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Breast cancer metastasis suppressor 1
(BRMS1) attenuates TGF-B1-induced breast
cancer cell aggressiveness through
downregulating HIF-1a expression
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Abstract

Background: Cancer metastasis is a multi-step event including epithelial-to-mesenchymal transition (EMT). Breast

cancer metastasis suppressor 1 (BRMS1) is a novel metastasis suppressor protein without anti-proliferating activity.

However, a detailed underlying mechanism by which BRMS1 attenuates cancer cell EMT and invasion remained to
be answered. In the present study, we report an additional mechanism by which BRMS1 attenuates Transforming

growth factor-betal (TGF-31)-induced breast cancer cell EMT and invasion.

Methods: Experimental analysis involving chromosome immunoprecipitation (ChIP) and luciferase reporter assays
were used to validate hypoxia inducible factor-1alpha (HIF-1a) as a transcriptional regulator of TWIST1 and Snail.
Quantitative RT-PCR was used to analyze transcript expression. Immunoblotting and immunofluorescence were
used to analyze protein expression. Matrigel-coated in vitro invasion insert was used to analyze cancer cell invasion.

Results: BRMS1 strongly inhibited TGF-31-induced breast cancer cell EMT and invasion. Unexpectedly, we observed
that BRMST downregulates not only TWIST1 but also Snail expression, thereby inhibiting breast cancer cell invasion.
In addition, we provide evidence that HIF-1a is required for Snail and TWIST1 expression. Further, BRMS1 reduced
TGF-B1-induced HIF-1a transcript expression through inactivation of nuclear factor kappaB (NF-kB).

Conclusion: Collectively, the present study demonstrates a mechanical cascade of BRMS1 suppressing cancer cell
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invasion through downregulating HIF-1a transcript and consequently reducing Snail and TWISTT expression.

Background

Cancer metastasis is a multi-step event including epithelial-
to-mesenchymal transition (EMT) [1]. To start invading
surround extracellular matrix, tumor cells should be
detached from the neighboring epithelial cells by redu-
cing the expression of E-cadherin. Hypoxic condition
and various growth factors including transforming
growth factor-betal (TGF-B1) and epidermal growth
factor (EGF) have been shown to induce EMT through
upregulating the expression of transcription factors
Snail and TWIST1 [2-4].
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Breast cancer metastasis suppressor 1 (BRMS1) is a
novel metastasis suppressor protein initially identified
by differential display to compare highly metastatic
breast carcinoma cells with related but metastasis-
suppressed cells [5]. BRMSI is a part of a family that
includes suppressor of defective silencing 3 (SUDS3 or
mSds3) and BRMS1-like (BRMSI1L or p40) [6, 7] and
has been shown to selectively suppress metastasis with-
out any inhibition of tumorigenicity of multiple human
cancer cells including melanoma [8], ovarian cancer [9]
and non-small cell lung cancer [10]. Accumulating evi-
dence suggests two important mechanisms for suppres-
sion of BRMSIl-induced cancer metastasis: interaction
with chromatin remodeling and inhibition of nuclear
factor-kappaB (NF-kB) activity [11]. BRMSI recruits
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histone deacetylasel (HDAC1) to NF-«kB consensus bind-
ing regions [12, 13] and upregulates miR-146a, leading to
downregulation of EGFR expression in breast cancer cells
[14]. In addition, BRMS1 was reported to have E3 ligase
function, leading to suppressing lung metastasis [15].
Recent studies suggest that BRMS1 suppresses breast
cancer cell metastasis through modulating cancer cell
EMT. Loss of BRMS1 promotes EMT through NF-kB-
dependent-TWIST1 expression [16]. Further, Gong et al.
[17] claimed that BRMSI epigenetically silences a recep-
tor for Wnt signaling FZD10, leading to suppress breast
cancer cell EMT. However, detailed underlying mechan-
ism by which BRMS1 attenuates cancer cell EMT has not
been fully characterized. In the present study, we observed
that BRMS1 efficiently inhibited TGF-B1-induced breast
cancer cell EMT and invasiveness by downregulating not
only TWIST1 but also Snail expression. In addition, we
provide evidence that NF-«B is implicated in TGF-p1-
induced hypoxia inducible factor-lalpha (HIF-1a) expres-
sion and subsequent Snail and TWIST1 expression. Fur-
ther, the present study shows that BRMSI significantly
inhibits TGF-Pl-induced HIF-la transcript, leading to
downregulation of Snail and TWIST1. Therefore, our re-
sults identify mechanism by which BRMSI1 attenuates
cancer cell progression through downregulating HIF-1a
and subsequently reducing Snail and TWIST1 expression.

