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Abstract

Background: The aim of this study was to detect the epidermal growth factor receptor (EGFR)-activating mutations
and other oncogene alterations in patients with non-small-cell lung cancers (NSCLC) who experienced a treatment
failure in response to EGFR-tyrosine kinase inhibitors (TKIs) with a next generation sequencer.

Methods: Fifteen patients with advanced NSCLC previously treated with EGFR-TKIs were examined between August
2005 and October 2014. For each case, new biopsies were performed, followed by DNA sequencing on an Ion Torrent
Personal Genome Machine (PGM) system using the Ion AmpliSeq Cancer Hotspot Panel version 2.

Results: All 15 patients were diagnosed with NSCLC harboring EGFR-activating mutations (seven cases of exon 19
deletion, seven cases of L858R in exon 21, and one case of L861Q in exon 21). Of the 15 cases, acquired T790M
resistance mutations were detected in 9 (60.0 %) patients. In addition, other mutations were identified outside of
EGFR, including 13 cases (86.7 %) exhibiting TP53 P72R mutations, 5 cases (33.3 %) of KDR Q472H, and 2 cases
(13.3 %) of KIT M541L.

Conclusions: Here, we showed that next-generation sequencing (NGS) is able to detect EGFR T790M mutations in
cases not readily diagnosed by other conventional methods. Significant differences in the degree of EGFR T790M
and other EGFR-activating mutations may be indicative of the heterogeneity of disease phenotype evident within
these patients. The co-existence of known oncogenic mutations within each of these patients may play a role in
acquired EGFR-TKIs resistance, suggesting the need for alternative treatment strategies, with PCR-based NGS
playing an important role in disease diagnosis.
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Background
Recent advances in biomedical research have provided a
greater understanding of the molecular basis of disease,
with significant implications for therapeutic intervention.
Somatic mutations, such as epidermal growth factor re-
ceptor (EGFR) mutations and anaplastic lymphoma kinase
(ALK) gene rearrangements, play a significant role in the
pathogenesis of non-small-cell lung cancer (NSCLC), with
treatment decisions often based upon the outcome of
these genetic tests [1–5].
Both EGFR and ALK function as a receptor tyrosine

kinase, which are readily inhibited by a series of tyrosine
kinase inhibitors (TKI), including gefitinib [6], erlotinib
[7], and crizotinib [2]. Despite the initial treatment efficacy
of these TKIs for the treatment of NSCLC, acquired resist-
ance was found to develop in almost all cases. The well-
known mechanism of acquired EGFR-TKIs resistance
include second site mutations within the EGFR kinase do-
main [8, 9], up-regulation of alternative signaling pathways,
such as MET [10], histologic transformation, epithelial to
mesenchymal transition, and small cell transformation [11].
Although many resistance mechanisms have been clarified,
the EGFR kinase domain mutation T790M in exon 20
accounts for nearly half of all acquired resistance, making
testing for this mutation a key factor in determining follow-
ing treatment strategies in the era of second- and third-
generation EGFR-TKIs [12, 13].
The recent development of next-generation sequen-

cing (NGS) as a diagnostic tool in the clinical setting
has enabled us to determine rapid, targeted sequencing
of tumors for causative mutations. When combined
with various selective capture approaches, NGS has
allowed for the efficient simultaneous genetic analysis of
a large number of candidate genes. Here, we applied a
polymerase chain reaction (PCR) based NGS in deter-
mining oncogene alternations in the state of disease
progression.
PCR based next-generation sequencing is an outstand-

ing tool to provide a comprehensive genomic diagnosis in
patients with recurrent NSCLC [14]. The primary aim of
this study was to evaluate EFGR T790M secondary muta-
tions, along with other oncogenic alterations, in NSCLC
patients previously diagnosed with EGFR activating muta-
tions who experienced disease recurrence after treatment
with first-generation EGFR-TKIs.

Methods
Patients and treatment regimens
Fifteen patients with NSCLC previously treated with
EGFR-TKIs were examined between August 2005 and
October 2014 at the Institute of Biomedical Research and
Innovation in Kobe City, Japan. Patients were treated with
either of erlotinib or gefitinib daily, at initial daily doses
of 150 (erlotinib) and 250 (gefitinib) mg/day. Standard

Response Evaluation Criteria in Solid Tumors (RECIST
1.0) was used to evaluate treatment response. Toxicities
were graded according to the Common Terminology
Criteria for Adverse Events (CTCAE) version 4.0. We
obtained written informed consents from all the partici-
pants. This study was approved by the Research Ethics
Committee of the Institute of Biomedical Research and
Innovation.

