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Abstract

Background: The development of androgen resistance is a major limitation to androgen deprivation treatment in
prostate cancer. We have developed an in vitro model of androgen-resistance to characterise molecular changes
occurring as androgen resistance evolves over time. Our aim is to understand biological network profiles of
transcriptomic changes occurring during the transition to androgen-resistance and to validate these changes between
our in vitro model and clinical datasets (paired samples before and after androgen-deprivation therapy of patients with
advanced prostate cancer).

Methods: We established an androgen-independent subline from LNCaP cells by prolonged exposure to
androgen-deprivation. We examined phenotypic profiles and performed RNA-sequencing. The reads
generated were compared to human clinical samples and were analysed using differential expression,
pathway analysis and protein-protein interaction networks.

Results: After 24 weeks of androgen-deprivation, LNCaP cells had increased proliferative and invasive behaviour
compared to parental LNCaP, and its growth was no longer responsive to androgen. We identified key genes and
pathways that overlap between our cell line and clinical RNA sequencing datasets and analysed the overlapping
protein-protein interaction network that shared the same pattern of behaviour in both datasets. Mechanisms bypassing
androgen receptor signalling pathways are significantly enriched. Several steroid hormone receptors are differentially
expressed in both datasets. In particular, the progesterone receptor is significantly differentially expressed and is part of
the interaction network disrupted in both datasets. Other signalling pathways commonly altered in prostate cancer,
MAPK and PI3K-Akt pathways, are significantly enriched in both datasets.

Conclusions: The overlap between the human and cell-line differential expression profiles and protein networks was
statistically significant showing that the cell-line model reproduces molecular patterns observed in clinical castrate
resistant prostate cancer samples, making this cell line a useful tool in understanding castrate resistant prostate cancer.
Pathway analysis revealed similar patterns of enriched pathways from differentially expressed genes of both human
clinical and cell line datasets. Our analysis revealed several potential mechanisms and network interactions, including
cooperative behaviours of other nuclear receptors, in particular the subfamily of steroid hormone receptors such as
PGR and alteration to gene expression in both the MAPK and PI3K-Akt signalling pathways.
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Background
Prostate cancer (PCa) is among the most commonly
diagnosed diseases in males, and remains a leading cause
of death in developed countries [1]. In Australia, PCa is
the most commonly diagnosed cancer and accounted for
approximately 13 % of all cancer-related deaths in males
in 2010 [2, 3]. PCa tumour growth is initially dependent
on androgens as documented by Huggins as early as
1941 [4], making androgen deprivation therapy (ADT)
the first line treatment. However patients often ultim-
ately develop an androgen independent state of PCa,
often referred to as Castrate Resistant Prostate Cancer
(CRPC) and there are no effective treatments for this
state of PCa.
Androgens act through the androgen receptor (AR)

signalling pathway. A review by Feldman [5] details
five broad mechanisms through which PCa cells can
survive despite low levels of serum testosterone in
CRPC. Three out of the five mechanisms involve AR
signalling, where in the absence of serum testoster-
one, AR continues to play an active role in CRPC
through adrenal testosterone, increased AR expres-
sion level (AR amplification), AR mutation where
other steroid hormones (such as progesterone or
oestrogen) or mutated co-regulators activate AR and
“outlaw” AR where AR becomes ligand independent,
for example through alternative splicing. The other
two mechanisms bypass AR altogether, and CRPC
cells survive through alternative pathways, such as
through up-regulation of oncogenes that block
signals for cell apoptosis and cause cell proliferation.
The establishment of an in vitro model of CRPC is

crucial for the study of the progression into advanced
stage PCa. Previous studies have used the androgen-
sensitive cell line LNCaP in long-term culture in andro-
gen deprived conditions. These long-term cultures were
carried out ranging from 2 months up to 24 months
during which time androgen resistance develops in these
cells [6–9].
The question remains whether these in vitro

studies reflect biological features in human tumours,
a question addressed in this current work. In our
experiments, we study the various CRPC mechanisms
using existing human tumour datasets [10] and in vitro
LNCaP cell line model through computational methods of
RNA sequencing expression, differential expression and
network analysis. Data from transcriptomic profiling of
patients [10] receiving ADT (LHRH agonists with anti-
androgen flare protection [11]) for approximately 22 weeks
were compared with our cell line model to determine
what molecular changes were common to the two data-
sets, and to establish the suitability of our model system
for studying drivers of developing androgen insensitivity
in vivo.

Methods
LNCaP cell line and reagents
The human PCa cell line LNCaP was obtained from
American Type Culture Collection (ATCC) (Manassas,
Virginia, USA). Cells were maintained and propagated
as monolayer cultures in RPMI 1640 medium (Life
Technologies Corporation) with 10 % foetal bovine
serum (FBS) (Thermo Scientific), and 100 units/mL
penicillin and 100 μg/mL streptomycin (Life Technolo-
gies Corporation).

