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Abstract

Background: Methylation is a common epigenetic modification which may play a crucial role in cancer
development. To investigate the association between methylation of COX-2 in blood leukocyte DNA and risk of
gastric cancer (GC), a nested case–control study was conducted in Linqu County, Shandong Province, a high risk
area of GC in China.

Methods: Association between blood leukocyte DNA methylation of COX-2 and risk of GC was investigated in 133
GCs and 285 superficial gastritis (SG)/ chronic atrophic gastritis (CAG). The temporal trend of COX-2 methylation
level during GC development was further explored in 74 pre-GC and 95 post-GC samples (including 31 cases with
both pre- and post-GC samples). In addition, the association of DNA methylation and risk of progression to GC was
evaluated in 74 pre-GC samples and their relevant intestinal metaplasia (IM)/dysplasia (DYS) controls. Methylation
level was determined by quantitative methylation-specific PCR (QMSP). Odds ratios (ORs) and 95 % confidence
intervals (CIs) were calculated by unconditional logistic regression analysis.

Results: The medians of COX-2 methylation levels were 2.3 % and 2.2 % in GC cases and controls, respectively. No
significant association was found between COX-2 methylation and risk of GC (OR, 1.15; 95 % CI: 0.70-1.88). However,
the temporal trend analysis showed that COX-2 methylation levels were elevated at 1–4 years ahead of clinical GC
diagnosis compared with the year of GC diagnosis (3.0 % vs. 2.2 %, p = 0.01). Further validation in 31 GCs with both
pre- and post-GC samples indicated that COX-2 methylation levels were significantly decreased at the year of GC
diagnosis compared with pre-GC samples (1.5 % vs. 2.5 %, p = 0.02). No significant association between COX-2
methylation and risk of progression to GC was found in subjects with IM (OR, 0.50; 95 % CI: 0.18–1.42) or DYS (OR,
0.70; 95 % CI: 0.23–2.18). Additionally, we found that elder people had increased risk of COX-2 hypermethylation
(OR, 1.55; 95 % CI: 1.02–2.36) and subjects who ever infected with H. pylori had decreased risk of COX-2
hypermethylation (OR, 0.54; 95 % CI: 0.34–0.88).

Conclusions: COX-2 methylation exists in blood leukocyte DNA but at a low level. COX-2 methylation levels in
blood leukocyte DNA may change during GC development.
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Background
Gastric cancer (GC) is the second leading cause of can-
cer death worldwide [1]. Evidences accumulatively re-
vealed that GC was a consequence of multistage
progression of gastric lesions with complex molecular al-
terations, including DNA methylation [2–4].
Several tumor-related genes, such as CDH1, p16, APC,

COX-2, RUNX3, and hMLH1, were detected aberrant
methylation in GC [5–8]. However, most of these studies
were focused on tissue samples, and few data on the al-
teration of blood leukocyte DNA methylation was re-
ported. Unlike tissue DNA, blood leukocyte DNA can be
obtained non-invasively and inexpensively, thus, aber-
rant methylation of blood leukocyte DNA may serve as
a potential biomarker for GC diagnosis.
Cyclooxygenase 2 (COX-2) is an inducible enzyme,

and particularly overexpressed during inflammation of
tissue [9]. Animal models showed that COX-2 played
important roles in cell adhesion, apoptosis, and angio-
genesis [10]. Recently, COX-2 was found to be up-
regulated in various carcinomas and play a central role
in tumorigenesis [11–13]. Our previous study demon-
strated that overexpression of COX-2 was associated
with Helicobacter pylori (H. pylori) infection and in-
creased the risk of precancerous gastric lesions [14].
Studies in vitro and in tumor tissue suggested that pro-
moter methylation status of COX-2 may regulate mRNA
and protein expression [8, 15–17]. However, little is
known about COX-2 promoter methylation status in
blood leukocyte DNA.
In this study, we were particularly interested in the as-

sociation between COX-2 methylation in blood leukocyte
DNA and risk of GC. We compared the COX-2 methyla-
tion levels in GC cases with superficial gastritis (SG) or
mild chronic atrophic gastritis (CAG) controls. In
addition, blood samples collected before or/and after GC
clinical diagnosis from two long-term cohorts provided
us a unique opportunity to evaluate the dynamic
changes of COX-2 methylation levels during progression
of gastric lesions and GC development.