Methods

Reagents

TGEF-B1 was obtained from R&D systems (Minneapolis,
MN). BAY11-7082 was purchased from Calbiochem (La
Jolla, CA). The pcDNA3-BRMSI1 plasmid was generated
by subcloning EcoRI/Xhol from pOTB7-BRMSI1 (clone
ID: hMUO011011, KRIBB, Korea). The empty pcDNA3
vector was used as a negative control.

Cell culture

All breast cancer cell lines were purchased from American
Type Culture Collection (Manassas, VA). MDA-MB-231
were maintained in RPMI 1640 supplemented with 10 %
fetal bovine serum (FBS) and 1 % penicillin/streptomycin.
MCEF-7 cells were maintained in Dulbecco’s modified
Eagle’s medium, supplemented with 10 % fetal bovine
serum and 1 % penicillin/streptomycin. All cells were
incubated at 37 °C under 5 % CO, in a humidified
incubator.

Small interfering RNA (siRNA)

siRNAs of HIF-1a was obtained from Sigma-Aldrich (St.
Louis, MO). Control scrambled-siRNA was obtained from
Invitrogen (Carlsbad, CA). Transfection was performed by
utilizing Lipofectamine RNAIMAX (Invitrogen, Carlsbad,
CA) according to the manufacturer’s instructions.
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Quantitative RT-PCR

Total cellular RNA was isolated from cultured cells using
Trizol (Invitrogen, Carlsbad, CA), and 1 pg of RNA was
reverse transcribed using oligo (dT) and M-MLV reverse
transcriptase (Promega, Madison, WI) according to the
manufacturer’s protocol. Reactions were performed as de-
scribed previously [18]. The primer sequences of mutants
are shown below. HIF-1a; forward 5-GTT TAC TAA
AGG ACA AGT CAC C-3 and reverse 5-TCC TGT
TTG TTG AAG GGA G-3; TWISTI; forward 5-GTC
CGC AGT CTT ACG AGG AG-3 and reverse 5-CCA
GCT TGA GGG TCT GAA TC-3; E-cadherin; forward 5’-
ACA GCC CCG CCT TAT GAT T-3’ and reverse 5-TCG
GAA CCG CTT CCT TCA-3; Snail; forward 5-TTT ACC
TTC CAG CAG CCC TA-3 and reverse 5-GGA CAG
AGT CCC AGA TGA GC-3] Slug; forward 5-TCT GCA
GAC CCA TTC TGA TG-3 and reverse 5-AGC AGC
CAG ATT CCT CAT GT-3, GAPDH; forward 5-ACA
GTC AGC CGC ATC TTC TT-3 and reverse 5-ACG
ACC AAATCC GTT GAC TC-3.

Immunoblotting

The cell lysates were prepared as described [19]. Anti-
bodies for HIF-1a (1:1000), p-p65 (1:1000), Snail (1:1000)
and Slug (1:1000) were from Cell Signaling Technology
(Danvers, MA). Antibodies for E-cadherin (1:1000),
TWIST1 (1:1000), BRMS1 (1:500), p52 (1:500), p50
(1:1000) and GAPDH (1:3000) were from Santa Cruz Bio-
technology Inc. (Santa Cruz, CA). Antibody for p65
(1:1000) was obtained from BD Biosciences (San Jose,
CA). Secondary antibodies for anti-rabbit (1:2000 ~
5000) and anti-mouse (1:2000) were Thermo Fisher
Scientific Inc (Rockford, IL). Secondary antibody for
anti-goat (1:3000) obtained from Santa Cruz Biotech-
nology Inc. (Santa Cruz, CA). The immunoreactive
bands were visualized by ECL (Thermo Fisher Scien-
tific Inc., Rockford, IL) using ImageQuant 300 (GE
Healthcare, Buckinghamshire, UK).

