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Abstract

Background: Inducible nitric oxide synthase (iNOS) metabolizes L-arginine to produce nitric oxide (NO) which was
originally identified in myeloid cells as a host defense mechanism against pathogens. Recent studies, however, have
revealed that iNOS is often induced in tumor cells and myeloid cells in the tumor microenvironment. Compelling
experimental data have shown that iNOS promotes tumor development in certain cellular context and suppresses
tumor development in other cellular conditions. The molecular mechanisms underlying these contrasting functions of
iNOS is unknown. Because iNOS is often induced by inflammatory signals, it is therefore likely that these contrasting
functions of iNOS could be controlled by the inflammatory signaling pathways, which remains to be determined.

Methods: iNOS is expressed in colon carcinoma and myeloid cells in the tumor microenvironment. Colon carcinoma
and myeloid cell lines were used to elucidate the molecular mechanisms underlying iNOS expression. Chromatin
immunoprecipitation and electrophoretic mobility shift assay were used to determine the IFNγ-activated pSTAT1
and NF-κB association with the chromatin DNA of the nos2 promoter.

Results: We show here that iNOS is dramatically up-regulated in inflammed human colon tissues and in human colon
carcinoma as compared to normal colon tissue. iNOS is expressed in either the colon carcinoma cells or immune cells
within the tumor microenvironment. On the molecular level, the proinflammatory IFNγ and NF-κB signals induce iNOS
expression in human colon cancer cells. We further demonstrate that NF-κB directly binds to the NOS2 promoter
to regulate iNOS expression. Although neither the IFNγ signaling pathway nor the NF-κB signaling pathway alone
is sufficient to induce iNOS expression in myeloid cells, IFNγ and NF-κB synergistically induce iNOS expression in
myeloid cells. Furthermore, we determine that IFNγ up-regulates IRF8 expression to augment NF-κB induction of iNOS
expression. More interestingly, we observed that the p65/p65 and p50/p50 homodimers, not the canonical p65/p50
heterodimer, directly binds to the nos2 promoter to regulate iNOS expression in myeloid cells.

Conclusions: IFNγ-induced IRF8 acts in concert with NF-κB to regulate iNOS expression in both colon carcinoma and
myeloid cells. In myeloid cells, the NF-κB complexes that bind to the nos2 promoter are p65/p65 and p50/p50
homodimers.
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Background
Nitric Oxide Synthase (NOS) metabolizes L-arginine to
form the intermediate OH-L-arginine, which is then
oxidized into nitric oxide (NO) and L-citrulline in
eukaryotic cells. Inducible NOS (iNOS, also termed
NOS2) is a type of NOS which was originally identified
in myeloid cells. iNOS is induced in myeloid cells after
activation by endotoxins or cytokines to generate NO
that acts as a defense effector to suppress invading mi-
croorganisms or neoplastic tissue [1, 2]. However, it is
now clear that iNOS is also present in numerous types
of non-immune cells, including endothelial cells, fibro-
blasts, vascular smooth muscle cells, cardiac myocytes,
and cancerous cells [3, 4].
Consistent with its function as a host defense agent,

iNOS can protect certain host tissues from certain in-
fectious diseases. Compelling experimental data indicate
that iNOS is inducible in tumor cells and function as a
tumor suppressor [3–9]. NO functions as a cytotoxic agent
that can suppress cancer development [10–15]. However,
overwhelming experimental data from both human cancer
patients and mouse tumor models indicate that iNOS can
also promote tumor development [16–25]. It is now clear
that iNOS induction is a common phenomenon of
chronic inflammation, and iNOS-produced NO acts as a
key signaling molecule that promotes inflammation-
mediated spontaneous colon cancer development [18, 26].
One mechanism underlying iNOS function in tumor pro-
motion might be its function in regulation of the tumor-
initiating properties of cancer stem cells [27, 28].
Myeloid cells are often abundantly present in many solid