In vitro androgen independent model
In vitro CRPC models were established by prolonged
cultures of androgen-sensitive LNCaP cells (parental).
We have generated cells grown under (i) a control con-
dition for parental LNCaP, in FBS; (ii) media with
charcoal-stripped FBS which removes low molecular
weight hormones including steroid, thyroid and peptide
hormones (CS-FBS, androgen-deprived) (Fig. 1). Cells
that were grown in androgen-deprived condition are re-
ferred to as LNCaP androgen independent (LNCaP AI)
cells.

Cell viability assay
Trypan blue dye exclusion was performed to examine
cell viability of cell lines. Routine cell harvesting was
performed and cell suspension was diluted (1:1) with
0.1 % (w/v) trypan blue dye (Sigma Aldrich) in dH2O
and transferred (20 μL) to a haemocytometer for count-
ing, using an inverted microscope (Model CK2, Olympus
Optical Co. Ltd, Japan). Total of viable and non-viable
cell numbers were counted by trypan blue dye exclusion.

Cell proliferation assay
Relative cell numbers were measured by 3-(4,5-Dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT
colorimetric assays. Parental cells were grown in phenol-
red free CS-FBS media 3 days prior to the start of the ex-
periments. Cells were plated on 96-well plates in phenol-
red free media + CS-FBS. After overnight attachment, cells
were treated with 1–10 nM DHT or 1–10 μM bicaluta-
mide for 6 days. Cell proliferation was examined by
addition of MTT to the assay plate and the absorbance
read at 590 nm, reference filter 620 nm.

RNA isolation
RNA was isolated from cells in triplicate using the Rneasy
Mini Kit (Qiagen Pty Ltd.) according to manufacturer’s in-
structions. RNA quantity was assessed using a NanoDrop
2000 UV–vis Spectrophotometer (Thermo Scientific) at
A260nm and RNA integrity was determined using the
A260nm/A280nm ratio. For RNA sequencing, RNA was
checked for yield and quality using an Agilent 2100
Bioanalyzer (Agilent Technologies, Inc.).
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Reverse-transcript PCR and quantitative PCR (qPCR)
RNA was extracted from parental LNCaP and subline
cells as described above. cDNA synthesis were performed
using M-MuL-V kit (Life Technologies Corporation).
cDNA samples were then analysed using AR (assay ID
Hs00171172_m1) and 18S (assay ID Hs99999901_s1)
(as control) Taqman gene expression assays (Applied
Biosystems, Life Technologies Corporation). PCR amplifi-
cation was performed in a 25 μL final volume (total 54 ng
cDNA per reaction) using 7500 Real-time PCR System
(Applied Biosystems, Life Technologies Corporation).
mRNA expression of AR was normalized in relation to
the control 18S expression. Data are expressed as fold
difference to parental LNCaP cell line.

Lysate extraction and western blotting
Modified radioimmunoprecipitation (RIPA) buffer was
used to extract proteins from the cell. Medium was
removed from cells and cells were washed twice with
ice-cold PBS before addition of ice-cold RIPA buffer
containing 1× Complete Mini EDTA-free protease
inhibitor tablet (Roche Diagnostics). Protein concentra-
tion of the whole cell lysates was determined using the
Bradford assay [12]. Proteins were separated by SDS-
PAGE. Protein bands were then transferred to nitrocel-
lulose paper and incubated with 1/200 diluted AR
antibody (N-20) [Santa Cruz Biotechnology] and perox-
idase conjugated antibody respectively. Peroxidase linked
antibody was purchased from Amersham™ (GE Health-
care Biosciences). β-actin levels were used as a loading
control. Protein bands were visualized after chemilumin-
escent reaction.

Immunocytochemistry
Preparation of cover slips
Cover slips were positioned in a sterile beaker and were
immersed in ice-cold 100 % (v/v) methanol under asep-
tic conditions. The beaker was placed in a container
filled with ice and left in the fume hood under UV light
for 2 h to sterilise. The cover slips were allowed to dry
and were then placed into each well of the 6-well plate.
Cells were passaged by trypsinisation. Cell suspensions

were added to prepared 6-well plate (with cover slip in
each well) at a concentration of 1 × 105 cells/well. Cells
were allowed to grow at 37 °C/5 % CO2 in a humidified
incubator to a confluence of 50–70 %, with addition of
fresh media if needed.

