaia foveolata,
a plant indigenous to Borneo in Southeast Asia. The purpose of the current study was to determine if inhibition of
protein synthesis caused by silvestrol triggers autophagy and apoptosis in cultured human cancer cells derived
from solid tumors.

Methods: In vitro cell viability, flow cytometry, fluorescence microscopy, gPCR and immunoblot was used to study
the mechanism of action of silvestrol in MDA-MB-435 melanoma cells.

Results: By 24 h, a decrease in cyclin B and cyclin D expression was observed in silvestrol-treated cells relative to
control. In addition, silvestrol blocked progression through the cell cycle at the G,-phase. In silvestrol-treated cells,
DAPI staining of nuclear chromatin displayed nucleosomal fragments. Annexin V staining demonstrated an increase
in apoptotic cells after silvestrol treatment. Silvestrol induced caspase-3 activation and apoptotic cell death in a
time- and dose-dependent manner. Furthermore, both silvestrol and SAHA enhanced autophagosome formation in
MDA-MB-435 cells. MDA-MB-435 cells responded to silvestrol treatment with accumulation of LC3-Il and time-dependent
p62 degradation. Bafilomycin A, an autophagy inhibitor, resulted in the accumulation of LC3 in cells treated
with silvestrol. Silvestrol-mediated cell death was attenuated in ATG7-null mouse embryonic fibroblasts (MEFs)
lacking a functional autophagy protein.

Conclusions: Silvestrol potently inhibits cell growth and induces cell death in human melanoma cells through induction

of early autophagy and caspase-mediated apoptosis. Silvestrol represents a natural product scaffold that exhibits potent
cytotoxic activity and could be used for the further study of autophagy and its relationship to apoptosis in cancer cells.
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Background

Skin cancer is the most commonly diagnosed cancer.
Melanoma accounts for less than two percent of skin
cancers, but approximately 75 % of skin cancer deaths
are a result of melanoma [1]. Melanoma is often consid-
ered one of the most aggressive and treatment-resistant
human cancers. Discoveries have shown that melanoma
frequently harbors mutations that attenuate tumor sup-
pressor genes such as p53 and PTEN, leading to cell
cycle dysregulation. Melanoma also frequently exhibits
enhanced activation of receptor tyrosine kinases like epi-
dermal growth factor receptor (EGFR) and MET, as well
as BRAF and small G proteins such as Ras [2]. Together,
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these aberrant signaling networks render melanoma
resistant to conventional chemotherapeutic drugs.

For decades, secondary metabolites from plants, fungi
and bacteria have been found to exhibit potent anti-
cancer activity [3-6]. The genus Aglaia of the plant
family Meliaceae consists of over 100 species of dioecious
trees or shrubs with small fragrant flowers indigenous to
the tropical rain forests of Indonesia and Malaysia, as well
as other southeast Asian countries. Previous phytochemical
studies on Aglaia species have shown that among all the
isolates, cyclopenta[b]benzofurans, also known as rocaglate
or rocaglamide derivatives, deserve further study due to
their unusual carbon skeletons [7, 8] and potent biological
activities. Silvestrol is a rocaglate derivative containing a
dioxanyl ring and was isolated from the tropical tree Aglaia
foveolata. Silvestrol is toxic against human cancer cell lines
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propagated in vitro or in vivo with a potency similar to that
of paclitaxel or camptothecin [9]. It is a translation initi-
ation inhibitor that prevents ribosome loading onto a
mRNA template by targeting the eukaryotic initiation fac-
tor, elF-4A [10, 11]. Silvestrol was found to possess potent
anticancer activities in both the in vivo hollow fiber assay
and the P-388 lymphocytic leukemia mouse model [9]. The
compound has been found to show promising in vitro and
in vivo activities against certain B-cell malignancies [12],
and has been under preclinical toxicogical development in
the National Cancer Institute Experimental Therapeutics
(NEXT) program. However, the mechanism of action
of silvestrol responsible for inducing cellular death is
still unclear. Tight control of protein synthesis is essential
for normal cellular function and survival, but unrestrained
protein synthesis can promote tumorigenesis. Therefore,
silvestrol’s ability to block protein synthesis is of significant
interest in potentially treating cancers.