Methods
Study population
In 1989 and 2002, two cohort studies were launched in
Linqu County, involving 3433 and 2638 subjects [18, 19],
and 186 GCs were identified until 2009. Endoscopic
screening was performed at baseline of each cohort and
followed a repeated endoscopic examination using the
same procedures in 1999, 2003 and 2009, respectively. For
each subject, the biopsy specimens were taken from 5–7
standard sites of the stomach, and given its corresponding
histopathologic diagnosis by three senior pathologists in-
dependently from Peking University Cancer Hospital ac-
cording to the Updated Sydney System [20] and Padova

International Classification [21]. Each biopsy was classified
according to the presence or absence of SG, mild/severe
CAG, intestinal metaplasia (IM), dysplasia (DYS) or GC,
and given a diagnosis based on the most severe histology.
Each subject was assigned a “global” diagnosis based on
the most severe diagnosis among any of the biopsies.
For the current study, a nested case–control design

was used based on the two cohorts enrolling 133 GC
cases with at least one blood sample from follow-up
period. According to the time of diagnosis, blood
leukocyte samples collected from GC cases were defined
into pre-GC (before GC diagnosis ranging from 1 to
10 years) and post-GC (the year of GC diagnosis or up
to 10 years after). Among them, 74 pre-GC blood sam-
ples from 69 GC cases (5 cases with two pre-GC sam-
ples with different time interval) and 95 post-GC
samples were collected. Additionally, 31 cases had both
pre-GC and post-GC samples were also selected as self-
control to measure the methylation levels in the two
time intervals (Fig. 1).
To test COX-2 methylation level and risk of GC, 285

subjects with SG or mild CAG were selected as controls
for 95 post-GC cases at random with a ratio of 1:3 and
frequency-matched in age category (<60 and ≥60 years)
and gender. We further selected 99 subjects with IM
and 105 with DYS who did not progress to GC during
the follow-up period randomly from baseline as controls,
because the corresponding gastric lesions for the pre-
GC diagnosis were mainly IM (n = 33) and DYS (n = 35)
(Fig. 1).
All of the blood samples were collected before the

endoscopic examination. Information on gender, date of
birth, cigarette smoking and alcohol drinking were ob-
tained from the questionnaires at the baseline of the two
cohorts, respectively. Age was determined according to
the year when blood sample was collected. Because a
number of repeated endoscopic examinations were per-
formed, more than one blood samples from the same
subject were collected. Consequently, different ages were
calculated corresponding to the date of sample collec-
tion in the data analysis. This study was approved by the
Institutional Review Board of Peking University School
of Oncology and all subjects gave written informed
consent.

DNA preparation and bisulfite modification
Peripheral blood samples were collected in K2EDTA
tubes (BD Vacutainer®) and centrifuged at 3000 rpm for
10 min for separation from plasma. The leukocyte frac-
tion was washed by Tris-EDTA for 3 times and high mo-
lecular weight genomic DNA was isolated by standard
proteinase K digestion and phenol-chloroform extrac-
tion. Bisulfite treatment was reported previously [22].
Briefly, 1–10 μg genomic DNA was modified with
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sodium bisulfite for 16 h at 50 °C to completely convert
the unmethylated cytosines to uridines. Bisulfite treated
DNA was then purified with a genomic DNA purifica-
tion kit (Promega, Madison, WI) and stored at −20 °C
until use.

COX-2 Methylation analysis
Fluorescence-based, real-time quantitative methylation-
specific PCR (QMSP) was carried out for COX-2 using a
7500 fast Real-time PCR system (Applied Biosystems,
Foster City, CA, USA) with the primers and probe as de-
scribed previously [23]. The PCR was conducted in a 20-
μl mixture, containing 100 ng of bisulfate modified
DNA, 200nM of each primer and probe, and 10 μl 2X-
MaximaTM Probe/Rox qPCR Master Mix (Fermentas
Burlington, Ontario, Canada) at the following condi-
tions: 95 °C for 10 min, followed by 40 cycles of 95 °C
for 15 s and 60 °C for 1 min. The efficiency of PCR amp-
lification was confirmed to be nearly 100 %, and beta
actin (ACTB) was used as a reference set to normalize
for input DNA.
The methylation level of COX-2 was expressed as per-

centage, calculated by dividing the COX-2/ACTB ratio of
a sample by the COX-2/ACTB ratio of HL60 (a human
promyelocytic leukemia cell line which was confirmed to
be 100 % methylated in the CpGs in COX-2 primers and
probe). The analysis was performed blind by one techni-
cian, and various lesion groups were randomly mixed for
bisulfite treatment and real-time PCR. Each primer pair
was run in a separate well and at least 2 parallels were
required at each sample. Parallels were removed when

the CT values differed more than 0.06, and the same
sample was repeated. A total unmethylated cell line
MKN45 was used as negative control to qualify the PCR
reaction as well as DNA preparation and bisulfite modi-
fication procedure.