Immunostaining
When cells had reached confluence, the old media were
aspirated from each well. Coverslips were washed with
PBS buffer for 5 min and then were fixed in ice-cold
100 % (v/v) methanol for 10 min at room temperature.
Cells were permeabilised in PBS containing 0.1 % (v/v)
Triton-X 100 for 5 min. The cover slips were washed
twice with PBS for 5 min. Immunohistochemical analysis
was performed using the labelled streptavidin/biotin-based
LSAB + ™ (Labeled Streptavidin Biotin) system/HRP kit
(DAKO Australia) according to the manufacturer’s proto-
col, with minor alterations. All incubations were carried
out at room temperature. Primary antibody monoclonal
mouse anti-human PGR antibody (clone A9621A, R&D
systems) at working concentration of 1 ug/mL in an anti-
body diluent solution (DAKO Australia) was applied to
each slide for 1 hour. This was followed by sequential

Fig. 1 In vitro CRPC cells workflow. All conditions are replicated in triplicate so that each condition has three independent biological replicates
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incubation of fixed cells with anti-goat/rabbit/mouse
biotinylated-link antibody and peroxidase-labelled strepta-
vidin. PGR protein expression was visualised by incuba-
tion with 3,3’-diaminobenzidine chromogen solution
(DAB+ substrate buffer), yielding a brown end-product.
Fixed cells were counterstained with haematoxylin. As a
negative control, the fixed cells were incubated with
isotype antibody IgG2a.

Cell migration and invasion assays
Migration assays were performed in BIOCOAT™ control
microporous membrane filter inserts while invasion
assays were performed on Matrigel matrix-treated poly-
ethylene terephthalate (PET) membrane filter inserts in
24-well tissue culture plates (BD Biosciences, Australia),
as described previously [13]. Briefly, the BIOCOAT™
inserts are 6.4 mm in diameter, and the pore size on the
membrane is 8 μm. Cells were washed once with
versene, detached at 80–90 % confluence with 0.05 %
trypsin/EDTA, and resuspended in serum-free media.
The inserts were incubated with serum-free media at
37 °C for 2 h to rehydrate. Media containing 10 % FCS
(as a chemoattractant) was added to the lower wells and
a 500 μL cell suspension was added to the inserts at a
density of 5 × 104 cells/insert. Migration across the
membrane was allowed to proceed at 37 °C 5 % CO2 for
48 hours. Cells that did not migrate through the mem-
brane were removed using cotton swabs, and cells that
migrated through the membrane filters were fixed with
100 % v/v methanol and stained with 0.05 % v/v crystal
violet dye (Sigma-Aldrich, Australia). The membranes
were carefully removed from the insert using a scalpel
blade and mounted onto glass slides. The number of
migrated cells per insert (10 fields were chosen from
each insert) was counted using the M2 program of the
Micro-Computer Imaging Device-assisted image analysis
program (MCID, Imaging Research, Inc., St. Catharine’s;
Ontario, Canada) under light microscopy at magnifica-
tion ×200. All experiments were repeated in triplicate on
each of three separate occasions.

LNCaP RNA sequencing
LNCaP and LNCaP-AI RNA samples were sequenced
on an Illumina platform (Illumina HiSeq2000) by the
Australian Genome Research Facility (AGRF), Melbourne,
Australia. CASAVA1.8 pipeline was used to generate the
sequence data. The sequence reads were processed
through a quality control pipeline (FastQC, SolexaQA)
(investigating quality matrices such as presence of am-
biguous bases, adaptor contamination, PCR duplicates,
GC content and sequence complexity) with required qual-
ity score > Q30 for all reads.

Human clinical data
The RNA reads from 7 patients taken before (Hormone
naïve) and after (Hormone resistant, defined as two
consecutive rise of PSA more than 10 %) androgen-
deprivation treatment (ADT) (approximately 22 weeks)
were obtained from a study conducted by Rajan et al. [10]
on the effects of ADT on advanced PCa. mRNA reads,
obtained by next gen sequencing techniques were reana-
lysed using the protocol described below.

Computational methods
We have used standard methods for RNA sequencing
differential expression analysis. Tophat v2.0.9 [14] was
used to align the RNA sequencing reads using hg19 as
the reference genome and EdgeR v3.4.2 [15] was used
for differential expression analysis.
For our protein to protein network analysis, we obtained

the network for homo sapiens from PINA2 interaction
resource [16]. The gene, UBC, which has >5000 interac-
tions in this dataset was removed from the analysis. We
constructed a protein interaction network by taking the
set of genes differentially expressed in both datasets, and
collecting all protein interactions involving the products
of these genes by querying the human interactome with
Uniprot Accession numbers obtained from Biomart.org.
The resulting network was pruned to remove proteins
with a degree of 1, such that a protein not in our original
list of commonly differentially expressed genes was only
retained in the network if it interacted with at least two
proteins encoded by the query set.
We also used machine learning to predict gene regula-

tory network using GENIE3 [17]. GENIE3 uses random
forests for regression trees to compute an importance
measure of the relationship between the predictor vari-
ables and the output variable. Modelling gene regulatory
network inference as a machine learning problem, the
expression level of each gene, computed using cuffnorm
[14], is the output variable and the expression levels of
transcription factors are the predictor variables.
All statistical tests were carried out in R using the

hypergeometric distribution test function.