EGFR mutational analysis
A quantity of cancer cells sufficient for a pathologic diag-
nosis (i.e., several hundred cells) were obtained from
formalin-fixed paraffin-embedded (FFPE) biopsy specimens
by manual micro-dissection. Similar biopsy specimens
were used to analyze EGFR somatic mutations in exons
18–21 [15, 16].

MET gene amplification
For each patient, DNA was extracted, and the concen-
tration measured using a Nanodrop ND-1000 spectro-
photometer (Nanodrop Technologies, Rockland, DE).
MET copy number gains (CNG) analysis was performed
using the One-Step Real Time PCR System (Thermo
Fisher Scientific, Foster City, CA) under the following
conditions: one cycle of 95 °C for 10 min followed by
40 cycles of 95 °C for 15 s and 60 °C for 1 min. The
qPCR reaction mixture contained 10 μL of 2X TaqMan
genotyping master mix, 1 μL of the TaqMan copy number
target assay, 1 μL of the TaqMan copy number reference
assay (RNase P, which is known to exist only in two copies
in a diploid genome), 4 μL of nuclease-free water, and
4 μL of DNA (diluted to a concentration of 5 ng/μL). Each
sample was run in a minimum of four replicates. Amplifi-
cation results were then analyzed using the CopyCaller
Software (Thermo Fisher Scientific) for post-PCR data
analysis. To accurately detect MET CNG, we analyzed the
previous reported region of MET [17], a region spanning
the intron 20–exon 21 boundary (TaqMan copy number
assay Hs02884964_cn).

Ion torrent PGM library preparation and sequencing
An Ion Torrent adapter-ligated library was generated
using an Ion AmpliSeq Library Kit 2.0 according to the
manufacturer’s protocol (Thermo Fisher Scientific, Rev. 5;
MAN0006735). Briefly, 50 ng of pooled amplicons and the
Ion AmpliSeq Cancer Hotspot Panel version 2 (Thermo
Fisher Scientific) were end-repaired, and Ion Torrent
adapters P1 and A were ligated using DNA ligase. Follow-
ing AMPure bead (Beckman Coulter, Brea, CA, USA) puri-
fication, the concentration and size of the library were
determined using the Life Technologies StepOne system
(Thermo Fisher Scientific) and Ion Library TaqMan quanti-
tation assay kit (Thermo Fisher Scientific). Sample emul-
sion PCR, emulsion breaking, and enrichment were
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performed using the Ion PGM IC 200 Kit (Thermo Fisher
Scientific), according to the manufacturer’s instructions.
Briefly, an input concentration of one DNA template
copy/Ion Sphere Particle (ISP) was added to the emulsion
PCR master mix, and the emulsion was generated using
the Ion Chef (Thermo Fisher Scientific). Next, ISPs were
recovered and template-positive ISPs enriched using
Dynabeads MyOne Streptavidin C1 beads (Thermo Fisher
Scientific). Sequencing was undertaken using 314 BC chips
on the Ion Torrent PGM for 65 cycles using barcoded
samples. The totally turnaround time from library prepar-
ation to the end of sequencing is about 2 days.

Variant calling
After sequencing, data were processed using the Ion
Torrent platform-specific pipeline software Torrent
Suite to generate sequence reads, trim adapter se-
quences, and remove poor signal-profile reads. Initial
variant calling was generated using Torrent Suite Soft-
ware v4.0 using the variant caller plug-in. To eliminate
erroneous base calling, three filtering steps were used.
The first filter was set at an average total coverage depth
of >100, variant coverage of >20, and P values <0.01.
The second filter was employed by visually examining
mutations using the Integrative Genomics Viewer
(http//www.broadinstitute.org/igv) or CLC Genomics
Workbench version 7.04 (Qiagen) software. Finally, pos-
sible strand-specific errors, such as mutation only de-
tected in only the plus or minus strand were removed.