Autophagy is an essential, homeostatic process involving
the lysosomal degradation of cytoplasmic organelles or
cytosolic components. Autophagy is a physiological process
involved in the routine turnover of proteins or intracellular
organelles [13]. The process of autophagy starts by seques-
tering cytosolic proteins or organelles into autophagosomes
that then fuse with lysosomes to form autolysosomes for
the degradation of sequestered contents by lysosomal hy-
drolases [14]. Control of autophagy relies on proteins
encoded by a set of autophagy-related genes [15]. First,
autophagosome nucleation is mediated by Beclin 1 (Atg6),
a class III phosphatidylinositol 3-kinase complex [16, 17].
Later, the Atgl2-Atg5 complex and microtubule-associated
protein 1 light chain 3 (LC3, Atg8) are required for the
elongation of autophagosomes. During autophagy, LC3-II
is increased from the conversion of LC3-I, which is consid-
ered an autophagosomal marker [18]. Autophagy may pro-
tect against cancer by promoting autophagic cell death or
contribute to cancer cell survival. Importantly, autophagy
and apoptosis often occur in the same cell, mostly in a se-
quence in which autophagy precedes apoptosis. Loss or
gain of either autophagy or apoptosis influences numerous
pathological processes [19, 20]. Proteins involved in path-
ways that modify autophagy might provide novel anticancer
targets [21, 22].

Tight regulation of protein synthesis is critical for cell
survival during nutrient and growth factor deprivation.
In the presence of adequate nutrients, protein synthesis
is stimulated and autophagy is inhibited [23, 24]. Tumor
growth requires new protein synthesis. Therefore, use
of silvestrol that inhibits translation could be a useful
therapeutic strategy [25]. Oncogenic effects arising from
the ectopic expression of the eukaryotic initiation factor
elF-4E has been reported [25]. Moreover, down-regulation
of elF-4E, which is the rate-limiting factor for translation,
has been shown to have an anti-tumor effect [26].
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Considerable attention has therefore been focused on
targeting other components of the protein translation
machinery. As a translation inhibitor with a unique
structure, silvestrol previously showed histological se-
lectivity for several cancer cell types, perhaps through
the depletion of short half-life pro-growth or pro-
survival proteins, including cyclin D and Mcl-1. Given
its ability to modulate tumor cell growth, the current
study evaluates whether silvestrol induces both apoptosis
and autophagy to induce cell death, and further defines
the mechanism of this agent.

Methods

Reagents and antibodies

The isolation of silvestrol, {6-O-demethyl-6-[6-(1,2-
dihydroxyethyl)-3-methoxy-1,4-dioxan-2-yl]-aglafolin}, has
been described previously [9], and this compound was
provided for present study in >99 % purity. Suberoy-
lanilide hydroxamic acid (SAHA; vorinostat), vinblast-
ine, 3-methyladenine (3-MA), bafilomycin Al, acridine
orange and monodansylcadaverine were obtained from
Sigma-Aldrich Corp. (St. Louis, MO). Homoharringtonine
was purchased from Santa Cruz Biotechnology (Santa
Cruz, CA). Primary and secondary antibodies were from
commercial sources and used according to the recom-
mendations of the supplier. Antibodies to Cyclin B1, Cyc-
lin D1, SQSTM1/p62, LC3B, PARP and Caspase 3 were
purchased from Cell Signaling Technology, Inc. (Beverly,
MA). The antibody for Actin was from Sigma-Aldrich
Corp. Secondary anti- rabbit antibodies coupled to
horseradish peroxidase (HRP) were from Cell Signaling
Technology, Inc.