Results
Characterisation of androgen-deprived LNCaP subline
cells (LNCaP-AI)
LNCaP cells were grown in culture under androgen-
deprived conditions for 24 weeks (LNCaP-AI). The
viability of cells in culture was examined regularly and
LNCaP-AI cells initially showed poor growth and prolif-
eration after growth in androgen-deprived culture. Over
a period of time, however, cells adapted and started to
grow vigorously (data not shown). Dihydrotestosterone
(DHT) dose–response stimulation of cell proliferation
was performed for parental LNCaP and LNCaP-AI after
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prolonged culture of 24 weeks to determine androgen
responsiveness. These assays established that LNCaP-AI
cells lost androgen-responsiveness after 24 weeks of
culture when compared to parental LNCaP cells that
were grown in parallel, DHT (concentration from 0.1 to
10 nM) not being able to stimulate increased prolifera-
tion in LNCaP-AI (Fig. 2a).

AR expression and activation
We examined other phenotypic characteristics and ob-
served that LNCaP-AI cells also displayed increased cell
invasion after 24 weeks of prolonged culture compared to
parental control cells, using Boyden chamber cell invasion
assays (Fig. 2b and c), consistent with a more aggressive
phenotype. AR gene (qPCR) and protein (Western Blot)
(Fig. 3a and b, respectively) expression in LNCaP-AI cells

was not statistically significantly (P > 0.05) different to par-
ental LNCaP cells. This is consistent with the fact that in-
creased AR expression is not the sole determinant of
initiation of PCa or development of hormone refractory
PCa [18].
Given that our cell line model demonstrates a pheno-

type consistent with androgen insensitivity after 24 weeks
of growth in androgen deprived culture conditions, we
wished to establish how well our model reproduces the
molecular phenotype seen in androgen resistant human
tumours. To do this, we compared the results of our
RNA sequencing of sensitive and insensitive cells, with a
previously published study of gene expression in human
tumours before and after treatment with androgen
deprivation therapy. To ensure the results were compar-
able, we re-analysed the human data using the same

Fig. 2 Androgen responsiveness of LNCaP and LNCaP-AI cells. a Androgen responsiveness of LNCaP-AI cells was lost by 24 weeks of prolonged
culture compared to parental LNCaP cells. Data are shown as % cell proliferation of DHT treated vs. no DHT treatment condition. For this proliferation
assay, cells were treated with different concentrations of DHT for a period of 6 days. b No difference in cell migration was seen between parental and
subline cells. However, LNCaP-AI cells were more invasive (c) compared to parental LNCaP cells. (N = 3, error bars = SEM, * indicates P < 0.05). Picture
inset underneath the graphs are representative images of cell migration and invasion (cells are stained purple)
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analysis protocol we used for our own RNA sequencing
data (see Methods section).
The AR was not differentially expressed in either the

human tumour samples or the cell line model (Fig. 4).
However genes, such as KLK3 and TMPRSS2 that are
normally uniquely up regulated by AR are down regu-
lated as shown in Fig. 4 suggesting that AR is not
actively regulating these targets.
We also examined expressed AR Isoforms AR-001,

AR-002, AR-003, AR-004 (AR-V7) [19], AR-005 and AR-
201 to determine if differential expression of any of
these isoforms might underpin the androgen insensitive
phenotype in either our cell lines or the human tumours
(Table 1). We found that none of the isoforms were sig-
nificantly differentially expressed either after treatment

in patient samples, or in our cell line model. Interest-
ingly, several isoforms were detectable in human tumour
data both before and after treatment, and in both time
points of our experimental system, and transcripts show
great variation in composition of functional domains
(Table 1).

Common differentially expressed genes are found in
human PCa and LNCaP models
We used a published clinical dataset [10] to determine
whether our cell line model of androgen insensitivity
displays molecular features in common with human dis-
ease. We found 213 genes were differentially expressed
in both experiments. This highlights that while there are
definite differences in the molecular phenotypes of our

Fig. 3 AR expression in LNCaP and LNCaP-AI. a AR gene and b Protein expression (densitometric analysis of AR corrected for β-actin expressed in
AU [arbitrary units]) of LNCaP and LNCaP-AI cells at 24 weeks of culture. (N = 3, error bars = SEM)

Fig. 4 Expression levels of AR regulated target genes. Green nodes indicate under expressed genes, whereas red nodes represent over expressed
genes; edges are coloured to indicate the expected direction of regulation (red edges indicate positive regulation, whereas green edges indicate
inhibition). Genes shown in grey are not significantly differentially expressed. a AR regulated genes in human tumour samples; b AR regulated
genes in LNCaP-AI cells
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model and the human tumour data, our model none-
the-less recapitulates molecular features found in
advanced human disease. We also examined the path-
ways that are enriched for differentially expressed genes
in each experiment, and found that differential expres-
sion in both datasets converged at the pathway level
(full results Additional file 1: Table S1 and S2); in
particular, two related pathways, MAPK and PI3K
signalling are both strongly implicated by the differen-
tially expressed genes of both datasets. Previous reports
adopting disease-associated gene network and pathway
analyses in PCa have revealed novel regulatory mecha-
nisms and were more powerful than the analysis of gene
expression level alone [20–24].