H. pylori antibody assay
H. pylori antibody assays were used for determination of
H. pylori infection with the serum separated from blood
samples collected. Details of serologic assay were de-
scribed previously [24]. Briefly, serum levels of anti-H.
pylori IgG were measured separately in duplicate with
enzyme-linked immunosorbent assay (ELISA) proce-
dures. An individual was determined to be positive for
H. pylori infection if the mean optical density of IgG ≥
1.0. Quality-control samples were assayed at Vanderbilt
University, Nashville, Tennessee.

Statistical analysis
Pearson’s χ2 test was used to examine the differences in
distribution of age group, gender, smoking, drinking and
H. pylori infection status between SG/CAG and post-GC
groups. Mann–Whitney/Wilcoxon test was used to com-
pare the COX-2 methylation levels between SG/CAG
and post-GC groups.
Odds ratios (ORs) and 95 % confidence intervals (CIs)

were used to assess the associations between COX-2
methylation and the risk of GC and progression of gas-
tric lesions, the potential risk factors, and the differences
methylation levels between pre-GC and post-GC groups
by unconditional logistic regression, adjusting for age,

Fig. 1 Structure of sample selection. All subjects were selected from our two cohort studies, including 133 GC cases, 285 SG/mild CAG, 99 IM and
105 DYSs
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gender, smoking, drinking, and H. pylori infection status.
Ptrend was applied by unconditional logistic regression to
analyze the temporal trend of COX-2 methylation levels.
To compare the methylation status in 31 GC cases with
both pre- and post-diagnosis blood samples, conditional
logistic regression was applied with age adjusted.
All analyses were performed using the Statistical

Analysis System software (version 9.0; SAS Institute,
Cary, NC). P value of <0.05 was considered significant
and all statistical tests were two sided.

Results
The frequency distributions of age, gender, cigarette
smoking, alcohol consumption and H. pylori status of 95
post-GCs and 285 controls were presented in Table 1. The
frequency of H. pylori infection was significantly higher in
GC than control group (88.4 % vs. 61.4 %, p < 0.001). The
other factors showed no statistical difference in the two
groups.

Methylation levels in GCs and SG/CAG controls
We first compared the methylation levels of COX-2 be-
tween GC cases and SG/mild CAG controls. The me-
dians (interquartile range) of COX-2 methylation levels
were 2.3 % (1.2–3.9 %) in cases and 2.2 % (1.4–3.4 %) in
controls (p = 0.94). To further evaluate the relationship
between COX-2 methylation and risk of GC, we set 2 %
as a cut-off value according to the median level in

control group. No significant association was found be-
tween COX-2 methylation level and GC risk (OR, 1.15;
95 % CI: 0.70–1.88) after adjusting for age, gender,
smoking, drinking and H. pylori infection.

Temporal trends of methylation levels in GC development
By comparing pre-GC (n = 74) and post-GC (n = 95)
samples (Table 2), we found that COX-2 methylation
levels were slightly lower in post-GC samples than pre-
GC samples (2.3 % vs.2.5 %), although the p value
showed no statistical significance (p = 0.32).
The temporal trend of COX-2 methylation levels dur-

ing GC development was explored by dividing the pre-
and post-GC samples into 5 groups (5–10 years pre-GC,
1–4 years pre-GC, GC diagnosis year, 1–4 years post-
GC and 5–10 years post-GC) according to the time
interval between sample collection and GC diagnosis. As
shown in Table 2, the median methylation levels of
COX-2 in different groups were 1.9 % (1.4–4.0 %), 3.0 %
(2.0–4.5 %), 2.2 % (1.1–2.8 %), 1.9 % (1.4–2.9 %) and
2.8 % (1.8–4.9 %), respectively. Taking the year of GC
diagnosis as reference (2.2 %), COX-2 methylation levels
were significantly increased at 1–4 years ahead of clinical
GC diagnosis (3.0 %, p = 0.01), and decreased at 1–4
years after GC diagnosis (1.9 %, p = 0.80). However,
COX-2 methylation was back to a higher level at 5–10
years after GC diagnosis (2.8 %, p = 0.06). Since COX-2
methylation levels fluctuated before and after GC clinical
diagnosis, we did not find a significance linear trend be-
tween groups (p = 0.32).
A similar trend of COX-2 methylation levels was fur-

ther validated in 31 GC cases (10 females and 21 males)
with both pre-GC and post-GC samples (Table 3). We