tumors [29], and are another major site of iNOS expres-
sion [8, 9, 30]. Like in tumor cells, iNOS also exhibits con-
trasting functions in myeloid cells in the context of tumor
development [18]. It has been shown that macrophages
are required for phthisic rejection of intraocular tumors,
and in vitro and in vivo inhibition of iNOS abolished
macrophage-mediated killing of tumor cells and rejection
of tumors [2, 8]. Furthermore, under hypoxic conditions,
the induction of iNOS activity in myeloid cells is associ-
ated with a substantial increase in tumor cell toxicity [9].
However, recent studies suggest that iNOS expressed in
myeloid cells also plays a key role in myeloid cell-
mediated immune suppression and tumor promotion
[31–34]. Myeloid cells from colon carcinoma-bearing
mice exhibit elevated iNOS and NO, which is associated
with increased levels of nitration on STAT1, resulting in
suppression of the anti-tumor immune response [30].
Therefore, iNOS expression occurs in both tumor cells
and tumor-associated myeloid cells, and can act in con-
cert to promote tumor development.
iNOS expression is induced by various inflammatory

stimuli that activate distinct signaling pathways that
converge to initiate expression of iNOS [35, 36]. One
of the well-known iNOS inducers is NF-κB [37].
However, NF-κB has contrasting functions as well.
NF-κB is a well-documented inflammatory factor that
promotes inflammation-mediated colon cancer progres-
sion [38, 39]. Overwhelming experimental data also dem-
onstrate that NF-κB is an apoptosis promoter and tumor
suppressor [40–44]. These contrasting functions of NF-κB
are believed to be cellular context-dependent. The
molecular mechanisms underlying NF-κB function in
iNOS induction in colon cancer and myeloid cells are
still not fully understood. IFNγ is a key component of
the host cancer immune surveillance system [45].
However, IFNγ is also a two-edged sword and an in-
flammatory cytokine that regulates iNOS expression.
Chronic IFNγ signaling promotes spontaneous colon can-
cer development through an iNOS-dependent mechanism
[26]. The fact that iNOS functions both to promote and
suppress tumor development and that iNOS inducers
IFNγ and NF-κB also exhibit both tumor promotion and
suppression functions raise the possibility that IFNγ and
NF-κB-mediated iNOS induction mechanisms dictate
iNOS expression level and functionalities. However, the
molecular mechanism underlying IFNγ and NF-κB regula-
tion of iNOS expression is still elusive.
We report here that iNOS is expressed in both human

colon carcinoma cells and tumor-infiltrating immune
cells. We determined that IFNγ and NF-κB synergistically
induce iNOS expression in both tumor cells and myeloid
cells. Furthermore, IFNγ up-regulates IRF8 expression
that is essential for IFNγ and NF-κB induction of iNOS
expression. We determined that NF-κB functions through
direct binding to the iNOS promoter to activate iNOS
transcription. In myeloid cells, the p65/p65 and p50/p50
NF-κB homodimers directly bind to the iNOS promoter,
thereby revealing an essential role of the p65/p65 and
p50/p50 homodimers in NF-κB induction of iNOS.

Methods
Cell lines and human tissue specimens
The human colon carcinoma T84 cell lines and murine
J774 myeloid cell lines were obtained from American
Type Culture Collection (ATCC) (Manassas, VA). ATCC
has characterized these cells by morphology, immun-
ology, DNA fingerprinting, and cytogenetics. The CL-2
cell line was kindly provided by Dr. Keiko Ozato (National
Institutes of Health, Bethesda, MD) [46]. De-identified
human colon carcinoma specimens were obtained from
the Cooperative Human Tissue Network and used with
approval by The Georgia Regents University Human
Assurance Committee (approval # 730193–1).

RT-PCR analysis
Total RNA was isolated from cells using Trizol (Invitrogen,
San Diego, CA) according to the manufacturer’s



