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Abstract

Background: Osteoprotegerin (OPG) is a glycoprotein that has multifaceted role and is associated with several
cancer malignancies like that of bladder carcinoma, gastric carcinoma, prostate cancer, multiple myeloma and
breast cancer. Also OPG has been associated with several organ pathologies. The widespread expression of OPG
suggests that OPG may have multiple biological activities that are yet to be explored.

Methods: The anchorage-independent sphere cultures of the adherent cells were instrumental in our study as it
provided a deeper insight into the complexity of a 3D tumor. Cytokine profiling was performed for OPG's detection
in the microenvironment. ELISA and western blotting were performed to quantify the OPG secretion and measure
the protein levels respectively. OPG expression was detected in human breast cancer tissue samples by IHC. To
decipher OPG's role in tumor aggressiveness both recombinant human OPG as well as OPG rich and depleted
breast cancer cell conditioned media were tested. Western blotting and MTT assay were performed to detect
changes in signaling pathways and proliferation that were induced in presence of OPG. Onset of aneuploidy, in
presence of OPG, was measured by cell cycle analysis and western blotting. Finally, human Breast Cancer
gBiomarker Copy Number PCR Array was used to detect how OPG remarkably induced gene copy numbers for
oncogenic pathway regulators.

Results: SUM149PT and SUM1315M02 cells secrete high levels of the cytokine OPG compared to primary human
mammary epithelial cells (HMEC). High expression of OPG was also detected in human breast cancer tissue samples
compared to the uninvolved tissue from the same patient. OPG induced proliferation of control HMEC spheres and
triggered the onset of aneuploidy in HMEC sphere cultures. OPG induced the expression of aneuploidy related
kinases Aurora-A Kinase (IAK-1), Bub1 and BubR1 probably through the receptor activator of nuclear factor kappa-B
ligand (RANKL) and syndecan-1 receptors via the Erk, AKT and GSK3(3 signaling pathway. Gene copy numbers for
oncogenic pathway regulators such AKT1, Aurora-A Kinase (AURKA or IAK-1), epidermal growth factor receptor
(EGFR) and MYC with a reduction in the copy numbers of cyclin dependent kinase inhibitor 2A (CDKN2A), PTEN
and DNA topoisomerase 2 alpha (TOP2A) were induced in presence of OPG.

Conclusions: These results highlight the role of OPG in reprogramming normal mammary epithelial cells to a
tumorigenic state and suggest promising avenues for treating inflammatory breast cancer as well as highly invasive
breast cancer with new therapeutic targets.
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Background

Breast cancer, the leading cause of death among women
with an onset frequency of one in eight, is the most
common type of cancer among women. However,
despite the advancement in therapy, the mortality rate in
breast cancer patients still remains high. The proactive,
complex and dynamic tumor microenvironment of
breast cancer adds to the grim scenario of the disease by
accumulating inflammatory and angiogenic growth fac-
tors and creating a niche for the growth and metastasis
of breast cancer cells.

The invasive carcinomas in humans can be highly me-
tastasizing, less invasive or localized which indicate the
dynamic and progressive nature of breast cancer. Study-
ing the pathobiology of human breast cancer is challen-
ging due to the inherent complexity. To investigate the
pathobiology of human breast cancer successfully, it is
necessary to maintain and recreate the characteristic
three-dimensional (3D) architecture of the tissue in
culture since conventional 2D monolayer has many limita-
tions. 3D cultures more closely resemble the in vivo situ-
ation with regard to cell shape and its microenvironment
[1]. It is well established that the development and pro-
gression of a tumor toward the malignant phenotype is
highly dependent on interactions between tumor cells and
its microenvironment. The tumor microenvironment is
made up of secreted growth and angiogenic factors, in-
flammatory cytokines, adhesion molecules, and circulating
tumor cells. Tumor microenvironment promotes angio-
genesis, cell migration, metastasis, and drives tumor
progression to invasive carcinomas [2]. Therefore, in the
current study we performed cytokine profiling of breast
cancer and healthy mammary cell conditioned media repre-
senting their microenvironment. We observed high levels
of osteoprotegerin (OPG) secretion from the primary
inflammatory ductal carcinoma SUM149PT cells and highly
invasive ductal breast carcinoma SUM1315MO2 cells when
compared to primary human mammary epithelial cells
(HMEC).

OPG, also known as osteoclastogenesis inhibitory
factor or tumor necrosis factor receptor superfamily
member 11B (TNFRSF11B), is expressed in many tissues
such as heart, kidney, liver, spleen, and bone marrow [3].
Besides being an important player in bone metabolism,
OPG is a key regulator in vascular disease, prostate can-
cer, multiple myeloma, breast cancer, bladder carcinoma,
and gastric carcinoma [4]. There are multiple evidences
suggesting OPG’s association to malignancy [4, 5]. OPG
is a multifaceted molecule playing various functional
role involved in cancer sustenance and progression such
as tumor cell survival [4, 5] resistance to TRAIL induced
apoptosis [6], angiogenesis and regulation of cellular
phenotype [7]. In this study, we aimed to examine the
unexplored role(s) of OPG in aggressive breast cancer
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progression. We examined whether OPG rich secretions
from aggressive breast cancer cells influence healthy
HMECs and drive them towards tumorigenesis.

Our studies demonstrate that OPG induces prolifera-
tion, angiogenesis, aneuploidy and survival through
manipulation of various survival and aneuploidy related
kinases in HMEC spheres. Furthermore, OPG upregu-
lated the expression of the cancer initiating cell marker
CD24, in HMEC spheres. The biological significance of
OPG was confirmed using recombinant human OPG,
OPG rich or OPG depleted conditioned medium from
breast cancer cells. Overall, our study reveals OPG as a
potential therapeutic target for inflammation and inva-
sion related aggressive breast cancer.