Cell culture

Human melanoma cancer cells designated MDA-MB-435
were purchased from the American Type Culture Collec-
tion (Manassas, VA). Cells were propagated at 37 °C in
5 % CO, in RPMI 1640 medium supplemented with
fetal bovine serum (10 %), penicillin (100 units/mL), and
streptomycin (100 pg/mL). Wild type and ATG7-deficient
mouse embryonic fibroblast cells (MEF and MEF-atg7 ")
were kindly provided by Dr. Masaaki Komatsu (Tokyo
Metropolitan Institute of Medical Science). MEFs were
maintained in Dulbecco’s Modified Eagle’s Medium, sup-
plemented with 10 % fetal bovine serum, and penicillin
(100 units/mL), and streptomycin (100 pg/mL).

For the evaluation of LC3 puncta, the plasmid EGFP-
LC3 was transfected into MDA-MB-435 cells with Lipo-
fetamine 2000 Reagent from Invitrogen (Carlsbad, CA).
Stable cell lines were selected using antibiotic resistant
plasmids containing the gene of interest. The EGFP-LC3
plasmid was kindly provided by Dr. Wei-Pang Huang
(Department of Life Science, National Taiwan University,
Taipei, Taiwan). MDA-MB-435 cells stably expressing
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EGFP-LC3 were selected using 400 pg/mL G418 (Gem-
ini Bio-products, West Sacramento, CA) and maintained
in RPMI 1640 medium containing 200 pg/mL G418.

Cell viability assay

Cells in log phase growth were harvested by trypsiniza-
tion followed by two PBS washings to remove all traces
of enzyme. Cells were seeded at 5,000 cells per well in
96-well clear, flat-bottom plates and incubated overnight.
Silvestrol dissolved in DMSO was then diluted and
added to the appropriate wells. The cells were incubated
in the presence of silvestrol for 72 h and evaluated for
viability with a commercial absorbance assay (CellTiter
96° AQueous One Solution Cell Proliferation Assay,
Promega, Madison, Wisconsin) that measured viable
cells. ICso values were expressed in nM relative to the
solvent (DMSO) control.

Cell cycle assay

MDA-MB-435 cells were plated in 6-well plates and
treated with vehicle, or silvestrol for 24 h. After treat-
ment, the cells were collected by trypsinization, fixed in
70 % ethanol, washed in PBS, resuspended in 1 mL of
PBS containing 1 mg/mL RNase and 50 pg/mL propi-
dium iodide, incubated in the dark for 30 min at room
temperature, and analyzed using an EPICS flow cyt-
ometer (Beckman-Coulter, Brea, CA). The data were an-
alyzed using Multicycle software (Phoenix Flow Systems,
San Diego, CA).

Confocal microscopy

For detection of acidic vesicular organelles with mono-
dansylcadaverine staining, MDA-MB-435 cells were plated
1 day before their treatment and incubated overnight. After
a 24-h treatment, cells were incubated for 10 min with
monodansylcadaverine (50 mM) and subsequently ob-
served by confocal microscopy (Zeiss LSM 710, Jena,
Germany). For live cell imaging detection with acridine
orange, MDA-MB-435 cells were grown on MatTek
35 mm glass-bottomed culture dishes (MatTek Corp.,
Ashland, MA) in complete medium. Cells were exposed
to silvestrol for the indicated time, then incubated with ac-
ridine orange (1 pg /mL) for 15 min and observed under a
confocal microscope. For LC3 puncta imaging, MDA-
MB-435 cells stably transfected with the EGFP-LC3 plas-
mid were grown on MatTek 35 mm glass-bottomed cul-
ture dishes, followed by silvestrol treatment for 24 h. The
subcellular distribution of EGFP-LC3 was observed by
confocal microscopy.

Caspase activity assay

MDA-MB-435 cells in log-phase growth were seeded in
white-walled, clear-bottomed 96-well microtiter plates
and incubated overnight. The next morning, DMSO
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(vehicle), vinblastine or silvestrol were added to the cells
to a final volume of 100 pL. After 24—48 h incubation,
caspase 3/7 activity was assessed using a commercial
luminescence kit according to the manufacturer’s in-
structions (Caspase-Glo® 3/7 Assay, Promega Corp.).
The Caspase-Glo reagent, which also serves to lyse
the cells, was added to each well (100 pL) and the
contents were mixed gently and incubated at room
temperature for 90 min. The resulting luminescence was
measured using a Synergy microplate reader (BioTek
Instruments, Winooski, VT).