Table 1 Oligo sequences

Oligo Name Use Forward Reverse

hiNOS RT-PCR 5'- ACATCACCACACCCCCAACC -3' 5'- GAAAGCAGGAAGCCAGCAGAC -3'

hICSBP (IRF8) RT-PCR 5'-CCAGATTTTGAGGAAGTGACGGAC-3' 5'-TGGGAGAATGCTGAATGGTGC-3'

hβ-actin RT-PCR 5'- GGAACGGTGAAGGTGACAGCAG -3' 5'- TGTGGACTTGGGAGAGGACTGG -3'

hiNOS-ChIP1 Chromatin immunoprecipitation 5'- CCACAGGTCAAGAATGCCACAC -3' 5'- AATGCCCCCACCCAAGAGCC -3'

hiNOS-ChIP2 Chromatin immunoprecipitation 5'- ACTCCTAATCATCCCTCAAAACCC -3' 5'- CATCTGCCACGAAGAGCAATG -3'

hiNOS-ChIP3 Chromatin immunoprecipitation 5'- GGACTTGGGACCAGAAAGAGGTG -3' 5'- GCCATCCAGAGAGTTGTTTTTGC -3'

hiNOS-ChIP4 Chromatin immunoprecipitation 5'- GGTCTCTTCCTGGTTTGACTGTCC -3' 5'- TTCCAACACCTTCTCTCTGTAGGC -3'

hiNOSNF-κB Probe EMSA 5'-AAAATTGTGGGAATTTTCTGCCTAC-3' 5'-GTAGGCAGAAAATTCCCACAATTTT-3'

NFB WT Probe EMSA 5'-CGGGAATTCCC-3' 5'-GGGAATTCCCG-3'

miNOS RT-PCR 5'-CCAGAGGACCCAGAGACAAGC-3' 5'-GGCAGCACATCAAAGCGGC-3'

mβ-actin RT-PCR 5'-CTGGCACCACACCTTCTACAATG-3' 5'-GGGTCATCTTTTCACGGTTGG-3'

miNOSChIP1 Chromatin immunoprecipitation 5'-ATGGTGTCTTCTGCCTCGCAAG-3' 5'-CCCCAGGATTCCACTGTTGAAC-3'

miNOSChIP2 Chromatin immunoprecipitation 5'-AAAGGAGAAACAGCCACCAAGC-3' 5'-AGCACCCACAACCCAAAGAAC-3'

miNOSChIP3 Chromatin immunoprecipitation 5'-TCCATCCCCTGAGCAATGTG-3' 5'-CCCCCCAAACCCAATACTTG-3'

miNOSChIP4 Chromatin immunoprecipitation 5'-CACAGCCCATCCACTATTCTGC-3' 5'-CCAGGACACATTCATCAGGAGG-3'

miNOSChIP5 Chromatin immunoprecipitation 5'-ACTCAGGGTAGGGTCCAGTTCATC-3' 5'-TATGTGGCTTCTCCTTGGCGAG-3'

miNOSNF-κB Probe EMSA 5'-GCTAGGGGGATTTTCCCTCTCTC-3' 5'-GAGAGAGGGAAAATCCCCCTAGC-3'
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instructions, and used for cDNA synthesis using the
MMLV reverse transcriptase (Promega, Madison, WI).
The cDNA was then used as the template for PCR
amplification. RT-PCR was conducted as previously de-
scribed [47]. The sequences of primers are listed in
Table 1.
Fig. 1 iNOS protein profiles in human colon tissues. a Normal colon tissues (a
were stained with iNOS-specific antibody. Shown are images of representative
of ulcerative colitis (c & d). b Normal colon tissues (e & f), primary colon carcin
with iNOS-specific antibody. Shown are images of representative results. Norm
expression was seen in inflammatory cells of the primary tumor tissues (g & h
Immunoprecipitation and Western blotting analysis
Western blotting analysis was performed as previously
described [48]. The blot was probed with antibodies spe-
cific for iNOS (BD Biosciences), STAT1 (BD Biosciences),
pSTAT1 (BD Biosciences), and β-actin (Sigma-Aldrich).
Immunoprecipitation was done with anti-p65 and anti-
& b) and colon tissues from human ulcerative colitis patients (c & d)
results. Upregulation of iNOS expression was seen in inflammatory cells

oma tissues (g & h) and Metastatic Lymph Node (LN) (i & j) were stained
al colon tissues exhibit no detectable iNOS (e & f). Upregulation of iNOS
) and Metastatic LN (i & j)
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p50 (Santa Cruz Biotech), as previously described [49, 50].
The immunoprecipitated proteins were analyzed by
Western blot analysis with anti-p65 (Santa Cruz Biotech).