Results

Breast cancer spheres are phenotypically different from the
spheres cultured from normal mammary epithelial cells
Sphere cultures of HMEC, SUM149PT and SUM1315MO2
cells were imaged (Fig. 1a). The control HMEC spheres
were heterogeneous in size and comprised of both big
and small sized spheres with a smooth periphery
(Fig. la. a and a). In contrast, SUM149PT and
SUM1315MO2 spheres were bigger in size with a dif-
ferent morphology and highly irregular periphery
(Fig. 1a. b, b} ¢, and ¢’). Breast cancer sphere images
clearly demonstrate the adherence of multiple spheres
forming bigger size spheres. The milieu of the breast
cancer spheres seems highly active with new cells
colonizing around and homing onto the bigger spheres
when compared to HMEC spheres. Using the FV10-
ASW3.0 software, we quantified the length and perim-
eter of the spheres. When compared to the diameter
(225 pm) and the perimeter (800 pm) of the HMEC
spheres, the breast cancer spheres were significantly
bigger in diameter (600-700 pum) as well as in their
perimeters (1100—-1500 um) (Fig. 1b and c).

To assess that the morphological changes are due to the
microenvironmental factors, the primary spheres of
SUM149PT and SUMI1315MO2 were trypsinized and
reseeded for the growth of secondary spheres and were
observed after 10 days (Fig. 1d). Confocal microscopy was
performed, which highlighted the adherence of multiple
spheres forming bigger size spheres as observed previously
(Fig. 1a). Also there was a change in morphology of
spheres which can be attributed to the microenvironment
that is enriched with various cytokines affecting the mo-
lecular and cellular genotype and phenotype.

Breast cancer adherent cells and spheres have unique a
cytokine rich tumor microenvironment

We reasoned that the highly dynamic milieu of breast
cancer cells might be due to a unique cytokine compos-
ition of their tumor microenvironment. Hence, we
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Fig. 1 Phenotypic differences between breast cancer spheres and control HMEC spheres. a Confocal of HMEC (g, @), SUM149PT (b, b) and SUM1315MO2
(¢ ) spheres. Cells were seeded in a 6-well ultra-low attachment plate, grown for 8 days, and then confocal imaged at 10X magnification. Results shown
are tiled shots of two different fields and the assay was performed in triplicate with n = 3. The (b) diameter and (c) perimeter of spheres was measured
using the FV10-ASW3.0 software, and statistical significance was calculated with respect to HMEC. d Confocal images of secondary sphere cultures from

SUM149PT (a) and SUM1315MO2 (b) with n=3

performed cytokine profiling of the conditioned media ob-
tained from adherent cells (Fig. 2a) and sphere cultures
(Fig. 2b) of HMEC, SUM149PT, and SUM1315MO2 cells.
The tumor microenvironment of breast cancer cells and
spheres varied in composition of cytokine and chemokines
involved in adhesion and angiogenesis when compared to
HMEC cells and spheres (Additional file 1: Figure SI).
Most importantly, secretion of OPG, growth related onco-
gene (GRO) and GRO-a was higher in breast cancer cells
and spheres (Additional file 1: Figure S1). When compared
to HMEC adherent cells, OPG secretion was increased by
34 fold and 50 fold in SUM149PT and SUM1315MO2
cells, respectively (Fig. 2c and d). Strikingly, OPG secretion
from SUMI149PT and SUMI1315MO2 spheres was
increased by 78 fold and 43 fold respectively, when com-
pared to HMEC spheres (Fig. 2c¢ and d). A similar trend
was observed in inflammatory cytokine and chemokine

composition in the secretions of breast cancer cells and
spheres. A highlight was the excessive secretion of highly
chemotactic interleukin IL-8 in the breast cancer cells and
spheres conditioned media in comparison to HMEC (Add-
itional file 1: Figure S1). The secretion of other angio-
genic and growth factors like Growth related oncogene
(GRO), Growth related oncogene-alpha (GRO«), urokin-
ase plaminogen activator receptor (uPAR), Oncostatin M
(OSM), soluble tumor necrosis factor-alpha receptor 1
(STNFRI), Intercellular adhesion molecule 1 (ICAM-1)
was increased in the conditioned media of breast cancer
cells when compared to control HMEC cells conditioned
media (Additional file 1: Figure SI1). The inflammatory
chemokines and cytokines like Glucocorticoid induced
TNER related protein (GITR), Haemoinfiltrate CC che-
mokine 4 (HCC-4), Thymus expressed chemokine
(TECK), Interleukin 17 (IL-17), Interleukin 6 receptor
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Fig. 2 Cytokine array analysis of the conditioned media from (a) adherent cells and (b) sphere cultures of HMEC, SUM149PT and SUM1315MO2
cells. Red box in the panel indicates the spot on the array corresponding to OPG. ¢ and d Semiquantitiative densitometric analysis of the OPG in
the supernatants obtained from adherent cells and sphere cultures of HMEC, SUM149PT and SUM1315MO2. e Conditioned media from adherent
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SUM1315MO2 or (b) HMEC and SUM190PT were Western blotted for OPG, stripped and immunoblotted for (a) GAPDH or (b) 3-actin used as loading
control. A representative blot from three independent experiments is shown
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(IL-6R) and other cytokines like TIMP metallopeptidase
inhibitor 1 (TIMP-1), TIMP metallopeptidase inhibitor
2 (TIMP-2), Fas were also getting secreted (Additional
file 1: Figure S1). Similar trend was observed in the
microenvironment of breast cancer spheres when com-
pared to HMEC spheres (Additional file 1: Figure S1).

Results of cytokine profiling (Additional file 1: Figure
S1) clearly indicate the striking differences between the
cytokine profile as well as the level of cytokine secretion
between adherent cells and sphere cultures. These re-
sults demonstrate the probable complexity and differ-
ence in 3D sphere biology in comparison to 2D adherent
cell biology. Since cytokine profiling is semi-quantitative,
we therefore quantified the secretion of OPG by ELISA
as described in the methods. Compared to HMEC, 500
and 1100 pg/ml of OPG was secreted in the conditioned
media of SUM149PT and SUM1315MO2 cells, respect-
ively (Fig. 2e). Western blot analysis also confirmed that
the OPG level was significantly high in the adherent
breast cancer cells when compared to HMEC cells
(Fig. 2f. a).

To further validate the observation, Western blot ana-
lysis was performed in a different inflammatory breast
cancer cell line SUM190PT which also revealed the high
levels of OPG when compared to the HMEC cells
(Fig. 2f. b).