Analysis of protein network overlap between in the
human PCa and LNCaP models
In order to explore the mechanisms captured in our cell
line model and in common with those in the human
tumour data, we focused on the set of 213 genes that were
differentially expressed in both datasets and first examined
protein interactions among the proteins encoded by these
genes (Fig. 5). In particular, the presence of two up-
regulated nuclear receptor transcription factors in this
network (PGR and NR2F1) suggests that these transcrip-
tion factors may play a role in the androgen insensitive
state. As the functional effects of differential expression
propagate through the interaction partners of proteins, we
expanded our protein interaction network to include

Table 1 Changes in the expression of individual isoforms of the Androgen Receptor in our cell line model and in the human tumour
data. No significant differential expression is seen in either dataset. Transcripts are taken from the Ensembl AR Gene Transcript Table
(ENSG00000169083)

Transcript Identifier HGNC transcript name Protein length Domains Cell Line Log Fold-Change Cell Line
P-Value

Tumour Log
Fold-Change

Tumour
P-Value

ENST00000374690 AR-001 920aa NTD, ZF, LBD 0.03 0.95 0 1

ENST00000396043 AR-002 388aa ZF, LBD 0 1 −0.11 0.92

ENST00000513847 AR-003^ - - 0.72 1 0 1

ENST00000504326 AR-004 (AR-V7) 644aa NTD, ZF −1.38 0.57 1.82 0.69

ENST00000514029 AR-005* 600aa NTD, ZF(partial) −0.19 1 0 1

ENST00000396044 AR-201 734aa ZF 0 1 −0.08 0.96

ENST00000612010 AR-202 642aa NTD, ZF ND ND ND ND

ENST00000612452 AR-203 737aa NTD (partial), ZF, LBD ND ND ND ND

ENST00000613054 AR-204 572aa NTD ND ND ND ND

*Nonsense mediated decay; ^Processed transcript; ND not detected, NTD N-terminal domain, ZF zinc finger, LBD ligand binding domain. AR-004 is identified as
the AR-V7 transcript based on the description of the isoform provided by Krause and colleagues (2014), as the protein encoded by this transcript aligns to the first
627aa of the full length AR, and contains 15 unique amino acids, with one overlapping a splice site [19]

Fig. 5 Protein interactions within the set of 213 genes differentially expressed in both experimental datasets. AR has been included in this network for
reference. Red nodes represent genes with increased expression in the resistant state, whereas green genes have lower expression. AR itself is not
differentially expressed
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interaction partners of the 213 commonly differentially
expressed genes in order to capture a broader set of pro-
teins whose functions are likely to be affected by these
changes. The initial network expansion added 1700 new
interacting proteins, 80 % of which interacted with only
one protein from our query set. We subsequently pruned
this network in order to increase the likelihood of identify-
ing proteins through which the functional effects of
altered gene expression are likely to propagate: we re-
moved proteins with a degree of 1 in this network, and
insisted that all proteins interacted with at least two from
our query set of 213. This resulted in a network of 492
proteins with 1062 interactions, which we refer to as our
disrupted network. While genes differentially expressed in
both experiments encode only 170 proteins in this
network (as some of the 213 lack known interactions), a
further 85 correspond to genes disrupted in either one or
the other experiment, such that 45 % of all proteins
captured in this network have evidence for significant dif-
ferential expression in PCa either in human tumours or in
our cell line model.
In order to determine the likely effects of this disrupted

network on the development of androgen resistance in our
model, we performed a functional analysis looking at
enriched Gene Ontology terms and signalling pathways.
Analysis of the molecular functions enriched in this
network revealed two very strong functional signatures,
related to transcription factor binding (58 genes, corrected
P value 1.9 × 10−19, including steroid hormone receptor
binding with a corrected p value of 4.2 × 10−8), and protein
kinase activity (55 genes, corrected p value 2.7 × 10−14).
This suggested that our disrupted network represents two
broad adaptive mechanisms that may be at play in both
our model and the human tumour data: alteration of tran-
scriptional regulation in response to loss of AR regulation
(seen in Fig. 4); and altered signalling driving proliferation
and inhibiting cell death. To explore both these mecha-
nisms, we (i) performed analysis of the regulatory impact
of transcription factors, and (ii) performed pathway ana-
lysis of the disrupted network .