Cell treatment
Cells were treated with IFNγ (100 IU/ml, PeproTech),
TNFα (100 IU/ml, R & D System), and Lipopolysaccharide
(LPS, 1 μg/ml, Sigma-Aldrich) as indicated overnight. Jak-
STAT inhibitor Ruxolitinib (250 nM, LC Laboratories)
was added to the cell culture 30 min before addition of
IFNγ, TNFα, or LPS.

Immunohistochemistry
Immunohistochemical staining was performed at the
Georgia Pathology Service. iNOS-specific antibody was
obtained from Santa Cruz Biotech.

Chromatin immunoprecipitation (ChIP) assay
ChIP assays were carried out using anti-p65 and anti-p50
antibodies (Santa Cruz Biotech) and protein A-agarose
beads (Millipore) as previously described [48]. The human
and mouse iNOS promoter DNA was detected by PCR
using gene-specific primers (Table 1).
Protein-DNA interaction assay
DNA-protein interaction was determined by electrophor-
esis mobility shift assay (EMSA) as previously described
[51]. Nuclear extracts were prepared as previously de-
scribed [52]. The probe sequences are listed in Table 1.

Gene silencing
Tumor cells were transiently transfected with scramble
and IRF8-specific siRNAs (Santa Cruz Biotech), re-
spectively and analyzed for IRF8 and iNOS expression
by RT-PCR.

Gene overexpression
Cells were electroporated with pcDNA 3.1 (vector control)
or pcDNA.IκBa-AA (kindly provided by Dr. Michael
Karin, University of California, San Diego). The cells were
then cultured overnight and treated with IFNγ and LPS
for another 18 h.
Fig. 2 iNOS protein level in human colon carcinoma tissues. Human
colon carcinoma specimens were stained with iNOS-specific antibody.
Shown are images of iNOS protein in tumor cells only (a), in
tumor-infiltrating immune cells only (b), and in both tumor cells
and tumor-infiltrating immune cells (c)
Results
iNOS expression profiles in human colon tissues
We made use of a human colorectal cancer tissue micro-
array (Cooperative Human Tissue Network) and stained
for iNOS protein levels. Because colonic inflammation is a
key cause of colon cancer, we focused our analysis on
colon tissues from human ulcerative colitis patients and
colon cancer patients. The normal human colon tissues
exhibit no detectable iNOS protein level. In contrast,
iNOS protein level is high in colon tissues from ulcerative
colitis patients (Fig. 1a). Human primary colon carcinoma
tissues also exhibit high level of iNOS, but most of the
iNOS-positive cells are non-tumor cells in the tumor
microenvironment (Fig. 1b). However, the lymph node
metastatic colon carcinoma cells exhibit high iNOS expres-
sion level (Fig. 1b). These observations indicate that iNOS
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is up-regulated in inflammatory colon epithelial cells, colon
carcinoma cells, and tumor-infiltrating immune cells.
iNOS expression patterns in the human tumor
microenvironment.
Further analysis of the primary human colon carcinoma
tissues revealed three types of iNOS expression patterns:
1) only tumor cells are iNOS-positive and no adjacent im-
mune cells contain iNOS (Fig. 2a); 2) tumor cells exhibit
undetectable iNOS, but adjacent immune cells express
iNOS (Fig. 2b); and 3) both tumor cells and adjacent im-
mune cells have detectable iNOS protein (Fig. 2c). These
observations indicate that iNOS is expressed in both colon
Fig. 3 IFNγ and TNFα cooperatively induce iNOS expression in human colon c
and TNFα for approximately 18 h, and analyzed for iNOS expression by RT-PCR
and then analyzed by Western blotting analysis of iNOS expression with β-actio
Ruxolitinib for 30 min and then treated with IFNγ and TNFα as indicated for 18
levels by Western blotting analysis. d The cells were treated as in C and then a
either scramble siRNA or human IRF8-specific siRNA for 6 h and the cells were
expression by RT-PCR with β-actin as a normalization control
cancer cells and tumor-infiltrating immune cells under
pathological conditions.