Table 1 Selected characteristics of the individuals

Variables Post-GC SG/mild CAG P a

n = 95 n =285

Age (%) 1.00

< 60 40(42.1) 120(42.1)

≥ 60 55(57.9) 165(57.9)

Gender (%) 1.00

Female 26(27.4) 78(27.4)

Male 69(72.6) 207(72.6)

Smoking (%) 0.99

Ever smoke 57(60.0) 173(60.7)

Never smoke 37(38.9) 112(39.3)

Missing 1(1.1)

Drinking (%) 0.93

Ever drink 48(50.5) 154(54.0)

Never drink 40(42.1) 131(46.0)

Missing 7(7.4)

H. pylori infection (%) <0.001

Ever infected 84(88.4) 175(61.4)

Never infected 11(11.6) 110(38.6)
a χ2 test, P value for each covariate was estimated among participants without
missing value in that variate

Table 2 The temporal trends of COX-2 methylation levels dur-
ing GC development

n Methylation proportion Pa

Median % (interquartile range)

Total pre-GC and post-GC samples

Pre-GC 74 2.5(1.5–4.4)

Post-GC 95 2.3(1.2–3.9)

Pb 0.32

Temporal trend

5–10 years pre-GC 32 1.9(1.4–4.0) 0.53

1–4 years pre-GC 42 3.0(2.0–4.5) 0.01

GC diag. year 46 2.2(1.1–2.8) Ref.

1–4 years post-GC 21 1.9(1.4–2.9) 0.80

5–10 years post-GC 28 2.8(1.8–4.9) 0.06

Ptrend
c 0.32

aMann-Whitney Test/Wilcoxon Test
b Unconditional logistic regression analysis, adjusted for age, gender, smoking,
drinking and H. pylori infection status
c Unconditional logistic regression analysis
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found that COX-2 methylation levels were significantly
decreased in post-GC compared with pre-GC samples
(1.5 % vs. 2.5 %, p = 0.04). Because most of the 31 pairs
of GC samples were collected at 1–4 years ahead of
diagnosis (n = 22) and GC diagnosis year (n = 21), we
compared two groups and found that COX-2 methyla-
tion levels were significantly lower in GC diagnosis year
samples than in 1–4 years pre-GC samples (1.5 %
vs.2.5 %, p = 0.02).

Methylation levels in IM or DYS subjects with different
outcomes
Because the corresponding gastric lesions for the pre-
GC diagnosis were mainly IM and DYS, we were very
interested to compare the methylation levels in subjects
with IM or DYS progressed or not progressed to GC
during the follow-up period. However, no significant dif-
ferences were found between subjects with IM/DYS

progressed or not to GC (OR, 0.50; 95 % CI: 0.18–1.42
for IM and OR, 0.70; 95 % CI: 0.23–2.18 for DYS)
(Table 4).

Relationships between methylation status and
epidemiologic parameters
We also examined the association between COX-2
methylation level and age or other risk factors. As shown
in Table 5, for the total participants, COX-2 methylation
levels were significantly higher in older subjects (OR,
1.55; 95 % CI: 1.02–2.36), but lower in subject who ever
infected with H. pylori (OR, 0.54; 95 % CI: 0.34–0.88).
No statistically significant associations were observed be-
tween COX-2 methylation level and gender, smoking,
and drinking.

Discussion
In the present study, based on our two cohort studies
in a high-risk population of GC, we quantified COX-2
methylation level in blood leukocyte DNA of various
gastric lesions and investigated the relationship be-
tween methylation of COX-2 in blood leukocyte DNA
and risk of GC.
Until now, studies on the association between blood

leukocyte DNA methylation and risk of GC are limited.
Several studies suggested that global hypomethylation in
blood leukocyte DNA may be related to GC risk [25, 26].
Recently, a study showed that whole blood p16 methyla-
tion may serve as an important prognostic indicator of
gastric adenocarcinoma [27]. A Japanese study showed
that methylation level of IGF2 in blood leukocyte DNA
was lower in GC cases than healthy controls [28]. To our
best knowledge, this is the first study to explore the rela-
tionship of COX-2 methylation in blood leukocyte DNA
and risk of GC.
Human COX-2 gene is located in 1q25.2–25.3, consist-

ing of 10 exons and 9 introns. In the 5′-flanking region,
there is a CpG island containing several potential tran-
scription factor binding sites, including two NF-κB sites,