OPG expression is significantly elevated in the breast
cancer tissue

To extend our previous in vitro observations, we ana-
lyzed the breast tissue sections of healthy subjects and
invasive ductal carcinoma breast patients for the pres-
ence of OPG by immunohistochemical staining using
anti-OPG antibody. Most of the abundant OPG expres-
sion was detected in invasive ductal carcinoma breast
tissue sections (Fig. 3a, panels a, b and d, e) compared
to the normal healthy control tissue section (Fig. 3a,
panel ¢ and f). Specificity of OPG staining was con-
firmed by the non-reactivity of isotype control for OPG
antibody (Fig. 3b). There was a consistent high expres-
sion of OPG in the invasive ductal carcinoma breast tis-
sue samples (Fig. 3c, panels al, b1, a2, b2, a4, b4, d5 and
e5) when compared to the control uninvolved tissue
samples (Fig. 3c, panels c2, c¢4 and f5). However, there
was one exception where the control uninvolved tissue
samples showed abundant expression of OPG (Fig. 3c,
panel cl). We next evaluated the fold OPG expression in
all 32 tumor sections by densitometric analysis using
Image] software. 0-2, 2—4, 4—6 fold induction in OPG
expression was observed in 13, 13 and 6 tumor sections,
respectively (Additional file 2: Table S1). Collectively
these results for the first time show the presence of
OPG expression in invasive ductal carcinoma breast
tissues.
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Similarly, staining the inflammatory breast cancer patient
tissue sample using anti-OPG antibody revealed specific
abundant OPG staining (Fig. 4a, panels al, bl and cl).
The specificity of OPG staining was confirmed by the
non-reactivity of isotype control for OPG antibody
(Fig. 4b, panels d1 and el). Taken together the immuno-
histochemistry results highlight the abundant OPG
expression in two different types of breast cancers that is
the invasive and inflammatory breast cancer.

OPG induces in vitro tube formation in primary
endothelial cells

Previous studies have demonstrated that OPG acts as an
autocrine and paracrine factor [8, 9]. We hypothesized
that the OPG rich tumor microenvironment via its para-
crine actions reprograms normal mammary epithelial
cells to a tumorigenic state. Therefore, we next studied
the effect of OPG on the ‘in vitro sphere cultures’ of
HMEC as a working model. We depleted OPG from the
conditioned media of SUM149PT and SUM1315MO2
adherent cells by using OPG depleting antibody [10]. 98
and 95 % depletion was observed in SUMI149PT and
SUM1315MO2 media respectively in comparison to the
OPG rich breast cancer conditioned media (Additional
file 3: Table S3). Since the tumor microenvironment can
facilitate angiogenesis, we evaluated the role of OPG in
regulating angiogenesis using an HMVEC-d cell tube
formation assay as described in the schematic Fig. 5a
and d. A dense network of in vitro tubes was observed
when conditioned media from SUM149PT (Fig. 5b) and
SUM1315MO2 (Fig. 5e) were used. The length, width,
and number of nodes were increased in the presence of
conditioned media from SUMI149PT (Fig. 5b) and
SUM1315MO2 cells (Fig. 5¢) when compared to the condi-
tioned media from HMEC cells (Fig. 5b). In contrast, the
network formed in the presence of OPG-depleted breast
cancer cell conditioned media was highly primitive and the
tubes were poorly defined (Fig. 5b and e). The length and
the width of the tubes as well as the number of nodes
significantly decreased in the presence of OPG-depleted
breast cancer cell conditioned media (Fig. 5b and e). In the
presence of recombinant human OPG, an intricate network
of long tubes with multiple node formation was observed
(Fig. 5b and e). Quantitatively, conditioned media from
SUM149PT and SUM1315MO2 adherent cell conditioned
medium induced ~ 5-fold and 2.5 fold, respectively more
branch points/field than HMEC medium (Fig. 5¢ and f).
However, OPG-depleted SUM149PT and SUM1315MO2
conditioned media reduced node formation by 36 and
51 %, respectively (Fig. 5¢ and f). Interestingly, in the pres-
ence of 500 pg/ml and 1100 pg/ml of recombinant human
OPG ~ 3.7 fold and 2.5 fold more branch points/field for-
mation was induced when compared to HMEC medium
(Fig. 5c and f). Taken together, our results suggest that
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Fig. 3 OPG expression in human invasive ductal carcinoma breast tissue samples. a 16 breast cancer tissue samples, in duplicates (panel g, b and
panel d, e) along with their controls (panel ¢ and f) were analyzed by IHC staining for OPG. Magnification for the panels is 4X. b Isotype control
staining of the same breast cancer tissue samples. ¢ Magnified view (10X and 60X) of OPG staining in selected human breast cancer tissue
samples. Red arrows indicate OPG staining
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Fig. 4 OPG expression in human inflammatory breast cancer tissue samples. a Breast cancer tissue samples were analyzed by IHC staining for
OPG. Magnification for the panel is 4X and 60X. b Isotype control staining of the same breast cancer tissue samples. Red arrows indicate
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OPG immensely contributes to the angiogenic signature of
aggressive breast cancer tumor microenvironment.

OPG induces proliferation in HMEC spheres

Since it has been previously shown that OPG acts as an
important survival factor for cancer cells [10], we ex-
amined the effect of OPG on the proliferation of
HMEC spheres (Fig. 6a). Confocal microscopy revealed
that proliferation of the HMEC spheres was drastically
increased when seeded in the presence of breast cancer

cell conditioned media rich in OPG (Fig. 6b, panels 2
and 6). Such spheres were higher in number, bigger in
size, and were highly dense when compared to the con-
trol HMEC spheres (Fig. 6b, panels 1 and 5). However,
this was not the case when OPG-depleted breast cancer
conditioned media was used (Fig. 6b, panels 3 and 7).
Interestingly, in the presence of recombinant human
OPG, the spheres were bigger, denser and more in
number (Fig. 6b, panels 4 and 8). Quantification of the
proliferation was done by MTT assay and the prolifera-
tion index of the HMEC spheres significantly increased
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in the presence of recombinant human OPG (Fig. 6¢
and d). These results correlate with the findings using
breast cancer cell conditioned media that is rich in
OPG and thus suggest that OPG plays a very important
role in cell proliferation.