Results
A summary of patient characteristics can be found in
Table 1. All patients were Japanese, consisting of 10 fe-
males (76.7 %) and 5 males (33.3 %). Nine patients (60.0 %)
were never smokers, and the remaining six patients
(40.0 %) were former smokers. All patients had stage IV
adenocarcinoma, as defined based upon TNM classifica-
tion criteria (7th edition) [18]. Eight patients received erlo-
tinib, and four patients were treated with gefitinib. The
remaining patient was treated first with gefitinib, then
switched to erlotinib. The median duration of EGFR-TKI
therapy was 510 days (range: 122–1912 days; Table 1).
EGFR sequence variations are listed in Table 2. All pa-

tients were diagnosed with adenocarcinomas harboring
EGFR activating mutations (seven cases of exon 19 dele-
tion, seven cases of L858R in exon 21, and one case of
L861Q in exon 21). Of the 15 cases, acquired EGFR
T790M resistance mutations in exon 20 were detected
in 9 (60.0 %) patients. Of particular interest were cases
7, 8, and 10, in which T790M mutations were not
detected by high-sensitivity conventional PCR-based
methods, such as peptide nucleic acid-locked nucleic
acid (PNA-LNA) PCR clamp [16], or Cycleave real-time
PCR [15].

In addition to T790M mutations, a large number of
activating mutations were identified outside of EGFR.
MET amplification, another common mutation associ-
ated with EGFR-TKI resistance, was not seen (Fig. 1),
which is also confirmed by copy number analysis of
NGS sequencing data (data not shown). Further screen-
ing of an additional 50 known oncogenes revealed a
quite number of mutations in at least 32 genes (Table 3),
including 13 cases (86.7 %) of TP53 P72R mutations,
5cases (33.3 %) of KDR Q472H, and 2 cases (13.3 %) of
KIT M541L. A full list of genes analyzed in this study is
shown in Table 4.

Discussion
In this study we analyzed biopsy specimens of patients
who underwent second biopsy after treatment failure with
the first generation EGFR-TKIs. There was a significant
difference between the frequency of EGFR T790M and
other EGFR-activating mutations, with significant variabil-
ity among cases (4.8–41.3 %). The existence of EGFR and
other mutations within the same tumor sample identified
by NGS highlights the importance of this type of analysis
in guiding appropriate cancer therapy.
High-throughput sequencing was able to detect

T790M mutation in a number of cases with the same ac-
curacy of conventional highly sensitive conventional
PCR methods, such as PNA-LNA PCR clamp [16] and
Cycleave real-time PCR [15]. While high sensitivity and
specificity of these methods is well established [19–27],
the use of NGS provides important advantages with
clarifying activating mutation rate in tumor sample as
well as greater detection of rare mutations outside of

Table 1 Patient characteristics

Patient characteristics (%)

Age (years)

Range 54–79

Gender

Male 5 (33.3)

Female 10 (76.7)

Smoking status

Non-smoker 9 (60.0)

Former Smoker 6 (40.0)

Stage

IV 14 (93.4)

rIVa 1 (6.6)

1st line 5 (33.3)

2nd line 7 (46.7)

3rd line 2 (13.4)

Subsequent therapy 1 (6.6)
arIV recurrent stage IV
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target areas [28–31]. In addition, to emphasize the
power of NGS in clinical practice, we should also try to
develop its applications and usages such as challenging
specimens or testing processes, such as peripheral blood
in the future.
NGS is also able to overcome issue of germ-line DNA

contamination, similar to that of new PCR methods, such
as digital PCR [32]. This tolerance of germ-line DNA con-
tamination allows for more streamlined sample preparation
techniques, without need for time-consuming procedures
such as macro- or micro-dissection. In this study, all sam-
ples were extracted from FFPE biopsy specimens, highlight-
ing both versatility and potential use of NGS in clinical
settings. Furthermore NGS is able to quantify gene muta-
tions within a tumor sample. Due to the unpredictablity of
PCR amplification and germ line DNA contamination,

observed mutations does not always reflect the penetrance
of a mutation within a sample. While most highly sensitive
detection methods provide only categorical results such as
positive and negative, our analysis was able to identify the
degree of EGFR T790M and other EGFR-activating muta-
tions within a sample that could not be explained by
germ-line DNA contamination and/or PCR efficacy. These
results are consistent with previous reports detailing
T790M allelic frequency in terms of both intra-tumor
heterogeneity in localized lung adenocarcinomas [33] and
allelic imbalances [34]. Our analysis was able to identify
the degree of EGFR T790M and other EGFR-activating
mutations within a sample that could not be explained by
germ-line DNA contamination and/or PCR efficacy.
Future treatment with next-generation EGFR-TKIs target-
ing T790M is likely to be informed by such analyses, as