Table 3 The methylation level in 31 pairs of GC cases

Methylation proportion

Median % (interquartile range)

Self-control study

Pre-GC 2.5(1.4–4.4)

n = 31

Post-GC 1.5(0.9–2.8)

n = 31

Pa 0.04

Temporal trend

1–4 years pre-GC 2.5(1.4–4.5)

n = 22

GC diag. year 1.5(0.7–2.7)

n = 21

Pb 0.02
a Conditional logistic regression analysis, adjusted for age
b Mann–Whitney Test/Wilcoxon Test

Table 4 Association between COX-2 methylation and risk of progression to GC

Hypermethylateda Hypomethylated OR(95 % CI)b Pb

IM (Progress to GC) 18(54.6) 15(45.5) 0.50(0.18-1.42) 0.19

n = 33

IM (Not progress to GC) 69(69.7) 30(30.3)

n = 99

DYS (Progress to GC) 24(68.6) 11(31.4) 0.70(0.23–2.18) 0.54

n = 35

DYS (Not progress to GC) 70(66.7) 35(33.3)

n = 105
a Cut-off value was set as 2 %, according to the median COX-2 methylation level of SG/CAG group
b Unconditional logistic regression analysis, adjusted for age, gender, smoking, drinking and H. pylori infection status
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two AP-2 sites, three SP1 sites, one C/EBP motif, one
Ets-1 site, and one CRE site [29]. SP1 and AP-2 were
two human transcription factors, which play critical
roles in regulating gene expression during embryonic
early development [30–35]. We selected a 75 bp region
containing 7 CpG sites in the downstream of the tran-
scriptional starting codon from −296 to −222 with one
SP1 binding site and one AP-2 binding site.
In this study, we found that COX-2 methylation

existed in blood leukocyte DNA, but at a low level. The
median of COX-2 methylation levels was only 2.2 % in
SG/mild CAG group. A previous study reported that the
frequency of COX-2 hypermethylation was 88 % in pri-
mary prostate cancer tissues [36]. However, a German
study showed that the frequency of COX-2 hypermethy-
lation was only 2.4 % in serum of prostate cancer [37].
Another study using microdissected foci collected from
esophageal cancer patients showed that COX-2 methyla-
tion was more common in subepithelial lymphocytes
than in epithelial foci or non-lymphocytic stromal tis-
sues [38]. These findings suggested that COX-2 methyla-
tion might have tissue specificity.
In the present study, we did not found association be-

tween COX-2 methylation in blood leukocyte DNA and
risk of GC. However, the temporal trend analysis showed
that COX-2 methylation levels were elevated at 1–4
years ahead of clinical GC diagnosis. Further validation

using 31 GC cases with both pre- and post-GC blood
samples indicated that COX-2 methylation levels were
significantly increased before GC diagnosis, suggesting
that subjects with higher COX-2 methylation levels in
blood leukocyte DNA may increase the GC risk. How-
ever, no significant association between COX-2 methyla-
tion and risk of progression to GC was found in subjects
with IM and DYS who progressed to GC in contrast to
those remained with IM and DYS. It may speculate that
COX-2 methylation levels mainly increased 1–4 years
but not 5–10 years prior to clinical diagnosis. For sub-
jects with IM or DYS who progressed to GC, the blood
samples were collected not only at 1–4 years (18 IM, 20
DYS), but also at 5–10 years (15 IM, 15 DYS). Due to
the small sample size, we cannot conduct a stratified
analysis. Further study with a large sample size is war-
ranted to confirm our results. In addition, because COX-
2 methylation levels in blood leukocyte DNA were very
low, more studies are needed to identify potential bio-
markers for GC diagnosis.
The mechanism for blood leukocyte DNA methylation

of COX-2 and risk of GC is still unclear. Until now, no
study focused on the mechanism of blood leukocyte
DNA methylation and carcinogenesis process, and
whether DNA methylation levels in blood leukocytes
could represent those in tissues was still unclear. Studies
showed that COX-2 mRNA and protein expression were