IFNγ and TNFα synergistically induce iNOS expression in
human colon carcinoma cells.
The IFNγ and NF-κB signaling pathways have been
shown to regulate iNOS expression in various types of
cells [35, 36, 53–57]. To elucidate the molecular mecha-
nisms underlying IFNγ- and NF-κB-mediated iNOS ex-
pression in human colon carcinoma cells, human colon
carcinoma T84 cells were treated with IFNγ, TNFα, or
both IFNγ and TNFα, and then analyzed for iNOS
expression. RT-PCR analysis revealed that, as expected,
IFNγ induced iNOS expression in T84 cells. TNFα
arcinoma cells. a Tumor cells were treated with IFNγ, TNFα, or both IFNγ
. β-actin was used as a normalization control. b Cells were treated as in A
n as an internal control. c Tumor cells were cultured in the presence of
h. Total lysates were then prepared and analyzed for STAT1 and pSTAT1
nalyzed by RT-PCR for iNOS expression. e The cells were transfected with
treated with IFNγ for 18 h. The cells were analyzed for IRF8 and iNOS
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alone did not induce iNOS expression (Fig. 3a), but
TNFα dramatically increased IFNγ-induced iNOS ex-
pression (Fig. 3a). Consistent with iNOS mRNA expres-
sion patterns, iNOS protein levels were dramatically
increased by IFNγ but not by TNFα treatment (Fig. 3b).
However, TNFα dramatically increased IFNγ-induced
iNOS expression (Fig. 3b).
To determine that IFNγ specifically induces iNOS ex-

pression, tumor cells were cultured in the presence of
Ruxolitinib, a specific Jak/STAT inhibitor. As expected,
Ruxolitinib blocked IFNγ mediated STAT1 activation in
human colon carcinoma cells (Fig. 3c). Consistent with
inhibition of STAT1 activation, Ruxolitinib inhibited
Fig. 4 NF-κB binds to NOS2 promoter to activate iNOS expression in human
consensus sequences are indicated. The locations of ChIP PCR primers are also
promoter. c EMSA of NF-κB binding to DNA. Human colon carcinoma cells w
DNA probes containing the NF-κB consensus sequence (#2 as shown in A) w
association. Shown are duplicated results (Replicate 1 and Replicate 2). A NF-κ
The probe sequences are presented in Table 1
IFNγ induction of iNOS expression in the tumor cells
(Fig. 3d). Interestingly, Ruxolitinib also diminished
TNFα function in enhancing IFNγ induction of iNOS
expression (Fig. 3d), suggesting that both the IFNγ sig-
naling pathway and NF-κB are essential for iNOS in-
duction. It has been previously reported that iNOS is
regulated by IRF8 [58]. It is also known that IRF8 is
regulated by IFNγ-activated pSTAT1 [59]. Therefore,
we reason that IFNγ activates pSTAT1 to activate
IRF8 to upregulate iNOS. To test this hypothesis, we
treated T84 cells with IFNγ and TNFα in the pres-
ence of Ruxolitinib and analyzed IRF8 expression. In-
deed, Ruxolitinib inhibited IRF8 expression. In order
colon carcinoma cells. a The NOS2 gene promoter structure. The NF-κB
indicated. b ChIP analysis of NF-κB association with the NOS2 gene

ere treated as indicated and used for nuclear extract preparation. The
ere incubated with the nuclear extracts and analyzed for NF-κB-DNA
B control probe (Santa Cruz Biotech) was used as a positive control probe.
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to validate the above observation that IFNγ regulates
iNOS expression through IRF8, a complimentary ap-
proach was used to determine the relationship be-
tween IRF8 and iNOS. IRF8 was silenced in T84 cells
using an IRF8-specific siRNA. RT-PCR analysis indi-
cate that silencing IRF8 expression diminished IFNγ-
induced iNOS expression (Fig. 3e).