Table 2 Clinical characteristics and next-generation sequencing results

Histology EGFR Sequence
Variants

Frequency
(%)

Allele Call Exon 20
T790M

Frequency
(%)

Conversion
to SCLC

Prior TKIs Duration
(days)

Case 1 Adenocarcinoma Exon 19 44.3 Heterozygous Yes 7.2 No Erlotinib 681

E746_T750 del

Case 2 Adenocarcinoma Exon 19 59.4 Heterozygous No - No Gefitinib 537

E746_T751 del > A

Case 3 Adenocarcinoma Exon 21 L858R 46.1 Heterozygous No - No Gefitinib 195

Exon 18 T725R 30.6 Heterozygous

Case 4 Adenocarcinoma Exon 21 L858R 23.3 Heterozygous No - No Erlotinib 217

Exon 20 S768I 10.0 Heterozygous

Case 5 Adenocarcinoma Exon21 L858R 56.9 Heterozygous No - No Gefitinib 1105

Exon 18 E709G 54.5 Heterozygous

Case 6 Adenocarcinoma Exon 19 97.2 Homozygous Yes 21.8 No Erlotinib 693

E746_T750 del

Case 7 Adenocarcinoma Exon 21 L858R 13.8 Heterozygous Yes 5.2 No Erlotinib 537

Case 8 Squamous cell carcinoma Exon 19 86.9 Heterozygous Yes 7.3 No Erlotinib 315

E746_T750 del

Case 9 Adenocarcinoma Exon 19 65.3 Heterozygous Yes 41.3 No Erlotinib 1555

E746_T750 del

Case 10 Adenocarcinoma Exon21 L858R 11.2 Heterozygous Yes 4.8 No Gefitinib 1912

Case 11 Adenocarcinoma Exon 19 46.4 Heterozygous Yes 11.0 No Erlotinib 256

E746_T750 del

Case 12 Adenocarcinoma Exon21 L858R 22.2 Heterozygous No - No Erlotinib 924

Exon 21 G873R 10.8 Heterozygous

Case 13 Adenocarcinoma Exon 21 L861Q 59.9 Heterozygous No - No Gefitinib Erlotinib 1304122

Exon 20 P772S 10.2 Heterozygous

Exon19 L747S 11.8 Heterozygous

Exon2 A289V 12.3 Heterozygous

Case 14 Adenocarcinoma Exon 19 80.82 Heterozygous Yes 14.8 No Erlotinib 392

E746_T750 del

Case 15 Adenocarcinoma Exon21 L858R 76.7 Heterozygous Yes 10.3 No Erlotinib 339

Masago et al. BMC Cancer  (2015) 15:908 Page 4 of 8



patients should be treated based upon their EGFR
acquired mutation [35].
In addition to EGFR mutations, we also evaluated an-

other 50 oncogenes thought to have an important role
in cancer pathogenesis (Table 4). A large number of
mutations were identified in this analysis. However, how
much extent these genes affect tumorigenicity, tumor
progression, and resistance to EGFR-TKIs is difficult to
assess, as some mutations may represent only passive
alterations (passenger mutations). Although many of
these mutations were identified in a single patient, a
series of mutations including TP53 P72R, KDR Q472R,
and KIT M541L were detected in more than two cases,
suggesting a role in disease progression.
TP53 P72R was the most common mutation, detected in

13 of 15 cases (86.7 %). In human populations,TP53 codon
72 is encoded by the nucleotide sequence CCC, which
encodes proline, or CGC, which encodes arginine. While
proline is the most common amino acid found at this resi-
due, comparative sequence analyses have detected a high
degree (>50 %) of TP53-R72 variants among certain popu-
lations [36]. The current understanding of TP53 biology is
that TP53-R72 is more effective at inducing apoptosis and
protecting stressed cells from neoplastic development than
the more common TP53-P72 [37]. However, it is not yet
understood how these functional differences might trans-
late between in vitro and in vivo settings [38, 39], making

it difficult to assess the role of this sequence variant of
EGFR-TKI resistance.
KDR (kinase insert domain receptor, also known as