OPG affects the CSCs population by downregulating the
CD24 receptor expression

Cluster of differentiation 44 (CD44) signaling interac-
tions play a key role in various malignancies, supporting
tumor cell migration, adhesion, and survival. CD24 is
expressed in many cancer types, including renal, ovarian,
lung and pancreatic cancers [11-13]. Currently, CD24
expression is a new prognostic marker in breast cancer

[12]. ). The CD24 overexpression is linked to worse sur-
vival outcomes and increased aggressiveness of the
disease by promoting cell migration and invasion
[14]. Since we observed increased proliferation in the
control HMEC spheres in presence of recombinant hu-
man OPG, we analyzed if OPG is able to induce any
change in the CD44/CD24 profiling of the control
HMEC spheres (Fig. 7). HMEC cells were grown into
spheres in the presence of various media combinations
such as HMEC media and HMEC media supplemented
with recombinant human OPG (500 pg/ml or 1100 pg/ml)
as shown in the schematic figure (Fig. 7a). Flow cytometry
analysis of CD44 and CD24 surface receptor expression
revealed upregulation of the CD24 surface receptor
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independent experiments

Fig. 6 Effect of Osteoprotegerin on the proliferation of HVIEC spheres. a Schematic of the experiment. b Confocal images of control HMEC
spheres grown in various media combinations. HMEC cells were seeded in various media in 6 well ultra-low attachment plates as indicated,
grown for 8 days, and imaged (magnification, 10X). Results shown are tiled shots of two different fields and the assay was performed in triplicate.
c and d OPG increases the proliferation of HMEC spheres. MTT assay results shown in the panel represent the absorption at 570 nm. HMEC
spheres grown in various supernatants for 8 days as described in methods. The values correspond to the mean +/— S.D. of three

expression in presence of 500 pg/ml (Fig. 7b) as well
as 1100 pg/ml (Fig. 7c) of rhOPG. However, not
much difference was observed in CD44 surface receptor
expression (Fig. 7). From our previous experiment we
have observed increased proliferation in control HMEC
spheres in presence of OPG. Interestingly, CD24 is known
to enhance cell migration and proliferation via regulation
of signaling molecules like Cten, FAK and ERK1/2 in colo-
rectal cancer. Su et al. (2012) [15] and Weichert et al.
(2005) [16] and it’s ablation resulted in decrease in cell
proliferation and epithelial to mesenchymal transition
via the Src/FAK /ERK signaling via integrin f1 (CD24
regulates cell proliferation and transforming growth

factor P-induced epithelial to mesenchymal transition
through modulation of integrin B1 stability). From
our previous experiment we have observed increased
proliferation in control HMEC spheres in presence of
OPG. Thus observing upregulation of CD24 surface
expression observed in control HMEC spheres in presence
of OPG (Fig. 7b and c¢) validates the observed increased/
sustained proliferation in such spheres as described in
Fig. 6¢c and d.

OPG induces onset of aneuploidy in normal HMEC spheres
Aneuploidy is a striking hallmark of cancer and studies
have highlighted the fact that acquired aneuploidy may
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Fig. 7 Effect of Osteoprotegerin on the CD44/CD24 CSCs of control HMEC spheres. a Schematic of the experiment. b and ¢ Flow cytometry of
HMEC spheres grown in various media combinations. HMEC cells were seeded in various media in 6 well ultra-low attachment plates as
indicated, grown for 8 days, trypsinized and stained with CD44 and CD24 antibodies and analyzed by flow cytometry
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be a specific phenomenon in tumor progression [17, 18].  the aneuploid population decreased in the presence of
Since we observed increased proliferation in the control ~ OPG depleted breast cancer conditioned media (Fig. 8a,
HMEC spheres, we analyzed if OPG secreted in the panels 3 and 6). Surprisingly, recombinant human OPG
breast cancer cell microenvironment induces aneuploidy. (500 pg/ml or 1100 pg/ml) also induced aneuploidy in
To assess the onset of aneuploidy, HMEC cells were the control HMEC spheres (Fig. 8a, panels 4 and 7).
grown into spheres in the presence of various media These results (Fig. 8b) suggested that increased aneu-
combinations such as HMEC media, breast cancer cell  ploidy can also be linked to increased cell proliferation
(SUM149PT and SUMI1315MO2) conditioned media, and OPG is one of the key factors causing aneuploidy in
OPG depleted breast cancer cells conditioned media, otherwise normal healthy cells.

and HMEC media supplemented with recombinant

human OPG (500 pg/ml or 1100 pg/ml). PI staining and  OPG induces aneuploidy related kinases in normal HMIEC
cell cycle analysis demonstrated that control HMEC  spheres

spheres were 100 % diploid (Fig. 8a, panel 1) when To determine factors that may induce aneuploidy, we
grown in HMEC media. Strikingly, when HMEC spheres  tested the basal levels of IAK-1/Aurora A, Bubl, BubR1
were grown in SUMI149PT or SUMI1315MO2 condi- and Mpsl aneuploidy kinases in HMEC and breast can-
tioned media, there was an onset of a new population cer spheres (Fig. 8c). [AK-1/Aurora A, Bubl, BubR1 and
with a decrease in the percentage of diploid population  Mpsl aneuploid kinase levels were upregulated in breast
(Fig. 8a, panels 2 and 5). In contrast, the percentage of cancer spheres when compared to HMEC spheres
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(Fig. 8c). To further verify our results, we evaluated the
status of aneuploidy kinases such as IAK-1/Aurora A, Bubl
and BubR1 (Fig. 8d and e) in HMEC spheres grown in
different media combinations as indicated. The expression
of IAK-1/Aurora A, Bubl, and BubR1 were upregulated in
the HMEC spheres grown in OPG rich breast cancer
cell conditioned media and recombinant human OPG
(Fig. 8d and e). These results complemented the cell cycle
results further strengthening the role of OPG in affecting
the genomic integrity of normal healthy HMEC cells.

OPG induces survival and proliferation kinases in HMEC
spheres

Since increased proliferation could be attributed to the
activation of cell survival kinases, we compared the
phosphorylated and total levels of survival kinases such as
AKT, p44/42, p65 and GSK3p in HMEC and breast cancer
spheres (Fig. 9a). Level of P-AKT, P-p44/42, P-p65 and
P-GSK3p were higher in SUM149PT and SUM1315MO2
spheres when compared to the HMEC spheres. Due to
the increased proliferation and onset of aneuploidy ob-
served in HMEC spheres in presence of recombinant
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human OPG, we hypothesized that OPG upregulates dif-
ferent survival and proliferation kinases which drive nor-
mal cells towards uncontrolled proliferation and survival,
an important hallmark of tumorigenesis. To test this hy-
pothesis, in the presence of various media combinations
such as HMEC media and HMEC media supplemented
with recombinant human OPG (500 pg/ml or 1100 pg/
ml) and lysates were prepared. AKT, p44/42, p65, B-
catenin and GSK3[ phosphorylation levels were increased
in the HMEC spheres grown in presence of the HMEC
media supplemented with recombinant human OPG
(500 pg/ml or 1100 pg/ml) (Fig. 9b). This shows that the
phosphorylation of survival and proliferation inducing ki-
nases is increased in control HMEC spheres in the pres-
ence of OPG. This finding suggests that OPG upregulated
the expression of the survival kinases which probably lead
to the increased proliferation of control HMEC spheres.