Morphological analysis of apoptotic cells

MDA-MB-435 cells were incubated with DMSO, 25 nM
silvestrol, or 1 nM vinblastine for 24 h. The cells were
then washed with PBS, fixed with 3.7 % paraformalde-
hyde and permeabilized with 0.1 % Triton X-100. The
cells were incubated for 5 min in the dark with DAPI
(250 ng/mL). The stained cells were viewed by fluores-
cence microscopy. The percentage of apoptotic cells was
calculated as the ratio of apoptotic cells to total cells
counted, and at least three fields in each well were
counted.

Flow cytometry

For the apoptosis assay, MDA-MB-435 cells were grown
to confluence, and incubated with DMSO or 25 nM sil-
vestrol for the indicated time intervals. The cells were
trypsinized, washed in PBS, and centrifuged at 200x g
for 5 min. Then, the pellet was resuspended in 100 pL
binding buffer and added to 2 pL Annexin V-FITC and
2 pL propidium iodide (PI). After 15 min incubation at
room temperature, FITC and PI fluorescence were detected
using a FACScalibur flow cytometer (Becton Dickinson,
San Diego, CA) and subsequently analyzed by CellQuest
software (BD Biosciences, Franklin Lakes, NJ).

qPCR analysis

Total RNA was isolated using the RNeasy kit (Qiagen,
Valencia, CA) and reverse transcribed into cDNA with the
high-capacity cDNA Reverse transcription kit (Applied
Biosystems, Carlsbad, CA). cDNAs were plated in tripli-
cate in 96-well plates and followed by adding TagMan
Master Mix (Applied Biosystems) and primer probe for a
final volume of 25 pL. The plates were sealed, centrifuged
for 1 min, and then ran by using FAM and VIC as
the detector probes for each assay.

Immunoblot analysis

Whole cell lysates were prepared from MDA-MB-435
cells treated with silvestrol at different time intervals or
with inhibitors. After treatment, cells were harvested,
washed twice with PBS and re-suspended in RIPA Lysis
and Extraction Buffer and incubated on ice for 15 min.
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After centrifugation (4 °C, 15 min and 14,000 g) superna-
tants containing cellular proteins were collected. Protein
concentration was determined by the BCA assay (Pierce,
Rockford, IL). Cell lysates were adjusted for protein con-
tent and equal amounts (25 pg) separated by SDS-PAGE.
Proteins were immobilized onto PVDF membranes. After
saturating with 5 % (w/v) non-fat milk in TBST for 1 h at
room temperature, the membranes were incubated with
primary antibody overnight at 4 °C. The next day, mem-
branes were washed in TBST (5x5 min) then further
incubated with horseradish peroxidase-conjugated IgG
secondary antibody at room temperature for 1 h followed
by extensive washing with TBST (5 x5 min). Finally, the
proteins were visualized using an enhanced chemilumin-
escence (ECL) reagent.

Statistical analysis

The data were analyzed by one-way analysis of variance

(ANOVA) followed by a paired student t-test comparing

untreated controls and treatment groups. P-values of

0.05 or less were considered statistically significant.
Ethics approval was not required in this study.

Results

Cytotoxic effect of silvestrol on human melanoma cells
Many anticancer strategies currently used in clinical on-
cology such as y-irradiation, suicide gene therapy or
immunotherapy, have been linked to activation of the
intrinsic and/or extrinsic pathway of apoptosis in cancer
cells. Silvestrol has displayed sub-nanomolar potency as
a cytotoxic agent in many of the human and murine
cancer cell lines in which it has been tested [6-12]. Thus,
silvestrol was investigated for its ability to kill cancer
cells by inducing apoptosis. To explore the molecular
mechanism of silvestrol, the MDA-MB-435 human mel-
anoma cancer cell line was treated. The ICs, values of
silvestrol were determined using the MTS cell viability
assay. As shown in Table 1, silvestrol-induced cytotoxicity