VEGFR2) is an important factor in tumor development
and progression due to its pro-angiogenic effects [40].
KDR Q472H mutations were detected in 5 of 15 cases
(33.3 %), making it the second most common gene vari-
ant observed outside of EGFR. In human populations,
codon 472 of KDR is encoded by the nucleotide se-
quence CAA, which encodes glutamine, or CAT, which
encodes histidine. The Q472H variant is thought to affect
protein function due to increased phosphorylation after
vascular endothelial growth factor (VEGF)-A stimulation,
along with increased binding efficiency for VEGF-A165
[41]. The effect of Q472H on microvessel density is
thought to occur as a result of increased phosphorylation
of VEGFR2 [42]. Here, increased microvessel density may
have contributed to EGFR-TKI resistance, suggesting that
VEGFR2 inhibition may inhibition may become an im-
portant therapeutic option in patients with documented
EGFR-TKI resistance.
V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Onco-

gene Homolog (KIT) M541L substitutions were detected
in 2 of 15 cases (13.3 %). c-KIT is one of the primary
targets of imatinib, and mutations in KIT are predictive
of the efficacy of the drug in gastrointestinal stromal
tumors (GIST) [43]. Several case reports have suggested

Fig. 1 Quantitaive polymerase chain reaction (qPCR) MET copy number gain (CNG) analysis for 15 cases
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Table 3 Coexisting somatic mutations resulting in amino-acid changes identified using the Ion AmpliSeq Hotspot Panel version 2

Frequency
(%)

Frequency
(%)

Frequency
(%)

Frequency
(%)

Frequency
(%)

Case 1 KIT M541L (COSM 28026) 70.9 TP53 P72R 53.2 — — — — — —

Case 2 PTEN L57W (COSM 5253) 21.2 — — — — — — — —

Case 3 TP53 P72R 57.0 CTNNB1 D32N
(COSM 5672)

34.5 TP53 V73 del 29.1 CDH1 Q346* (COSM 19524) 25.1 — —

Case 4 TP53 P72R 60.3 TP53 R337C
(COSM 11071)

18.0 — — — — — —

Case 5 TP53 P72R 46.9 KDR Q472H 46.9 KIT G534C 46.3 APC S1463fs 42.5 — —

Case 6 PDGFRA P567Q 100 TP53 V73W 72.6 TP53 P151S 57.5 KDR Q472H 42.4 ERBB4 C614Y 38.2

SMAD4 R189H 29.0 PTEN R233Q 18.5 APC D1591N 18.4 HRAS T64* 17.9 AKT1 T21I 16.4

KIT L647F 16.2 SKT11 D352N 15.1 PTEN H123Y (COSM 5078) 7.3 PTEN R130Q (COSM 5033) 7.2 — —

Case 7 TP53 P72R 96.7 SKT11 F345L 53.5 SKT11 P281L 53.3 KDR Q472H 42.6 — —

Case 8 TP53 P72R 98.4 KIT M541L
(COSM 28026)

59.8 TP53 V154G (COSM 43903) 35.4 KDR Q472H 26.7 SMAD4 G423R 14.7

ABL1 I347fs 11.1 ERBB4 C759T 8.8 FBXW7 M467I 8.0 MLH1 A169V 8.0 KDR G1284R 7.9

APC P1433L 6.7 TP53 F338L 6.5 SMO P610S 6.4 MET D340A 5.8 NOTCH1 V1575M 5.7

PTEN A328E 5.6 APC G1374K
(COSM 18737)

5.1 MLH1 R148W 5.0 — — — —

Case 9 APC E1464fs 59.2 TP53 P72R 48.2 BRAF G442D 6.1 MET G1102D 5.5 SMO T223I 5.0

Case 10 MET N375K 55.7 TP53 P72R 42.0 CTNNB1 G34V 6.5 — — — —

Case 11 TP53 P72R 68.5 PTEN N329fs
(COSM 4932)