Luciferase assay

A TWIST1 luciferase reporter vector [3] was kindly pro-
vided from Dr. Hung, MC (M.D. Anderson Cancer Cen-
ter, Houston, TX). A Snail luciferase reporter vector [20]
was kindly provided from Dr. Yook, JI (Yonsei Univer-
sity College of Medicine, Korea). A HIF-1a luciferase
reporter vector was obtained from Addgene (Cambridge,
MA). The cells were prepared in 12-well plates in tripli-
cate and transfected with the indicated reporter plasmids
by utilizing Lipofectamine 2000 reagent (Invitrogen,
Carlsbad, CA). After stimulation with or without TGEF-
B1, the cells were washed twice with ice-cold PBS and
harvested with a reporter lysis buffer (Promega, Madison,
WI). The luciferase activity was analyzed as described
previously [21].
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In vitro invasion assay

In vitro invasion assay was performed with invasion assay
kit with Matrigel-coated inserts (BD Biosciences, San Jose,
CA) as described previously [22]. Volume of 1 x 10° cells/
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well was added to the upper compartment of the invasion
chamber. To the lower compartment, we added serum-
free conditioned medium with or without TGF-B1. After
incubation for 12 h (MDA-MB-231) or 48 h (MCF-7) at
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Fig. 1 BRMST inhibits TGF-B1-induced EMT. a The cells were transfected with BRMS1 or empty vector (control), and in vitro invasion was analyzed
against TGF-B1 (5 ng/ml) (***P < 0.001 vs control, P < 0.01 and P < 0.001 vs control with TGF-B1). All images original magnification, x200. b The
MCF-7 cells were transfected with BRMST or empty vector (control) and then treated with TGF-31 (5 ng/ml) for indicated times. The morphology
of the cells was examined under light microscope. All images original magnification, x200. ¢ The MCF-7 cells were transfected with BRMS1 or
empty vector (control) for 48 h and then stimulated with TGF-31 (5 ng/ml) for 6 h. The cells were fixed and stained to assess expression of E-cadherin
(green; E-cadherin, blue; Nuclei). All images original magnification, x200. d The MCF-7 cells were transfected with BRMS1 or empty vector (control) for
48 h, followed by stimulation with TGF-31 (5 ng/ml) for 6 h. The E-cadherin transcript was analyzed by quantitative RT-PCR. Relative mRNA levels
normalized to the expression of the housekeeping gene, GAPDH (**P < 001 vs control, “P < 0.05 vs control with TGF-31). Representative results were
presented from at least three independent experiments with similar results
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37 °C, filters were fixed and stained with Diff-Quik re-
agents (Dade Behring, Inc., Newark, DE). The average
numbers of six random microscopic fields (x200) was re-
corded in each experiment.

Immunofluorescence

Immunofluorescence assays were performed as described
previously [23]. Antibodies for E-cadherin (1:100) and
HIF-1a (1:50) were obtained from BD Biosciences (San
Jose, CA). The cells were examined by confocal micros-
copy (LSM710; Carl Zeiss, Jena, Germany).

Chromatin immunoprecipitation
The ChIP assay was performed as described in the
protocol from the Millipore ChIP Assay Kit (Upstate
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Biotechnology, Charlottesville, VA). Antibody for HIF-
la was obtained from Abcam (Cambridge, MA). The
promoter-specific primers used were: TWIST1-HRE;
forward 5-GGA CTG GAA AGC GGA AAC TT-3
and reverse 5-CGA GGT GTC TGG GAG TTG G-3;
Snail-HRE; forward 5-GCT GGG CCA GGC TGC
TTT GCA-3 and reverse 5-GGA CAC CTG ACC
TTC CGA CG-3.

Subcellular fractionation

The cells were fractionated using the ProteoExtract Sub-
cellular Proteome Extraction Kit (Calbiochem, La Jolla,
CA) according to the manufacturer’s instructions. The
fractionated samples were analyzed by Immunoblotting.

-

three independent experiments with similar results
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Fig. 2 BRMST inhibits Snail and TWIST1 expression. a The cells were transfected with BRMST or empty vector (control) for 48 h and then
stimulated with TGF-31 (5 ng/ml) for 6 h. Quantitative RT-PCR. Relative mRNA levels normalized to the expression of the housekeeping gene,
GAPDH (*P < 0.05 and ***P < 0.001 vs control, *P < 0.05 and P < 0.01 vs control with TGF-B1). b The MDA-MB-231 cells were transfected with
BRMS1 or empty vector (control) for 48 h and then stimulated with TGF-31 (5 ng/ml) for 6 h. Immunoblotting. ¢ and d The MDA-MB-231 cells
were cotransfected with the empty vector (control), BRMST and indicated reporter plasmids for 48 h, followed by stimulation with TGF-31 (5 ng/ml)
for 24 h. Luciferase activity (**P < 0.01 and ***P < 0001 vs control,"P < 0.01 vs control with TGF-B1). Representative results were presented from at least
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Statistics

Data are shown as means = s.d. Differences between two
groups were assessed using the Student’s t-test. Differ-
ences among three or more groups were evaluated by
analysis of variance, followed by Bonferroni multiple
comparison tests.