Table 1 Cytotoxicity of silvestrol on human melanoma cells.
Concentration-dependent response for silvestrol-induced
cytotoxicity in MDA-MB-435 cells. Melanoma cells were treated
with vinblastine, silvestrol, bortezomib, homoharringtonine, and
SAHA for 3 days. Cytotoxicity was determined by the MTS assay
with the viability of control cells defined as 100 %. Dose-response
data represent mean viability + SE (n = 3 wells per treatment)

ICso (NM)
Vinblastine 13
Silvestrol 1.6
Bortezomib 57
Homoharringtonine 20
SAHA 475
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was concentration-dependent when tested between the
range of 100 uM and 0.01 nM. The ICs, value (half
maximal inhibitory concentration) of silvestrol was
1.6 nM in MDA-MB-435 cells and its response to
standard chemotherapy drugs is shown in Table 1. Its
cytotoxicity against other cell lines was listed in Additional
file 1: Table S1. Surprisingly, silvestrol appeared to be
more potent than another translation inhibitor, homohar-
ringtonine (HHT), which is approved for the treatment of
chronic myeloid leukemia [27].

Silvestrol decreases proliferation

To examine whether silvestrol-induced toxicity is asso-
ciated with cell cycle arrest, cells were treated with 25
nM silvestrol for 1, 2 or 3 days followed by a MTS
assay. As shown in Fig. 1a, silvestrol reduced the prolif-
eration rate of cells in a time-dependent manner. Simi-
lar results were found in the HT-29 human colon
cancer cell model (Additional file 2: Figure S1). By
24 h, decreases in cyclin Bl and cyclin D1 expression
were observed in silvestrol-treated cells relative to con-
trols (Fig. 1b). Lastly, to evaluate cell cycle distribution,
cells were treated with silvestrol for 24 h. The data sug-
gested that silvestrol blocks progression through the
cell cycle at the G,-phase (Fig. 1c and d). Silvestrol in-
duced cell cycle arrest was also observed in HT-29 hu-
man colon cancer cells (Additional file 3: Figure S2).
Taken together, these results indicate that silvestrol
blocks the cell cycle at least in part by inhibiting cyclin
expression.

Silvestrol induces activation of caspase-3/7 and apoptosis
To provide some insight into the potential mechanism
of silvestrol-induced cell death, the ability of silvestrol to
activate apoptosis was tested. First, apoptotic cells were
identified by chromatin morphology using DAPI (46-
diamidino-2-phenylindole) staining. Silvestrol induced
chromatin condensation in MDA-MB-435 cells com-
pared to the negative control and the positive control,
vinblastine (Fig. 2a). Next, flow cytometry was con-
ducted using annexin V (AnnV) staining and propidium
iodide (PI) staining to label MDA-MB-435 cells under-
going apoptosis from treatment with or without silves-
trol. In the presence of silvestrol, AnnV'PI" (late-stage
apoptosis) cells significantly increased (Fig. 2b).

Caspase activation is a hallmark of the early stages of
apoptotic cellular death. Within the identified major cas-
pases, the effector, or executioner caspases are caspase-
3, -6, and -7 [28]. Additionally, caspase-3/7 activation
can be detected by the cleavage of a luminogenic sub-
strate containing the sequence DEVD. Caspase-3/7 acti-
vation was detected in MDA-MB-435 cells in response
to silvestrol treatment at 24 and 48 h (Fig. 2c). Similarly,
the increase in caspase 3/7 activity was also detected in
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cells treated with vinblastine. Western blots further con-
firmed silvestrol induced an increase in the abundance
of cleaved poly (ADP-ribose) polymerase (PARP) and
cleaved caspase 3 after 48 h treatment (Fig. 2d). An in-
crease in cleaved caspase 3 and cleaved PARP expression
was observed after 48 h and was comparable to that in-
duced by vinblastine. Next, HHT served as translation
inhibitor control. Notably, cells treated HHT exhibited
no increase in cleaved caspase 3 or PARP. Silvestrol is a
translation inhibitor. Thus, at the protein level, the west-
ern blots showed a lower expression but a higher activ-
ity. Taken together, these findings indicate that silvestrol
can induce apoptosis via activation of a caspase-3-
dependent pathway in MDA-MB-435 cells. Furthermore,
different translation inhibitors, such as silvestrol and
HHT, do not equally induce apoptosis.