NF-κB binds to the NOS2 promoter to regulate iNOS
expression
IFNγ activates gene expression through Jak-dependent ac-
tivation of STAT1 that binds to the target gene promoters
to activate transcription [53], whereas TNFα activates NF-
κB to directly activate gene transcription [35, 60]. The
above results indicate that pSTAT1 indirectly regulates
iNOS through IRF8 (Fig. 3e). Analysis of the human
NOS2 gene promoter identified two putative NF-κB-
Fig. 5 IFNγ and NF-κB induce iNOS expression in myeloid cells. a J774 cell
18 h, and analyzed for iNOS expression by RT-PCR. β-actin was used as a n
real time RT-PCR analysis of iNOS expression with β-action as an internal co
30 min and then treated with IFNγ and LPS as indicated for 18 h. Total lysa
Western blotting analysis. d J774 cells were cultured in the presence of Rux
expression was then analyzed by RT-PCR. e J774 cells were transiently trans
negative IκBα-AA mutant, respectively. Cells were treated with IFNγ and LP
binding consensus sequences (Fig. 4a). To determine
whether TNFα-activated NF-κB directly bind to the NOS2
promoter to activate iNOS transcription, NF-κB-specific
antibodies were used to determine the interactions of NF-
κB with the NOS2 promoter chromatin. NF-κB associ-
ation with the NOS2 promoter chromatin was detected in
three regions of the NOS2 promoter region in TNFα-
treated tumor cells (Fig. 4b). To validate these findings, ol-
igonucleotides containing the NF-κB-binding consensus
sequences of the NOS2 promoter (Fig. 4a) were synthe-
sized. Oligonucleotides were annealed to generate double-
stranded DNA probe (Table 1). The probes were labeled
with 32P and incubated with nuclear extracts prepared
from untreated and treated cells. These DNA-protein in-
teractions were analyzed by EMSA. Specific NF-κB/DNA
interactions were detected, indicated that NF-κB directly
regulates iNOS expression (Fig. 4c).
s were treated with IFNγ, LPS, or both IFNγ and LPS for approximately
ormalization control. b Cells were treated as in A and then analyzed by
ntrol. c J774 cells were cultured in the presence of Ruxolitinib for
tes were then prepared and analyzed for STAT1 and pSTAT1 levels by
olitinib for 30 min and then treated with IFNγ and LPS for 18 h. iNOS
fected with a control vector or a vector containing the dominant
S for approximately 18 h, and then analyzed for iNOS expression
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pSTAT1 and NF-κB synergistically regulate iNOS
expression in myeloid cells
To determine whether pSTAT1 and NF-κB also co-
operate to up-regulate iNOS expression in myeloid
cells, myeloid J774 cells were treated with IFNγ, LPS,
or both IFNγ and LPS. RT-PCR analysis revealed that
neither IFNγ nor LPS alone is sufficient to induce
iNOS expression. However, combined IFNγ and LPS
dramatically induced iNOS expression in J774 cells
(Fig. 5a & b). To determine whether IFNγ increases
Fig. 6 NF-κB binds to nos2 promoter to activate iNOS expression in myeloid c
is indicated. The locations of ChIP PCR primers are also indicated. b ChIP analys
treated with LPS for approximately 1 h. Nuclear extracts were prepared from th
antibodies, respectively. The IP was then analyzed by Western blotting analysis
DNA. J774 cells were treated as indicated and used for nuclear extract preparat
in A was incubated with the nuclear extracts and analyzed for NF-κB-DNA asso
iNOS expression specifically through the Jak-STAT sig-
naling pathway, J774 cells were cultured in the pres-
ence of Ruxolitinib prior to IFNγ and LPS treatment.
As expected, Ruxolitinib inhibited IFNγ-induced
STAT1 activation (Fig. 5c). It is also clear that Ruxoliti-
nib specifically inhibits NF-κB and IFNγ-mediated
iNOS expression induction (Fig. 5d). Next, we transi-
ently transfected J774 cells with a IκBα-AA plasmid,
a dominant-negative mutant of IκBα that blocks acti-
vation of the canonical NF-κB. RT-PCR analysis
ells. a The nos2 gene promoter structure. The NF-κB consensus sequence
is of NF-κB association with the nos2 gene promoter. c J774 cells were
e cells and used for immunoprecipitation (IP) with anti-p65 and anti-p50
using p65-specific antibody. d EMSA of NF-κB binding to nos2 promoter
ion. The DNA probe containing the NF-κB consensus sequence as shown
ciation using p65- and p50-specific antibodies