Results

BRMS1 inhibits breast cancer cell EMT

Given that BRMSI has been known to attenuate cancer
cell metastasis, we first determined whether BRMSI1
inhibits TGF-PB1-induced breast cancer cell invasion.
Indeed, ectopic expression of BRMS1 significantly inhib-
ited TGF-B1-induced breast cancer cell invasion (Fig. 1a).
Since EMT process is important for cancer cell invasion,
we next determined whether BRMS1 regulates breast
cancer cell EMT. Stimulation of the cells with TGF-$1
efficiently induced morphological change from epithelial
to mesenchymal phenotype of breast cancer cells (Fig. 1b).
However, overexpression of BRMSI strongly inhibited
TGF-B1-induced EMT. In addition, immunofluorescence
analysis showed that BRMS1 restored E-cadherin expres-
sion downregulated by TGF-B1 (Fig. 1c). Consistent with
these findings, we observed that BRMSI efficiently inhib-
ited TGF-Bl-induced reduction of E-cadherin transcript
(Fig. 1d). Therefore, these data strongly suggest that
BRMS1 inhibits TGF-B1-induced breast cancer cell EMT.

BRMS1 inhibits Snail and TWIST1 expression

We next determined the underlying mechanism by
which BRMSI1 inhibits TGF-B1-induced breast cancer
cell EMT. Stimulation of the cells with TGF-$1 signifi-
cantly induced mRNA expression of EMT factors Snail,
Slug and TWIST1 (Fig. 2a). However, overexpression of
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BRMS1 markedly inhibited Snail and TWIST1 but not
Slug transcript (Fig. 2a). Immunoblotting analysis also
showed that BRMS1 decreased TGF-P1l-induced Snail
and TWIST1 expression (Fig. 2b). In addition, BRMS1
significantly inhibited TGF-B1-induced promoter activ-
ities of Snail (Fig. 2c) and TWIST1 (Fig. 2d), confirming
that BRMS1 reduces not only TWIST1 but also Snail
expression. Therefore, these results strongly suggest
that BRMS1 attenuates TGF-B1-induced breast cancer
cell EMT through downregulation of both Snail and
TWIST1.

HIF-1a is important for both Snail and TWIST1 expression
Since hypoxia increased Snail [24] and TWIST1 [2] ex-
pression, we next determined whether HIF-1la is impli-
cated in TGF-B1-induced Snail and TWIST lexpression in
breast cancer cells. Stimulation of the cells with TGF-f1
significantly upregulated Snail and TWIST1 expression,
while E-cadherin expression was reduced (Fig. 3a). How-
ever, silencing HIF-1a showed opposite effects. HIF-1a
siRNA reduced both Snail and TWIST1 expression con-
comitant with increased E-cadherin (Fig. 3a). Consistently,
silencing HIF-1a abrogated TGF-p1-induced breast can-
cer cell invasion (Fig. 3b). Therefore, these data strongly
suggest that HIF-la is important for TGF-Pl-induced
Snail and TWIST1 expression and cancer cell invasion.

BRMS1 inhibits HIF-1a expression

Given that BRMSI inhibits Snail and TWIST1 expression
and that hypoxic condition induces Snail [24] and TWIST1
[2] expression in breast cancer cells, we hypothesized that
BRMS1 inhibits HIF-1a expression. Indeed, overexpression
of BRMS1 strongly inhibited TGF-Bfl-induced HIF-1a
mRNA expression (Fig. 4a). In addition, ectopic expression
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Fig. 3 HIF-1a is important for TGF-B1-induced Snail expression. a The cells were transfected with indicated siRNAs and then stimulated with or
without TGF-B1 (5 ng/ml) for 6 h. Immunoblotting. b The cells were transfected with indicated siRNAs and in vitro invasion was analyzed against
TGF-B1 (5 ng/ml) (**P <001 and **P < 0.001 vs control scrambled siRNA, #*P < 0001 vs control scrambled siRNA with TGF-31). Representative
results were presented from at least three independent experiments with similar results
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of BRMSI significantly reduced TGF-B1-induced promoter
activities of HIF-la (Fig. 4b). We also observed that
BRMS]1 strongly reduced TGEF-Bl-induced HIF-1a ex-
pression (Fig. 4c). In addition, immunofluorescence
analysis showed that BRMS1 downregulated TGEF-fB1-
induced HIF-la expression (Fig. 4d). Further, we ob-
served that BRMS1 abrogated TGF-p1-induced binding of
HIF-1a on a promoter region of Snail [25] and TWIST1
[26] (Fig. 4e). Together, these results suggest that BRMS1
inhibits TGF-pl-induced HIF-la expression and subse-
quent Snail and TWIST1 expression.
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NF-kB is important for HIF-1a expression