Silvestrol induces morphological features of autophagy

In order to determine additional novel mechanisms of
silvestrol-mediated toxicity, a transcriptional array was
performed for cancer signal transduction pathways. Pre-
liminary data suggested that silvestrol could induce au-
tophagy in human colon cancer cells (Additional file 4:
Figure S3). Autophagy involves sequestering cytoplasmic

proteins into lytic components and is characterized by
the formation and promotion of acidic vesicular organ-
elles. Therefore, to investigate silvestrol-induced toxicity
further, the potential of this compound to induce autoph-
agy was studied using biochemical and morphological cri-
teria. In MDA-MB-435 cells, the transcriptional response
to silvestrol was analyzed by using qPCR analyses. Au-
tophagic mRNA LC3B and p62 were upregulated in the
presence of silvestrol (Fig. 3a). Silvestrol’s ability to induce
LC3 and p62 was blocked when combined with the au-
tophagy inhibitor, 3-methyladenine (3MA) (Fig. 3a). In
HT-29 colon cancer cells, silvestrol-induced autophagy
related gene expression was also inhibited by 3MA
(Additional file 5: Figure S4). Consequently, these re-
sults were consistent with the hypothesis that silves-
trol exposure can induce gene transcription associated
with autophagy. Next, western blots were performed
under the same conditions to confirm changes in protein
expression consistent with autophagy. The expression of
endogenous LC3 was analyzed in lysates derived from
MDA-MB-435 cells that had been treated with silvestrol
for up to 24 h. Silvestrol treatment induced early autoph-
agy in the MDA-MB-435 cells, which was characterized by
cleavage of LC3 and a decline in the p62 levels relative to
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control (Fig. 3b). These results imply silvestrol is inducing
the early stages of autophagy in MDA-MB-435 cells.

Silvestrol induces autophagosome accumulation

In order to quantify autophagolysosome-containing cells,
treated cells were stained with monodansylcadaverine
(MDC). Vital staining of silvestrol-treated MDA-MB-435
cells with MDC, a specific autophagolysosome marker,
revealed increased accumulation of the dye relative to con-
trol cells (Fig. 4a). The increase in autophagolysosome was
comparable to that observed with HHT and SAHA, which
is known to induce autophagy [29]. To quantify the devel-
opment of the acidic vesicular organelles, silvestrol-treated
cells were stained with acridine orange. Representative
photomicrographs of control, SAHA -treated, HHT-treated,

and silvestrol-treated cells are shown. Both silvestrol and
SAHA enhanced autophagosome formation in MDA-MB-
435 cells (Fig. 4a).

To better understand the role of silvestrol in autopha-
gosome formation, LC3 protein location was evaluated.
LC3, a homolog of yeast Atg8, was used as an autophagy
marker. LC3 is specifically localized to autophagic struc-
tures, including the autophagosome and its precursor
structures, the phagophore and the autolysosome. Under
normal nutritional conditions, LC3 protein is distributed
diffusely in the cytoplasm. Upon induction of autophagy
(e.g., by starvation), autophagosomes are formed, which
is an important early step of autophagy induction, while
LC3 gets redistributed to a vacuolar pattern. The EGFP-
LC3 fusion protein has a similar distribution pattern to
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endogenous LC3 and can be used as an alternative marker
of autophagy induction since it appears as cytoplasmic
puncta under fluorescence microscopy. Therefore, the
appearance of multiple LC3-positive puncta suggests the
induction of autophagy. MDA-MB-435 EGFP-LC3 cells
were used to study the cell response to silvestrol. When
comparing with control cells, cells treated with silvestrol
or SAHA displayed multiple EGFP-LC3 puncta, repre-
senting autophagic vacuoles that were formed in the cyto-
plasm (Fig. 4b).