(i) Regulatory impact of nuclear receptors in androgen
insensitive tumours and cells

In the human data, 15 of 48 known nuclear recep-
tors are differentially expressed and of the 8 steroid
hormone receptors, four are differentially expressed
(Table 2). In our cell line data set, 11 nuclear recep-
tors are differentially expressed (Table 2). It has
previously been reported that nuclear receptors
(NRs), particularly the sub family of steroid hormone
receptors, with a similar structure and binding motif,
may provide some functional redundancy. Thus, we
hypothesize that other nuclear receptors may be up

regulated in response to loss of AR signalling, and
compensate for the loss of gene regulation by AR in
androgen insensitive PCa.
We performed a computational analysis to predict regu-

latory relationships between NRs and potential target
genes. To do this, we use the method Genie3 [17], which
uses random forests for regression trees to compute an
importance measure for the relationship between the
predictor variables (here, the expression level of NR tran-
scription factors) and the output variables (expression
levels of all other genes). Because individual predictions of
association between transcription factors and targets
based on expression data are likely to be noisy and error
prone [25], we do not attempt to use these networks to
infer mechanism; rather we look for strong patterns of
shifting influence as captured by the broad-scale loss or
gain of targets with high importance measures (the top
ten transcription factors ranked by increasing size of in-
ferred regulatory networks are shown for human tumour
data in Table 3, and cell line data in Table 4).
Most notably, the progesterone receptor (PGR),

showed the largest increase in inferred network size of
all nuclear receptors in both the human and cell line
data (we confirmed PGR protein expression via im-
munocytochemistry (Fig. 6)), suggesting that this tran-
scription factor may be assuming a regulatory role that
in part compensates for the loss of AR regulation. It
should be noted that these networks are derived from
relationships in the expression data, and are not influ-
enced by the size of the interaction networks available
for these transcription factors.

(ii)Pathway analysis of the disrupted network

We observed a strong enrichment for protein kinase
function in our disrupted network, hinting at adaptive
mechanisms operating through signalling pathways to
promote proliferation in our androgen insensitive cells.
We mapped differentially expressed genes from our dis-
rupted network to KEGG signalling pathways in order to
identify mechanisms through which these gene expres-
sion changes may affect cellular phenotype. Notably,
MAPK and PI3K-Akt signalling both showed a large
number of differentially expressed genes (MAPK - cell
line 42, human 58; and PI3K-Akt - cell line 65, human
92). Within these pathways, we see some striking pat-
terns in shared disruption. In PI3K-Akt signalling, for
example, reactions leading to cell survival, growth and
proliferation outcomes are up-regulated in both human
and cell line data (see Additional file 1: Figure S2 and S4
where these data are mapped to KEGG pathways). Simi-
larly in MAPK signalling, there is a suggestion of en-
hanced signalling through to NF- B and c-JUN, which
could have an impact on proliferation and anti-apoptotic
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Table 3 Regulatory importance of transcription factors in
human tumour data

Nuclear
Receptor

Network size
before treatment

Network size
after treatment

Increased influence
post-treatment

PGR 28 114 86

ESRRA 2 77 75

PPARD 2 65 63

THRB 32 95 63

ESR2 29 67 38

NR2F6 4 37 33

NR4A2 5 35 30

ESRRG 21 41 20

RXRG 7 24 17

NR1I3 26 39 13

Table 4 Regulatory importance of transcription factors in cell
line model of androgen insensitivity

Nuclear Receptor Network size
LNCaP cells

Network size
LNCaP-AI cells

Increased Influence
in LNCaP-AI

PGR 1 53 52

RXRA 3 52 49

RARG 2 44 42

RORA 0 30 30

NR4A3 1 29 28

NR5A2 0 27 27

ESR2 0 23 23

VDR 18 41 23

NR2C1 0 22 22

ESRRG 22 42 20

Table 2 Differential expression of nuclear receptor transcription factors in human tumour and cell line model data

Detchokul et al. BMC Cancer  (2015) 15:883 Page 9 of 14



regulation [26] (see Additional file 1: Figure S1 and S3).
Interestingly, both human and cell data indicate that sig-
nalling through the MEK-ERK module itself may actually
be reduced through a combination of down regulation
of MEK and up-regulation of inhibitors of ERK. While
this may seem counter intuitive, a recent paper charac-
terising the phosphoproteomic changes in PCa found
that signalling through ERK was in fact reduced in
androgen-independent PCa [27], consistent with our
findings here.

Discussion
Here, we have described an in vitro model of the devel-
opment of androgen insensitivity in PCa, and compared
the characteristics of our cell line model to that of hu-
man disease. This cell line model is described here.