Table 5 Factors affecting blood leukocyte methylation of COX-2

Characteristics Total (n = 380) SG/mild CAG (n = 285) Post-GC (n = 95)

n OR (95 % CI)a n OR (95 % CI)a n OR (95 % CI)a

Age

< 60 160 1.00 120 1.00 40 1.00

> =60 220 1.55(1.02–2.36) 165 1.54(0.94–2.51) 55 1.77(0.71–4.39)

Gender

Female 104 1.00 78 1.00 26 1.00

Male 276 1.34(0.71–2.53) 207 1.57(0.74–3.31) 69 0.90(0.25–3.20)

Smoking

Never 149 1.00 112 1.00 37 1.00

Ever 230 0.99(0.56–1.73) 173 0.89(0.47–1.69) 57 1.21(0.37–3.98)

Current 205 0.96(0.57–1.64) 155 0.84(0.46–1.54) 50 1.40(0.45–4.39)

Drinking

Never 171 1.00 131 1.00 40 1.00

Ever 202 0.70(0.43–1.16) 154 0.61(0.34–1.09) 48 1.02(0.35–3.00)

Current 182 0.74(0.46–1.20) 138 0.64(0.37–1.11) 44 1.22(0.43–3.43)

H. pylori infection

Never 121 1.00 110 1.00 11 1.00

Ever 259 0.54(0.34–0.88) 175 0.49(0.29–0.83) 84 1.18(0.28–4.98)

Current 210 0.71(0.47–1.09) 150 0.69(0.43–1.12) 60 0.77(0.31–1.93)
a Unconditional logistic regression analysis, adjusted for other factors (age, gender, smoking, drinking or H. pylori infection status)
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frequently up-regulated in human GC tissue and cell
lines [39–41], and 5-aza-deoxycytidine treatment could
increase both COX-2 mRNA and protein expression in
vitro [42–44]. Another study found that treatment of
COX-2-methylated cells with 5-azacytidine had a modest
effect on COX-2 expression, but when 5-azacytidine-
treated cells were subsequently stimulated with H. pylori,
there was a significant, 5–10-fold enhancement of both
COX-2 mRNA and protein expression [9]. These find-
ings suggested that COX-2 methylation may be involved
in gastric carcinogenesis via regulation COX-2 mRNA
and protein expression. However, the biological signifi-
cance of blood leukocyte DNA methylation of COX-2
needs further studies.
Growing evidences demonstrated that age, environ-

ment and lifestyle factors may modify DNA methylation
[45–47]. Studies on specific gene methylation showed
that CDH1, p53, RUNX3, p16 methylation levels were
significant higher in older persons [27, 48]. Aging is as-
sociated with global hypomethylation of DNA and
hypermethylation of specific genes [49–51]. In our study,
we found higher COX-2 methylation levels in blood leu-
kocytes in older persons, consistent with the hypothesis
and previous studies. H. pylori infection was a well-
known factor which was associated with methylation of
many tumor-related genes [5, 52]. A study suggested
that loss of COX-2 methylation might facilitate COX-2
expression, which associates with H. pylori infection [9].
In the current study, we found that COX-2 methylation
levels were lower in subjects who ever infected with H.
pylori. We were also interested in association between
differentiation types, metastasis and surgery status of
GC and COX-2 methylation levels. Based on our available
data, we found that subjects with poor differentiation, me-
tastasis and without surgery had low methylation levels
compared with those with moderate/high differentiation,
without metastasis and surgery. However, no significant
differences were found (data not shown).
Our study has several strengths. Firstly, all subjects

came from a high-risk area of GC, containing various
pathological diagnosed samples. Secondly, our study had
pre-GC diagnosis blood samples for the dynamic obser-
vation of COX-2 methylation and also for the compari-
son of methylation levels between subjects progressed
and non-progressed to GC. Instead of normal controls,
we selected SG/mild CAG subjects as references,
however, this “sub-normal” control could only lead to
the dilution of disparity between comparison groups.
In addition, because of the limited number of GC
cases (n = 31) with both pre- and post-GC samples,
unmatched samples were also analyzed for COX-2
methylation alteration before and after GC diagnosis.
While, no significant difference was found probably
due to the confounders difficult to control.

Conclusions
In conclusion, our population-based nested case–control
study found COX-2 methylation in blood leukocyte
DNA was at a low level, but may change during GC de-
velopment. Further studies on methylation of specific
genes in blood leukocyte DNA are needed for efficient
biomarkers of GC early detection.
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