An increased number of autophagosomes could result
from either increased formation or decreased degradation.
3MA, a PI3K inhibitor, blocks autophagy induction. Bafilo-
mycin Al is a potent inhibitor for vacuolar-type H*-ATPase
that is required for fusion of the autophagosome with
the lysosome. Therefore, 3MA and bafilomycin Al were
employed to assess LC3-II accumulation as a marker of
autophagosome formation in MDA-MB-435 cells. As illus-
trated in Fig. 4c, silvestrol-induced LC3-II accumulation
was attenuated by 3MA. In contrast, silvestrol could still
induce LC3-II accumulation in the presence of bafilomycin
Al, suggesting that the increase of LC3-II was not due to
the blockage of autophagic degradation.

In mammalian cells, Atg7 is essential for the autophagy
conjugation system, the formation of autophagosomes, and
degradation of proteins and organelles. To evaluate the
relationship between autophagy and silvestrol-induced
cell death, silvestrol-induced cytotoxicity in wild-type
and Atg7-null mouse embryonic fibroblasts (MEFs)
were compared. The cytotoxicity induced by silvestrol
was more sensitive in wild-type compared to Atg7”~ MEF
cells (Fig. 4d), suggesting autophagy was involved in

silvestrol-induced cell death. Taken together, these find-
ings suggest that silvestrol upregulates gene transcription
and triggers the protein translation of the early autoph-
agy pathway components as well as caspase-mediated
apoptosis.

Discussion

Silvestrol is a plant-derived natural product that repre-
sents a promising lead structure in anti-cancer drug dis-
covery. In this study, the cytotoxic potential of silvestrol
against human melanoma cells was investigated. Silves-
trol dramatically reduced the viability of MDA-MB-435
cells. Additionally, decreases in cyclin Bl and cyclin D1
expression were observed in silvestrol-treated cells, with
blockage of the cell cycle at the G,-phase. Silvestrol also
induced apoptotic features such as nuclear chromatin
condensation and caspase-3 activation. Silvestrol induced
early autophagosome accumulation, such as LC3-II accu-
mulation and time-dependent p62 degradation. The up-
stream inhibitor, 3MA, but not the downstream inhibitor,
bafilomycin A, blocked autophagy processes induced by
silvestrol. Taken together, these studies have provided
insight into the potential of silvestrol to induce cell death
in melanoma.

Previous data have demonstrated that silvestrol can in-
duce cell cycle arrest and apoptosis [30, 31]. However,
little is known about the molecular mechanism(s) mediat-
ing these effects. Cell death can occur through multiple
pathways, and the induction of multiple mechanisms of
cell death might be useful in cancer therapy. Inhibition of
protein synthesis leading to autophagy and apoptosis
is a promising new strategy for anticancer therapy.
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Fig. 4 Silvestrol treatment induces autophagy in MDA-MB-435 cells. a Cells were treated with either DMSO, 5 uM SAHA, 30 nM homoharringtonine
(HHT), or 25 nM silvestrol for 24 h and subsequently stained with monodansylcadaverine (MDC) or acridine orange (AO). Both silvestrol
and SAHA promoted vacuole formation (indicated by blue staining in MDC and red staining in AO). Images are representative of a pattern of staining
observed in at least three independent experiments. b Silvestrol induces autophagy by mediating EGFP-LC3 translocation. Representative pictures of
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cells treated with DMSO, 5 uM SAHA or 25 nM silvestrol for 24 h. ¢ Cells were treated with 25 nM silvestrol in the presence or absence of 3MA (10 mM),
bafilomycin A1 (50 nM) and then harvested for protein analysis. Cell lysates were resolved in SDS-PAGE and probed with specific antibodies against LC3
and Actin. d Wild-type (WT) or Atg7”~ MEFs were treated with 25 nM silvestrol for 72 h. Cytotoxicity was determined by MTS assay with the viability of

control cells defined as 100 %. The data are represented as means + SEM, * p <0.05

For instance, the histone deacetylase (HDAC) inhibitor,
SAHA, is a strong autophagy inducer and also initiates
caspase-dependent apoptosis [32, 33]. In contrast, sangui-
lutine is another natural product that has been docu-
mented to induce autophagy, but it does not induce
caspase-dependent cell death in human A375 melanoma
[34]. These studies support that silvestrol induces both
early autophagy and caspase-mediated apoptosis in hu-
man melanoma cells. These activities are different when
compared to homoharringtonine, another protein synthe-
sis inhibitor, highlighting the different mode of translation
inhibition. Driven by the need for new anticancer targets,
the exploration of small molecules that regulate cell death
through several mechanisms may provide valuable cancer
chemotherapeutic agents.