Fig. 7 IFNγ up-regulates IRF8 expression to enhance NF-κB-activated
iNOS expression. a J774 cells were treated with IFNγ and LPS as
indicated for approximately 18 h and analyzed for IRF8 expression
by RT-PCR. β-actin was used as a normalization control. b J774 and CL-2
cells were treated with IFNγ and LPS for 18 h and analyzed for iNOS
expression by RT-PCR. β-actin was used as a normalization control
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revealed that blocking NF-κB activation inhibited
IFNγ and LPS-induced iNOS expression in J774 cells
(Fig. 5e). These observations indicate that the IFNγ-
activated Jak-STAT signaling pathway acts in concert
with NF-κB to regulate iNOS expression in myeloid
cells.

The NF-κB homodimers bind to the nos2 promoter to
regulate iNOS expression
Analysis of the mouse nos2 gene promoter region identi-
fied a putative NF-κB-binding consensus sequence (Fig. 6a).
ChIP was then used to determine whether NF-κB directly
binds to the nos2 promoter chromatin. NF-κB directly
binds to multiple sites on the nos2 promoter region in
LPS-treated J774 cells (Fig. 6b).
NF-κB contains 5 Rel subunits, and the most common

NF-κB dimer is the p65/p50 heterodimer. IP-Western blot-
ting analysis revealed that indeed the p65/p50 NF-κB het-
erodimer exists in LPS-treated and both LPS and IFNγ-
treated J774 cells (Fig. 6c). To validate that NF-κB exists as
the p65/p50 heterodimer at the nos2 promoter region, we
performed EMSA assays using p65- and p50-specific anti-
bodies. The rationale is that if NF-κB binds to the NF-κB
consensus sequence DNA of the nos2 promoter, then p65/
p50-DNA complexes should be detected. Analysis of
protein-DNA interactions with nuclear extracts from LPS-
treated J774 cells and the nos2 promoter NF-κB consensus
sequence-containing DNA probe identified two protein-
DNA complexes (Fig. 6d). Surprisingly, p65- and p50-
specific antibody supershifts revealed that one of the
DNA-protein complexes is the p65/p65-DNA complex and
another is the p50/p50-DNA complex. No p65/p50-DNA
complex was detected. Therefore, the p65/p65 and
p50/p50 homodimers, not the p65/p50 heterodimer, bind
to the nos2 promoter region directly in myeloid cells.

IFNγ up-regulates IRF8 to enhance NF-κB-induced iNOS
expression.
Because pSTAT1 enhances iNOS expression through the
intermediate factor IRF8 in human colon carcinoma cells
(Fig. 3d & e), we hypothesized that IFNγ activates IRF8 to
regulate iNOS expression in myeloid cells as well. To test
this hypothesis, we first analyzed IRF8 expression. As
expected, IFNγ treatment dramatically increased IRF8
expression [59] (Fig. 7a), and LPS alone did not induce
IRF8 expression (Fig. 7a). We then analyzed iNOS induc-
tion in IRF8-deficient cells. The rationale is that if IRF8 is
essential for IFNγ and NF-κB-mediated iNOS expression,
then IRF8 deficiency should cause the loss of iNOS induc-
tion by IFNγ and LPS. The IRF8 wild type J774 cells and
the IRF8-deficient CL-2 cells [46] were treated with IFNγ
and LPS. RT-PCR analysis revealed that iNOS is induced
in J774 but not in the IRF8-deficient CL-2 cells (Fig. 7b).
Therefore, we, conclude that NF-κB enhances the IFNγ-
IRF8 axis-mediated induction of iNOS expression in mye-
loid cells.