Since NF-«kB is one of important transcription factors
for HIF-1a transcript [27], we next determined whether
NF-kB is important for HIF-la transcript expression.
TGF-B1 induced translocation of NF-xB subunits from
cytosol to nucleus (Fig. 5a). However, BRMS1 strongly
inhibited TGEF-P1-induced translocation of NF-«kB sub-
units. In addition, pretreatment of the cells with a pharma-
cological inhibitor of NF-kB, BAY11-7082 markedly
inhibited TGEF-Pl-induced HIF-la promoter activity
(Fig. 5b). Further, BAY11-7082 abrogated TGE-p1-induced
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J

HIF-1a and TWIST1 expression (Fig. 5¢c). Therefore, these
data strongly suggest that NF-kB is implicated in HIF-1a
expression and consequent Snail and TWIST1 expression.

Discussion

In our current study, we elucidate the underlying mech-
anism by which BRMS1 attenuates breast cancer cell
invasion. We demonstrate that both Snail and TWIST1
are important for TGF-p1-induced breast cancer cell in-
vasion. Strikingly, our present data show that BRMS1
downregulates not only TWIST1 but also Snail expres-
sion, thereby attenuating TGF-B1-induced breast cancer
cell EMT and invasion. Moreover, our data show that
HIF-1la mediates TGF-PBl-induced Snail and TWIST1
expression and that BRMSI inactivates NF-«B to reduce
HIF-1la transcript, leading to downregulation of TGEF-
B1-induced Snail and TWIST1 expression. These finding

suggest a critical role of HIF-1a through NF-«B activa-
tion in TGEF-Pl-induced Snail and TWIST1 expression
and their inhibition by BRMS1 for suppressing breast
cancer progression.

BRMS1 has been known to attenuate TWIST1 ex-
pression [11, 28]. More recently, Liu et al. [16] pro-
posed that BRMS1 suppresses TWIST1 expression and
subsequent NSCLC metastasis. In the present study, we
provide evidence that in addition to TWIST1, BRMS1
attenuates breast cancer cell invasion through down-
regulating Snail expression. First, BRMS1 inhibits TGF-
B1-induced Snail and TWIST1 but not Slug expression.
Second, silencing either Snail or TWIST1 expression
recovered TGF-PBl-induced E-cadherin expression and
breast cancer cell EMT. More importantly, Snail siRNA
significantly inhibited TGF-B1l-induced breast cancer
cell invasion.
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HIF-1a induced by hypoxia and growth factors has
been shown to mediate EMT and metastasis of various
cancer cells. HIF-1a was reported to upregulate TWIST1
expression to induce morphological change of epithelial
cells to mesenchymal phenotype [2]. In addition, our
recent results suggest that HIF-la is important for
TWIST1 expression and prostate cancer cell invasion
[23, 26]. Further, recent study shows that HIF-1a induces
histone deacetylase 3 (HDAC3) which in turn cooperate
with Snail to induce EMT and metastatic phenotypes [29].
Consistent with these notions, we demonstrated in the
present study that TGF-f1 induces HIF-la expression,
which in turn upregulates TWIST1 expression. Notably,
we observed that HIF-1a is also implicated in Snail ex-
pression in breast cancer cells which was not detected in
prostate cancer cells [23], suggesting the differential role
of HIF-1a in Snail expression depending on the cellular
context. Consistent with this notion, tumor hypoxia corre-
lates with overexpression of HIF-la, and consequently
with TWIST and Snail expression [2]. Since Snail has
been known to enhance TWIST1 protein stability in
mouse breast epithelial NMuMG cells [30], further
study to explore the crosslink between Snail and TWIST1
expression is warranted to determine the underlying
mechanism of TGF-fl-induced breast cancer cell EMT
and aggressiveness.

Conclusion

Our results demonstrate that BRMS1 attenuates TGF-p1-
induced breast cancer cell invasion through inhibition of
NF-kB and subsequent reduction of HIF-la expression
required for Snail and TWIST1 expression, uncovers a
new mechanism through which BRMS1 suppresses breast
cancer progression.
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