Long term culturing of HMEC spheres in OPG rich

medium amplified genes relevant to oncogenic pathways
Beside single nucleotide polymorphisms (SNPs), copy
number variations (CNVs) are characterized as common
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genetic variation especially structural variation has been
associated with disease susceptibility and onset of cancer
[21]. CNVs are defined as DNA segments that are 1 kb
or larger in size present at variable copy number in com-
parison with a reference genome [22]. These variations
are common in the human genome [23] and can have
dramatic phenotypic consequences as a result of altering
gene dosage, disrupting coding sequences or perturbing
long-range gene regulation [24]. Changes in the copy
number can be positively [25] or negatively [26] corre-
lated with gene expression levels (for example, deletion
of a transcriptional repressor could serve to elevate gene
expression). To have a baseline of copy number of vari-
ous genes in various cell types, first we performed the
copy number analysis of adherent HMEC, SUM149PT,
and SUM1315MO2 cells (Fig. 10b). We used Human
Breast Cancer qBiomarker Copy Number PCR Array
that profiles the copy number of 23 genes reported to
undergo frequent genomic alterations in human breast
tumor DNA. The genes on the array encode receptors,
receptor tyrosine kinases (epidermal growth factor re-
ceptor; EGFR, ERBB2, basic fibroblast growth factor re-
ceptor 1; FGFR1, FGFR2), signal transduction pathways
(AKT1, phosphatidic acid phosphatase type 2 domain
containing 1B; PPAPDC1B, PTEN), phosphatases, tran-
scription factors (metadherin; MTDH, MYC, nuclear
receptor coactivator 3; NCOA3, retinoblastoma protein
1; RB1, transcription factor Dp-1; TFDP1), cell cycle
(Aurora A kinase, BCL2L1, CCND1, CDK4, cyclin-
dependent kinase inhibitor 2A; CDKN2A, RB1), DNA
repair (Cllorf30; EMSY, topoisomerase DNA II alpha
TOP2A), apoptosis (BCL2L1, MTDH), growth factor
signaling (MTDH), drug metabolism (butyrylcholinester-
ase; BCHE), and cell adhesion and cytoskeleton
(CSMD1, PAK1, PTK2) that regulate the breast cancer
aggression and its biology. Comparison of copy number
analysis of HMEC, SUM149PT, SUM1315MO2 adherent
cells revealed high copy numbers of AKT1, AURKA,
CDK4, EGFR1, PAK1 and MYC in breast cancer cells as
compared to HMEC cells (Fig. 10b). Similarly, there was
remarkably high gene expression of AKT1, AURKA,
CDK4, EGFR1, ERBB2, PAK1 and MYC copy number
in the DNA prepared from sphere cultures of SUM149PT
and SUM1315MO2 as compared to HMEC (Fig. 10c).
We observed downregulation of the copy numbers of
CDKN2A, PTEN and TOP2A in SUMI149PT and
SUM1315MO2 adherent (Fig. 10b) as well as spheres
(Fig. 10c) when compared to HMEC. Results in
Fig. 10b and c clearly indicate that SUMI149PT,
SUM1315MO2 cancer cell lines have selective amplifi-
cation and downregulation of genes regulating signal
transduction, protein tyrosine kinases, cell prolifera-
tion, and cell cycle regulation events when compared
to HMEC cells.
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In order to understand these copy number variation in
the context of inflammatory breast cancer, we profiled
the copy number variation observed in inflammatory
breast cancer tissue (Fig. 10d). We observed the upregu-
lation of copy number of AKT1, AURKA, CDK4, EGER,
FGFR1, MYC, and PAK1 and downregulation of few
tumor suppressors (PTEN, RB1, and PTEN) and cell
cycle regulator CDKN2A (Fig. 10d).

Breast cancer heterogeneity and complexity occurs as
a consequence of the dysregulation of numerous onco-
genic pathways as well as many non-genetic factors,
including tumor-microenvironment stresses including
hypoxia, lactic acidosis, glucose deprivation, and cyto-
kine rich microenvironment [27]. Non-genetic factors of
tumor microenvironment/paracrine milieu have been
shown to integrate and influence the genetic framework
of cancer; therefore we asked if continuous insult from
OPG rich microenvironment could drive normal mam-
mary epithelial cells (HMEC) towards tumorigenic. DNA
copy number analysis of the HMEC spheres cultured for
three generations (Fig. 10a) in OPG containing medium
selectively amplified the DNA copy numbers of AKT]1,
AURK]1, EGFR, MYC and PAK1 (Fig. 10e). There was ap-
preciable amplification of the DNA copy numbers of
CDK4 (Fig. 10e). DNA copy number profiling revealed
remarkable reduction in the copy numbers of CDKN2A,
PTEN and TOP2A in HMEC spheres cultured in presence
of OPG (Fig. 10e). These results indicate that longer
exposure of HMEC spheres to OPG rich microenviron-
ment amplifies DNA copy number of tumorigenic genes
(AKT1, AURKI1, EGFR and MYC) and downregulates
tumor suppressive genes (CDKN2A, PTEN and TOP2A).

Discussion and Conclusions

Breast cancer patients develop aggressive metastases to
secondary organs such as bone marrow and bone [28-30].
Components of the tumor microenvironment, including
macrophages, myoepithelial and endothelial cells, and
several extracellular matrix (ECM) molecules, have been
shown to play critical roles in mammary duct morphogen-
esis. Hence, the secretions from these cells, such as the
cytokines in the of tumor microenvironment; are increas-
ingly recognized as a major regulator of carcinogenesis
and also a critical target for therapeutics [31]. Our study
highlights the importance of OPG in the breast cancer
microenvironment and suggests how OPG has the tre-
mendous capacity to drive normal healthy cells towards
tumorigenesis.