There is accumulating evidence that modulation of
protein translation with depletion of short half-life sur-
vival factors can enhance therapeutic responses [31].
The effect of silvestrol on cyclin B and cyclin D expres-
sion is consistent with these reports. Further analysis of
selectively translated mRNAs modulated by silvestrol
may be useful to understand specific pathways involved
in cancer progression.

There are strong correlations between defects in au-
tophagy regulation or execution and cancer development
[35]. This may be due to the fact that autophagy deficiency
results in increased DNA damage and gene amplification,
decreased cellular differentiation and protein catabolism,
especially during stress. In addition, evidence is accruing
in the literature that suggests that chemotherapeutic
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agents can induce autophagic cell death in apoptosis defi-
cient cancer cells while autophagy might potentiate some
anticancer drugs against cancer [29, 32, 36-38]. In con-
trast, other studies suggest that genetic or pharmaco-
logical inhibition of autophagy enhances efficacy of cancer
chemotherapeutic agents [39, 40]. Suppression of the early
stage of autophagy by Atg7 knockout reduced silvestrol-
induced cytotoxicity indicating that autophagy assists in
some of the silvestrol-induced cell death. Combination
therapies with silvestrol and other chemotherapeutic
agents are under active investigation for melanoma
and other cell lines. Although silvestrol and HHT are both
as translation inhibitors, HHT can induce autophagy but
has a limited ability to drive the apoptotic pathway
suggesting that the mechanism of translational inhibition
impacts autophagy and its relationship to apoptosis. Cy-
cloheximide, another translational inhibitor demonstrated
autophagy inhibition [41]. Subtle differences in the binding
site of the specific translational inhibitor may underlie
changes in autophagy.

The functional relationship between the two self-
destructive processes, autophagy and apoptosis, is com-
plex and under-studied. In general, it appears that similar
stimuli can induce either apoptosis or autophagy in a mu-
tually exclusive manner [20]. Generally, autophagy repre-
sents a stress adaptation that avoids cell death, but in
several scenarios, autophagy can also lead to autophagic
cell death [42-45]. For example, in previous reports inhib-
ition of the early steps of autophagy reduced the activation
of caspase 8-mediated apoptosis, while inhibition of the
late steps of autophagy increased caspase-dependent cell
death [46]. A recent study indicates that p62 might act as
a key factor that influences autophagy to induce cell death
or survival [35, 47]. It has been shown p62 silencing in-
duced autophagy activation and caused cell death. In fact,
the protein p62 can interact with TRAF6, which is a lysine
63 (K63) E3 ubiquitin ligase that promotes TRAF6
oligomerization, activation of NF«kB, and cell survival
during tumorigenesis [35, 48]. Thus, the elimination of
p62 suppresses tumorigenesis. Based on the current study,
silvestrol similarly leads to the degradation of p62 and
cancer cell death.

Conclusion

In summary, silvestrol is an unusual rocaglate derivative
with a dioxanyl ring that potently inhibits cell growth
and induces cell death in human melanoma cells through
induction of early autophagy and caspase-mediated apop-
tosis. These findings provide insight into the mechanisms
of cell death and signaling from silvestrol in melanoma.
Understanding the interplay between autophagy and apop-
tosis could potentially inform the development of future
chemotherapy agents and improve combination therapies
that stimulate these pathways. Future studies on silvestrol
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could focus on structure/ligand based drug design in
concert with structural biology, synthetic chemistry, bio-
chemical analysis and pharmacokinetics [49]. Based on the
cytotoxic potential of silvestrol, this may provide a novel and
promising strategy to improve the anticancer treatment.
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