Role of AR signalling pathway
In our experiments, we found that AR is not differen-
tially expressed and genes (such as KLK3 and TMPRSS2)
that are uniquely up regulated by AR are all down regu-
lated in both the human PCa tumour cells and the
LNCaP model as shown Fig. 4. Genes such as CLU,
PEG3 etc. that are suppressed by AR are up regulated
(except for NDRG1) in human PCa cells, and in the
LNCaP model. The difference in AR gene and protein
(Fig. 3) expression in LNCaP-AI cells was also not in it-
self statistically significant, and these results are consist-
ent with loss of AR signalling in both systems.

Clinically, rising levels of prostate specific antigen (PSA)
show dependence on AR in CRPC and treatments include
directly targeting AR, using AR antagonists [28, 29]. How-
ever not all patients respond to AR antagonists, and those
who do tend to relapse [28]. This shows that tumour cells
in CRPC can continue to survive, bypassing the AR signal-
ling pathway. In our experiment, AR is not active in the
LNCaP model and the transcription abundance changes in
both tumour and cell line data (Fig. 4) suggest that in at
least the human data we compare with here, AR is not
actively regulating its normal targets. Alternative pathways
bypassing AR signalling are therefore likely to be respon-
sible for the development of androgen insensitivity in our
cell line model. This emphasises the clinical relevance of
the model we have developed for understanding CRPC
that is driven by these kinds of resistance mechanisms.
Other genes that have been shown to negatively regulate
AR and AR signalling are overexpressed in our experimen-
tal model, including Id1 [30] and IFI6 [31]. While these are
not likely to be the only mechanisms driving clinical
CRPC, a model such as ours that allows for the longitu-
dinal study of these processes will provide valuable insight
into CRPC driven by such bypass mechanisms [32].

Role of nuclear receptor super family and the steroid
hormone receptor (SHR) subfamily
AR belongs to the steroid receptor family within the
nuclear receptor superfamily. Of the 48 nuclear receptors
[33] known in the human genome, the sub family of

Fig. 6 PGR protein expression in prostate cancer cell line, LNCaP (Panel a) and LNCaP-AI (Panel b). Cells were grown, fixed and then stained for PGR
(A1, B1) and control antibody (A2, B2). The localisation of PGR was more predominant in LNCaP-AI than LNCaP in the cytoplasm. PGR expression in the
Nucleus is also more prominent in LNCaP-AI cells. Original magnification ×400
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steroid hormone receptors contains ERs (Nr3A1/ESR1,
NR3A2/ESR2), ERRs (ESRRA/NR3b1, NR3b2), GR
(Nr2c1), MR (Nr3c2), PRs (NR3C3), and AR (NR3C4) [34].
DNA binding domain sequence for AR is very similar to
PGR and glucocorticoid receptor (GR) [35], so these
genes, that are structurally similar to AR, may be replacing
AR regulation of some genes. Given almost all classes of
SHR are differentially expressed in our samples (Table 2),
a possible explanation is that in the absence of AR activa-
tion the other SHRs compensate and become active and
are involved in CRPC cell multiplication. GR has already
been implicated in CRPC bypassing AR blockade [36] and
GR is up regulated in the human data set (Table 2).
In our experiments PGR is differentially expressed and

up-regulated (see Table 2) and is also part of the top-
scoring protein network (see Fig. 5). Recently, the analysis
of samples from over 500 PCa patients who have never
been treated with hormone therapy revealed that PGR
expression in both areas of prostate tumour epithelium
and tumour stroma is an independent prognostic factor of
clinical failure [37]. Previously, it has been found that PGR
has a negative correlation with AR in hormone refractory
PCa [38]. PGR was also found to be increased in CRPC
but decreased in localised PCa, although the findings did
not reach statistical significance [38]. Our finding reflects
this clinical finding that PGR is upregulated in androgen-
deprived cells and was expressed negatively to AR. As an
oestrogen-regulated gene [39], PGR expression could also
be interrelated to the importance of oestrogen receptors
(ER) in PCa. The two major subtypes of ER, ERα and ERβ
have been previously investigated in PCa [40–42]. The
interchanging role between ERβ down-regulation in
hormone naïve PCa and ERβ up-regulation in CRPC in
matched samples has been documented [43]. Other
researchers also speculated that ERβ expression might be
mediated by phosphorylated AR at serine 210 (pAR(210))
[41, 43]. Although the role of circulating oestrogen in PCa
carcinogenesis is still controversial [44], it may be worth
investigating the role of ER and PGR in CRPC. Research
into the role of PGR and PCa is still in its early stage and
also, the lack of available antibody for all isoforms of PGR
hinders advancement in the field. While ER expression is
not enriched in our network analysis, their associated rela-
tionship with PGR compels the need for further investiga-
tion of both nuclear receptors in future study.
NR2F1 and NR2F2, also known as COUP-TFs, are or-