The anchorage-independent sphere cultures of other-
wise adherent cells were instrumental in our study as it
provided a deeper insight into the complexity of a 3D
tumor (Fig. 1). The differences in morphology and
branching of breast cancer spheres indicated a very
dynamic microenvironment and highlighted the complexity
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(See figure on previous page.)

Fig. 10 Effect of long term culturing HMEC spheres in OPG rich medium on the copy number of genes relevant to oncogenic pathways. a
Schematic of culturing three generations of HMEC spheres in presence of rhOPG. b Copy number differences among HMEC, SUM149PT, and
SUM1315MO2 adherent cells. € Copy number differences among HMEC, SUM149PT, and SUM1315MO2 spheres. d Comparison of copy number
analysis of reference and inflammatory breast cancer tissue DNA. @ Comparison of copy number analysis of HMEC spheres cultured for three

generations in the absence or presence of 500 pg/ml rhOPG

of the disease. We observed that the secretions from highly
invasive breast cancer adherent and sphere cultures were
rich in OPG (Additional file 1: Figure S1). Besides
OPG, chemokines such as urokinase-type plasminogen
activator receptor (uPAR), Oncostatin M (OSM), and
GRO-«, which help in matrix-metalloprotease activation,
ECM degradation, and facilitate metastasis, were also
heavily secreted in the breast cancer microenvironment
(Fig. 2). In addition, the increase in OPG secretion might
be an indication that OPG, directly or indirectly, is
inducing the secretion of many such oncogenic factors
thus contributing to the severity of the disease.

OPG is associated with several organ pathologies such
as endometriosis [32], periodontal [33], thyroid disease
[34] and coronary heart disease [20, 35]. The widespread
expression of OPG suggests that OPG may have mul-
tiple biological activities that are yet to be explored.
Whether an OPG linked survival system operates in vivo
remains to be established, but the elevated expression of
OPG in tumors is reported to be associated with poor
prognosis in gastric carcinoma [36]. In our study, strong
OPG expression was observed in inflammatory breast
cancer tissues and moderate proportion of invasive
ductal breast cancer tissues and this was absent from
normal breast tissue. This observation supports the
proposition that OPG expression might be universally
involved in the severity of various kinds of breast cancer
development and progression (Figs. 3 and 4).

Previous research has shown that OPG is actively in-
volved in the tumor progression by aiding in angiogenesis
[7] and OPG deficient mice exhibited vascular calcification
thus highlighting the involvement of OPG in the active
and intricate vascular system [37]. Our in vitro studies
demonstrate OPG involvement in endothelial tube forma-
tion in an in vitro model of angiogenesis which is in con-
cordance with previous studies (Fig. 5).

Previous findings revealed OPG’s ability to attenuate
TRAIL-induced apoptosis by activating integrin, focal
adhesion kinase (FAK), and Akt signaling thus suggesting
that OPG production may provide cells with a survival
advantage [38]. Similarly, our results showed that
OPG induces proliferation and enhances survival of
normal human mammary epithelial cells (Fig. 6).
Hence it is possible that OPG upregulates the com-
pensatory signaling mechanisms by binding to its sig-
naling receptors thus mediating HMEC proliferation
and increased survival.

CD24 is a marker for breast cancer initiating cell (] M.
Al-Hajj, M..S. Wicha, A. Benito-Hernandez, S.J. Morrison,
M.E. Clarke, Proceedings of the National Academy of
Sciences of the United States of America 100 (7) (2003)
3983-3988) and modulating CD24 expression can influ-
ence the cell's proliferating and metastasis capacity (P.
Baumann, N. Cremers, F. Kroese, G. Orend, R. Chiquet-
Ehrismann, T. Uede, H. Yagita, J.P. Sleeman, Cancer Re-
search 65 (23) (2005) 10783-10793.) Previous studies have
confirmed the CD24 enhanced proliferation and survival
of cancer cells (] S.C. Smith, G. Oxford, Z. Wu, M.D. Nitz,
M. Conaway, H.F. Frierson, G. Hampton, D. Theodorescu,
Cancer Research 66 (4) (2006) 1917-1922). Here we show
the CD24 upregulation in presence of OPG in control
HMEC spheres (Fig. 7) thus supporting the increased pro-
liferation and survival (Figs. 6 and 8) seen in the control
HMEC spheres in presence of OPG.

Aneuploidy has been proposed to initiate tumorigen-
esis and is a remarkably common characteristic of tumor
cells [39]. Indeed, aneuploidy is found in precancerous
lesions of the cervix [40, 41], head and neck [42], colon
[41], oesophagus [43] and bone marrow [44]. Aneuploidy
has also been detected in premalignant breast [45] and
skin [46] lesions in experimental animals as well. It has
recently been confirmed that Aurora-A overexpression
potentiates the oncogene activity of HRAS, not by inter-
fering with the ploidy of the cell or the number of centro-
somes but by influencing cell growth [47]. Overexpression
of other kinases like Bubl, BubR1, Mpsl, and Aurora-B
has been observed in a large variety of tumors containing
polyploid cells with an abnormal number of centrosomes
[17]. Our study for the first time highlights the expression
of aneuploid markers like IAK-1, Bub1, and BubR1 in the
presence of OPG (Fig. 8). Our study is novel as it reveals
OPG as one of the important factors in the breast cancer
cell tumor microenvironment that can initiate the onset of
aneuploidy in normal human mammary epithelial cells
(Fig. 8). Furthermore, future investigations concentrating
on the identification of the genetic defects that contribute
in driving aneuploid kinases as oncogenes will help in tar-
geting the aneuploid kinases for therapeutics.

Previous studies have reported that OPG induced
cytoskeletal changes related to proliferation and migra-
tion of endothelial cells were associated with activation
of Akt, Erk1/2, and Src [48]. In our study, we found that
OPG modulated the canonical survival and proliferation
signaling pathways in the control HMEC spheres (Fig. 9).
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OPG activated Akt and GSK3p phosphorylation without
notably affecting Erk1/2 activation (Fig. 9).