Discussion
The expression of iNOS is induced by extracellular
stimuli that activate distinct signaling pathways that
converge to regulate iNOS transcription. Among the
various extracellular stimuli, LPS, TNFα, and IFNγ
are the three most extensively studied iNOS inducers
[1, 35, 36, 53, 54, 56, 57, 61, 62]. IFNγ functions
through activating the Jak-STAT signaling pathway,
whereas LPS and TNFα induce NF-κB activation to acti-
vate iNOS transcription. We show here that iNOS is
expressed in both colon carcinoma cells and the tumor-
infiltrating immune cells in the tumor microenvironment
of human colon carcinoma tissues in vivo. Using the hu-
man colon carcinoma T84 cell line and the murine myeloid
J774 cell line as in vitro model systems, we observed that
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both IFNγ-activated Jak-STAT and LPS/TNFα-activated
NF-κB are essential for iNOS induction in both the tumor
cells and the myeloid cells. Furthermore, the Jak-STAT sig-
naling pathway and NF-κB synergistically activate iNOS
transcription. Strikingly, although LPS induces the ca-
nonical p65/p50 heterodimer activation and nuclear
translocation (Fig. 6c), no p65/p50-iNOS promoter DNA
interactions are detected in myeloid cells. Instead, we ob-
served that the p65/p65 and p50/p50 homodimers bind to
the iNOS promoter (Fig. 6d). Our data thus reveal a novel
finding that the NF-κB p65/p65 and p50/p50 homodi-
mers, not the canonical p65/p50 heterodimers, directly
bind to the NF-κB consensus sequence element at the
nos2 promoter in myeloid cells.
The transcriptional regulation of iNOS has been the

subject of extensive studies due to its diverse mechanisms
of regulation. IFNγ is a potent inducer of iNOS in various
types of cells. Although IFNγ can activate STAT1 that dir-
ectly binds to gene promoter DNA to regulate IFNγ target
gene transcription, pSTAT1 often regulates IFNγ target
gene expression through activating transcription of IFN
regulatory factors, including IRF8. IRF8 is a transcription
factor that has been shown to regulate iNOS expression
[57]. Indeed, IRF8 is dramatically up-regulated by IFNγ in
myeloid J774 cells, and loss of IRF8 expression abolished
IFNγ function in iNOS induction. Therefore, we conclude
that IFNγ induces IRF8 expression to regulate iNOS
expression.
For NF-κB-mediated iNOS transcription activation, pre-

vious studies have identified several NF-κB-binding con-
sensus sequence elements in both the human and mouse
iNOS gene promoter regions [63]. We identified three
NF-κB-binding sites in the iNOS promoter region in
Fig. 8 Model of IFNγ and NF-κB action in induction of iNOS expression
in myeloid cells. IFNγ and NF-κB induces iNOS expression in tumor cells
and myeloid cells. Both IFNγ-activated pSTAT1 and NF-κB are essential
for the induction of iNOS. However, IFNγ-activated pSTAT1 does not
directly bind to the nos2 gene promoter. Instead, it activates IRF8 to
regulate iNOS transcription. On the other hand, NF-κB directly binds to
the nos2 gene promoter to activate iNOS transcription and it is the
p65/p65 and p50/p50 NF-κB homodimers, not the canonical p65/p50
heterodimer, that bind to the nos2 promoter region to activate iNOS
transcription in myeloid cells
human colon carcinoma cells and one in mouse myeloid
cells. We further demonstrated that NF-κB directly binds
to the NF-κB-binding consensus sequences in the iNOS
gene promoter regions. Therefore, unlike IFNγ-activated
pSTAT1, NF-κB directly binds to the iNOS promoter re-
gion to activate iNOS gene transcription in both human
colon carcinoma and murine myeloid cells.

Conclusions
Our results provide a novel insight into the molecular
mechanisms underlying transcription activation of iNOS
gene by IFNγ and NF-κB. IFNγ and NF-κB induces iNOS
expression in tumor cells and myeloid cells. Both IFNγ-
activated pSTAT1 and NF-κB are essential for the synergis-
tic induction of iNOS. However, IFNγ-activated pSTAT1
does not directly bind to the iNOS gene promoter. Instead,
it activates IRF8 to regulate iNOS transcription. On the
other hand, NF-κB directly binds to the iNOS gene pro-
moter to activate iNOS transcription. It is the p65/p65 and
p50/p50 NF-κB homodimers, not the canonical p65/p50
heterodimer, that bind to the iNOS promoter region to ac-
tivate iNOS gene transcription in myeloid cells (Fig. 8).
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