phan nuclear receptors and they occupy consensus DNA
binding sites shared by other nuclear receptors including
thyroid hormone receptor, retinoic acid receptor, oestrogen
receptor and AR [45–47]. This allows COUP-TFs to
modulate transcriptional activities of these nuclear recep-
tors. As well, COUP-TFs are able to exert regulatory con-
trol via direct competitive binding to coactivators and
corepressors of these nuclear receptors [48]. Although

more is known about the role of NR2F2 in PCa [45, 49],
both COUP-TF genes, NR2F1 and NR2F2 display nearly
100 % homology in their DNA-binding domain (DBD) and
ligand- binding domain (LBD), though no natural ligand
has been identified for these COUP-TFs [50]. NR2F2 was
found to promote prostate tumourigenesis via inactivation
of TGF-β signalling in PTEN-null mice [49]. In contrast,
another study found NR2F2 to inhibit PCa cell growth via
direct binding to AR preventing androgen-dependent
signalling [45]. A previous study has shown that NR2F1
expression was negatively regulated by AR but in the
presence of AR antagonist, this gene was positively regu-
lated [51]. It can be speculated that in our model long term
growth in androgen-deprived conditions decreases
androgen-dependent AR-signalling, and could cause up-
regulation of the NR2F1 gene. This may suggest that func-
tions of these COUP-TFs depend on the tumour micro-
environment and expression profiles of other nuclear
receptors and transcription factors [52]. A balance between
the two COUP-TFs may also be important in the control
of CRPC progression and further longitudinal studies will
be important for determining the shift between these two
receptors in CRPC.

AR signalling bypass through MAPK and PI3K-AKT
signalling pathways
An effective AR signalling bypass would be through
genes that support proliferation and inhibit apoptosis,
even in the absence of androgens and AR [5]. In our ex-
periment, there are a number of genes that are differen-
tially expressed in cancer pathways and show complex
and varied mechanisms involved in CRPC, making drug
targeting challenging.
In the human PCa tumour dataset, BCL-2 is up-

regulated and is known to block chemotherapy induced
apoptosis [53]. TGF-β signalling may also be responsible
for CRPC in the human tumour samples. TGF-β signal-
ling is a pathway that has dual roles, tumour-suppressor
and tumour-promoter in cancer depending on the
cellular context and clinical stage of the disease [54]. In
advanced PCa, TGF-β signalling promotes tumour pro-
gression, angiogenesis, invasiveness and epithelial-
mesenchyme transition (EMT) [55]. AR and TGF-β sig-
nalling mediate EMT and the crosstalk between these
two signalling pathways determines apoptotic effects in
PCa [56–58].
The MAPK and PI3K-Akt pathways are highly enriched

with differentially expressed genes in the cell line and the
human tumour datasets. The MAPK and PI3K-Akt path-
ways are one of the most deregulated growth factor recep-
tor signalling pathways in cancers [59]. These two
pathways have been implicated in hormonal treatment re-
sistance both in breast [60, 61] and prostate [27, 62] can-
cers and are significantly enriched pathways in our
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datasets. The crosstalk between growth factor receptor
pathways and ER signalling that activates downstream
PI3K-Akt and in turn affects proliferation and survival
exists in breast cancer [63]. Likewise, in PCa, ERα
drives proliferation via MAPK and PI3K signalling in
PTEN-null tumours [64]. As for AR, there is evidence
of crosstalk with the PI3K-Akt pathway in both andro-
gen dependent and androgen independent PCa cells
[65, 66]. In addition, the signalling pathway through
ERK1/2- and MEK, which is significantly reduced in
our cell line data and human clinical data, has been
shown to regulate PGR function [67]. Besides having
nuclear receptor signalling roles, PGR is also able to in-
directly activate key signalling pathways, especially,
MAPK and PI3K-Akt [68, 69]. These findings further
strengthen the expression balance of SHR, which ultim-
ately can synergistically enhance other proliferative/
survival pathways in CRPC.

Conclusions
Mechanisms driving CRPC are highly complex and
diverse, and there is evidence for genetic differences
across different populations [70] and numerous onco-
genes and tumour suppressors are active in CRPC
bypassing AR signalling. The nuclear receptor family,
in particular, the steroid hormone receptor subfamily
genes such as ER, PGR and GR may be compensating
for the lack of AR activity to promote cell proliferation
in CRPC. These genes may therefore represent poten-
tial drug targets in CRPC [71]. Our study also indicates
that altered signalling driving cell proliferation and re-
sistance to apoptosis is found in the LNCaP-AI cells,
highlighting in particular a role for MAPK and PI3K
signalling in driving proliferation, and the known links
between PGR and MAPK signalling further reinforce
this interpretation. Thus, our model system shows a
complex, multi-layered response to prolonged andro-
gen deprivation, and, consistent with data from human
tumours, suggests that the combination of repro-
grammed gene regulation compensating for the loss of
AR activity and altered proliferative signalling drives
the androgen resistant phenotype in this model.
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