OPG has been reported to exert its effects via OPG
receptors, such as type II membrane forms of RANKL
[49, 50], TRAIL [51] and heparin sulfate containing pro-
teoglycans, such as syndecan-1 [19, 52]. Syndecans are
also recruiters of growth factors and metalloproteases
[53] and their interactions are regulated by phosphoryl-
ation induced clustering and shedding of the extracellu-
lar domain [54-56]. The overexpression of syndecan-1
in adenocarcinoma cell lines has been shown to stimu-
late proliferation. The balance between shedding and
phosphorylation induced clustering marks the switch to
a proliferative and invasive phenotype [54—56]. Besides
RANKL, TRAIL and syndecan-1, integrin mediated sig-
naling has also been highlighted for activation of signal-
ing pathways leading to cell migration and proliferation
by OPG [48, 57]. Interestingly, immunoprecipitation of
breast cancer cell extracts by OPG antibody revealed a
major band at a molecular mass of 110 kDa (unpublished
results). Mass spectrometry analysis revealed it to be
nucleolin protein (unpublished results). Nucleolin is a
multifunctional shuttling protein present in nucleus, cyto-
plasm, and on the surface of some types of cells [58].
Nucleolin is a major constituent of nucleoli in exponen-
tially growing cells [59] and functions in the organization
of nucleolar chromatin [60], packaging of pre-rRNA [61],
rDNA transcription [62], and ribosome assembly by shut-
tling between the nucleus and the cytoplasm [63]. Expres-
sion of nucleolin on cell surface has been reported in
HeLa cells [22], lymphoblastoid T cells [22], breast carcin-
oma cells [64, 65], lung [66], and laryngeal epithelial cells
[67], and hepatocarcinoma cells [68]. Nucleolin has also
been reported to be expressed on the surface of endothe-
lial cells in angiogenic blood vessels [65]. Interaction
between nucleolin and OPG in the breast cancer cells
adds to another layer of complexity how OPG could be
manipulating functions at the nuclear levels, and these
studies are ongoing in our lab.

Since DNA copy number changes in cancer cells have
prognostic impact [69-73], our studies have translational
significance and need to be evaluated further using
higher resolution methods. Aurora A kinase, EGFR,
AKT/PI3K, MYC amplification and TOP2A gene copy
number deletion or mutation has been significantly asso-
ciated with several clinicopathological parameters and
poor prognosis in breast cancer patients and are both a
prognostic marker for poor outcome [71, 74, 75]. In our
study, we found that OPG induced gene copy numbers
for oncogenic pathway regulators such Aurora A, EGFR,
AKT/PI3K, MYC (Fig. 10c). Aurora A is suggested to be
one of the proliferation potency parameters which is an
independent prognostic factor for early invasive breast
cancer patients, and OPG long term exposure drastically
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induced the copy number of Aurora A kinase (Fig. 10c)
further supporting our results in Fig. 8. Aurora kinases,
centrosomal serine/threonine kinases, play an essential
role in chromosome segregation, and their amplification
and/or overexpression has been associated with centro-
some anomalies and chromosomal instability as well as
abrogation of DNA damage-induced apoptotic response
and spindle assembly checkpoint override in tumor cells,
thus Aurora A is also defined as an oncogene [76]. Most
importantly, the genes induced by OPG are oncogenic
and are similar to the ones observed in inflammatory
breast cancer patient tissue.

Our study is innovative as it for the first time high-
lights OPG’s role as an important paracrine factor in-
volved in reprogramming normal healthy cells into
tumor cells (Fig. 11) and provides novel information
about the possible mechanisms via which OPG activates
the downstream signaling pathways thus affecting prolif-
eration, cell cycle and aneuploidy in the normal mam-
mary epithelial cells.

Methods

Cells

Primary human mammary epithelial cells (HMEC) (Cell
Applications) were cultured in HMEC medium (Cell Appli-
cations). Primary inflammatory breast cancer SUM149PT
and SUM190PT cells (Asterand), and highly invasive breast
cancer SUM1315MO2 cells (Asterand) were grown in F-12
media (Gibco) supplemented with 10 % heat-inactivated
fetal bovine serum (HyClone), insulin (Sigma), HEPES
(Sigma), EGF (Sigma) for SUM1315MO2 and Hydrocorti-
sone (Sigma) for SUMI149PT as per instructions from
Asterand. SUMI90PT cells were grown in F-12 media
(Gibco) supplemented with insulin (Sigma), HEPES
(Sigma), Hydrocortisone (Sigma), Apo-Transferrin (Sigma),
BSA (Sigma), ethanolamine (Sigma), sodium selenite
(Sigma) and 2 % heat-inactivated fetal bovine serum
(HyClone). Primary human microvascular dermal endothe-
lial cells (HMVEC-d) (Lonza) were cultured in endothelial
basal medium 2 (EBM-2) with growth factors (Lonza). All
cells were tested for mycoplasma contamination by the
standard Limulus assay (Charles River Endosafe) as per
manufacturer’s instructions. All cells were cultured in
LPS-free medium.

Reagents

Antibodies against OPG, Bubl, BubR1 and Mpsl were
from Abcam. P-GSK3p, GSK3p, P-p65, P65, AKT, P-AKT,
P-p44/42, Erk2 and GAPDH antibodies were from Cell
Signaling. Antibodies used against actin and tubulin were
from Sigma. The antibody for IAK-1 was purchased from
BD Biosciences. Recombinant human OPG from Abcam
was dissolved in sterile PBS (pH7.4). For depletion of
OPG from conditioned media, the anti-OPG antibody was
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from R&D Systems, Inc. Antibodies against CD44 and
CD24 were purchased from BD Biosciences.

In vitro sphere culture

Spheres referred as to multicellular tumor spheroids
were introduced to in vitro cell culture systems in the
early 1970s [77]. Cells were plated at a density of 10°
cells/well in a 6-well (Corning) or 10* cells/well in 24-

well (Corning) ultra-low attachment plates, grown for
7 days at 37 °C in a humidified atmosphere of 95 % air
and 5 % CO, to induce sphere formation. Spheres were
collected by centrifugation after 8 days.