39.5 TP53 K132R (COSM 11582) 29.7 — — — —

Case 12 TP53 P72R 98.1 KDR Q472H 96.4 TP53 V272fs 21.0 RB1 I682T 12.6 APC P1433L 9.6

RET E884V 9.1 SMAD4 V354L 8.0 — — — — — —

Case 13 TP53 P72R 99.1 CDKN2 G155S 51.6 FLT3 W603* 45.2 KRAS E37K 33.3 SMO P641L 23.7

IDH1 L103M 20.0 TP53 R267Q
(COSM 43923)

18.8 GNA11 D205N 16.2 SMARCB1 P165S 14.0 RB1 M761T 13.9

SMARCB1 V145L 12.4 TP53 G245R
(COSM 10957)

10.8 NOTCH1 H1591T 10.7 ERBB4 G240V 10.0 KIT S715N 9.9

FBXW7 R505H (COSM 25812) 9.8 FBXW7 M498I 9.2 MET S186L 8.8 IDH1 A111V 8.8 JAC3 V133I 8.5

KIT V825I (COSM 19110) 8.1 TP53 G112S 6.5 TP53 K132E (COSM 10813) 6.3 HNF1A A193V 6.3 VHL K171T 5.7

ALK P1191A 5.6 HNF1A T204I 5.3 — — — — — —

Case 14 PTEN H1047L 62.9 FGFR3 R765S 7.2 IDH1 P118L 5.7 — — — —

Case 15 TP53 P72R 100 MET A179M 5.1 — — — — — —
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a potential role of the KIT M541L variant in the sensi-
tivity of Imatinib for aggressive fibromatosis [44–46].
Furthermore, a wide array of in vitro analyses support a
role for the L541 variant in tumorigenesis. FDC-P1 cells
transfected with KIT-L541 showed an enhanced prolif-
erative response, while KIT-L541 cells were more
sensitive to imatinib than those expressing wild-type
KIT [47]. Inokuchi, et al. observed a higher frequency of
L541 variants among patients with chronic myelogenous
leukemia (CML), which is consistent with increased
tyrosine kinase activation and proliferative responses in
KIT-L541 cells relative to wild-type controls [48]. From
the view point of EGFR-TKI resistance, these data suggest
a causative role for the KIT L541 variant in recurrence
and drug resistance of NSCLC. Suppression of KIT with
drugs like Imatinib may be a useful therapeutic choice in
patients with KIT-variant tumors.
Five (cases 3, 4, 5, 12 and 13) out of six NSCLC patients

that are negative for EGFR-T790M mutation harbored
“compound mutations” (a rare EGFR mutation in combin-
ation with a more frequent activating mutation). On the
other hand, all T790M-positive tumors (cases 1, 6, 7, 8, 9,
10 and 11) lack an additional rare mutation apart from the
presence of a frequent inhibitor-sensitive EGFR mutation.
Among these compound mutations (specifically rare mu-
tations), tumors harboring S768I in exon 20 is known as
resistant to EGFR-TKIs. On the contrary, tumors harbor-
ing point mutations in exon 18 and dual mutation of exon
19 deletion and S768I are reported to possible response to
EGFR-TKIs. There have been limited data in other com-
pounds mutations. So a role of these mutations in causing
drug resistance in T790M-negative patients is uncertain
and need to be evaluated [49].
This study has its limitations. The strongest limitations

include a small sample size, and the retrospective nature
of the study preventing the comparison of our findings

to non-lesional or pre-treatment results. With this limita-
tion of not having pre-treatment results, the role of activat-
ing mutations in additional oncogenes in TKI-resistance
may be the primary cause for TKI resistance especially in
the case of KDR Q472H mutations. A larger prospective
study with strict enrollment criteria is definitely needed to
overcome these limitations.

Conclusion
In conclusion, our study showed that NGS could be useful
to detect EGFR T790M variants in patients not otherwise
found with other conventional PCR based methods. Fur-
thermore, our results highlight the difference of the extent
of EGFR T790M and other EGFR-activating mutations
among tumor samples, which may indicate the heterogen-
eity of acquired mutations. Identification of additional
sequence variations in potential oncogenes that may affect
EGFR-TKI resistance would suggest a series of new thera-
peutic agents targeting on a patient’s underlying genetic
profile.
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