Immunohistochemistry (IHC)
Sections from breast tissue samples of healthy subjects
and patients were obtained from Biochain Institute, Inc.
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(breast tumor tissue array Z7020007). The tumor diag-
nosis and tumor grading (stages I-III) for the breast
cancer tissue was done by Biochain Institute Inc. Inflam-
matory breast cancer tissue sample (breast tumor tissue
array T22350862-2) was also obtained from Biochain as
well. Permission has been obtained according to the
Declaration of Helsinki and following the specific
authorization of the local Institutional Review Board
(IRB) Committee to which the Chicago Medical School,
Rosalind Franklin University of Medicine and Science re-
fers (Institutional Review Board; IRB protocol 383 MIC).
Since the tissue sections were commercially obtained from
the BioChain Institute, Inc company, each sample is an-
onymous and blinded for laboratory research use. IHC
was performed using primary antibodies against human
OPG or IgG control as described previously [78]. Coun-
terstaining was done by hematoxylin [78].

OPG ELISA

The conditioned media of adherent HMEC, SUM149PT
and SUM1315MO2 cells were collected, centrifuged and
OPG levels were measured in the supernatants were
measured by ELISA (Raybiotech) according to the man-
ufacturer’s instructions. Results are expressed as the
amount of OPG secreted (pg/ml) per 10° cells.

Proliferation assay

The Proliferating Index of cells with metabolically
active mitochondria was determined by the 3-(4, 5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT)-based colorimetric assay (ATCC) as described
previously [78]. Briefly, 4 x 10* HMEC cells were allowed
to grow into spheres in the presence of HMEC complete
growth medium, conditioned media from SUMI149PT
and SUM1315MO2, OPG depleted conditioned media of
SUM149PT and SUM1315MO2 and HMEC media recon-
stituted with 500 pg/ml or 1100 pg/ml recombinant
human OPG in 24 well ultra-low attachment plates for
8 days. 100 ul of MTT reagent was added to all the sphere
cultures after 8 days and further incubated for 4 h for the
development of insoluble purple precipitate. Purple pre-
cipitate was solubilized in detergent and then read at
562 nm. The amount of MTT (yellow tetrazolium salt)
that is converted to insoluble purple formazan crystals
represents the number of proliferating cells.

Cell cycle analysis by flow cytometry

HMEC spheres were grown in various media as previously
described for cell proliferation assay [78]. Harvested
spheres were trypsinized, cells were diluted to 10° cells/ml
and DNA distribution analysis was performed. Cells were
fixed with 70 % methanol overnight and DNA was stained
with propidium iodide (PI) at a final concentration
of 50 mg/ml with RNaseA (100 U/ml) prior to flow
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cytometry analysis using LSRII (BD Biosciences). Results
were analyzed using ModFit Lt V3 software (Verity
Software House).

Stem cell analysis by flow cytometry

HMEC spheres were grown in various media as previ-
ously described for cell proliferation assay [78]. Har-
vested spheres were trypsinized and cells were diluted to
10° cells/ml. Combinations of fluorochrome-conjugated
monoclonal antibodies obtained from BD Biosciences
(San Diego, CA, USA) against human CD44 (FITC) and
CD24 (Alexa 647) or their respective isotype controls
were added to the cell suspension at concentrations rec-
ommended by the manufacturer and incubated at 4 °C
in the dark for 30 to 40 min. The labeled cells were
washed in the wash buffer and DAPI was added to gate
the live cells during the flow cytometry analysis using
LSRII (BD Biosciences). Results were analyzed using
ModFit Lt V3 software (Verity Software House).

In vitro capillary tube formation assay

HMEC, SUM149PT and SUM1315MO2 adherent cell
conditioned media, OPG depleted SUMI149PT and
SUM1315MO2 conditioned media, and HMEC media
reconstituted with 500 pg/ml or 1100 pg/ml recombin-
ant human OPG were used for an in vitro capillary tube
formation assay as per manufacturer’s instructions (BD
Biosciences). Briefly, 10* HMVEC-d cells were plated on
a matrigel coated 96-well plate with different media, in-
cubated for 16 h in 5 % CO, at 37 °C, and examined for
capillary tube formation under an inverted microscope
and photographed. The assay was done in duplicate and
each experiment was repeated three times.

Western blot analysis

Cell or sphere protein lysates were quantitated by BCA
assay. Equal amounts of protein (40 pg/lane) were sepa-
rated on SDS-PAGE, electrotransferred to 0.45-mm nitro-
cellulose membranes, blocked with 5 % BSA, probed with
antibodies of interest, and visualized using an enhanced-
chemiluminescence (ECL) detection system.

Cytokine profiling

Conditioned medium obtained from adherent and sphere
cultures of HMEC, SUM149PT and SUM1315MO2 were
spun at 1000 rpm for 10 min at 4 °C to remove the partic-
ulates and assayed for cytokine profiling using Raybiotech
human cytokine antibody array AAH-CYT-7. The cyto-
kine antibody array membranes were incubated with vari-
ous conditioned media at 4 °C overnight. The membranes
were washed, incubated with 1 ml of primary biotin-
conjugated antibody at room temperature for 2 h, washed,
incubated with 2 ml of horseradish peroxidase-conjugated
streptavidin at room temperature for 45 min, and developed
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using ECL. Signal intensities were quantitated using an
Alpha Inotech image analysis system. Signal intensities
from all arrays were normalized to the same background
levels with positive and negative controls using Raybiotech
array AAH-CYT-7 analysis software.

Human breast cancer gBiomarker copy number profiling
HMEC cells were allowed to make spheres in the pres-
ence of recombinant human OPG rich medium. HMEC
spheres were cultured for three generations, each gener-
ation being of 7 days. Breast cancer spheres were also
generated from SUMI149PT and SUMI1315MO2 cells
and cultured for three generations. At the end of the
third generation, DNA prepared from these spheres was
used to profile qBiomarker Copy Number using the
human Breast Cancer gBiomarker Copy Number PCR
Array from SABiosciences. Apart from spheres, genomic
DNA was also isolated from the inflammatory breast
cancer patient tissue sample for profiling gBiomarker
Copy Number. This array profiles the copy number of
23 genes reported to undergo frequent genomic alter-
ations in human breast tumor DNA. Genes were chosen
from the most frequently amplified or deleted genes
relevant to oncogenic pathways and breast cancer biol-
ogy based on the primary literature and public data-
bases. The array analyzed each gene in each sample in
quadruplicate and includes a stable multi-copy reference
assay for accurate copy number determination via ap-
propriate DNA input normalization. qBiomarker Copy
Number PCR Arrays are the most reliable and sensitive
copy number profiling technology for analyzing a panel
of loci in signal transduction pathways or disease related
gene networks.
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